gtest-printers_test.cc
Go to the documentation of this file.
00001 // Copyright 2007, Google Inc.
00002 // All rights reserved.
00003 //
00004 // Redistribution and use in source and binary forms, with or without
00005 // modification, are permitted provided that the following conditions are
00006 // met:
00007 //
00008 //     * Redistributions of source code must retain the above copyright
00009 // notice, this list of conditions and the following disclaimer.
00010 //     * Redistributions in binary form must reproduce the above
00011 // copyright notice, this list of conditions and the following disclaimer
00012 // in the documentation and/or other materials provided with the
00013 // distribution.
00014 //     * Neither the name of Google Inc. nor the names of its
00015 // contributors may be used to endorse or promote products derived from
00016 // this software without specific prior written permission.
00017 //
00018 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00019 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00020 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
00021 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
00022 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
00023 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
00024 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
00025 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
00026 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
00027 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
00028 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00029 //
00030 // Author: wan@google.com (Zhanyong Wan)
00031 
00032 // Google Test - The Google C++ Testing Framework
00033 //
00034 // This file tests the universal value printer.
00035 
00036 #include "gtest/gtest-printers.h"
00037 
00038 #include <ctype.h>
00039 #include <limits.h>
00040 #include <string.h>
00041 #include <algorithm>
00042 #include <deque>
00043 #include <list>
00044 #include <map>
00045 #include <set>
00046 #include <sstream>
00047 #include <string>
00048 #include <utility>
00049 #include <vector>
00050 
00051 #include "gtest/gtest.h"
00052 
00053 // hash_map and hash_set are available under Visual C++.
00054 #if _MSC_VER
00055 # define GTEST_HAS_HASH_MAP_ 1  // Indicates that hash_map is available.
00056 # include <hash_map>            // NOLINT
00057 # define GTEST_HAS_HASH_SET_ 1  // Indicates that hash_set is available.
00058 # include <hash_set>            // NOLINT
00059 #endif  // GTEST_OS_WINDOWS
00060 
00061 // Some user-defined types for testing the universal value printer.
00062 
00063 // An anonymous enum type.
00064 enum AnonymousEnum {
00065   kAE1 = -1,
00066   kAE2 = 1
00067 };
00068 
00069 // An enum without a user-defined printer.
00070 enum EnumWithoutPrinter {
00071   kEWP1 = -2,
00072   kEWP2 = 42
00073 };
00074 
00075 // An enum with a << operator.
00076 enum EnumWithStreaming {
00077   kEWS1 = 10
00078 };
00079 
00080 std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
00081   return os << (e == kEWS1 ? "kEWS1" : "invalid");
00082 }
00083 
00084 // An enum with a PrintTo() function.
00085 enum EnumWithPrintTo {
00086   kEWPT1 = 1
00087 };
00088 
00089 void PrintTo(EnumWithPrintTo e, std::ostream* os) {
00090   *os << (e == kEWPT1 ? "kEWPT1" : "invalid");
00091 }
00092 
00093 // A class implicitly convertible to BiggestInt.
00094 class BiggestIntConvertible {
00095  public:
00096   operator ::testing::internal::BiggestInt() const { return 42; }
00097 };
00098 
00099 // A user-defined unprintable class template in the global namespace.
00100 template <typename T>
00101 class UnprintableTemplateInGlobal {
00102  public:
00103   UnprintableTemplateInGlobal() : value_() {}
00104  private:
00105   T value_;
00106 };
00107 
00108 // A user-defined streamable type in the global namespace.
00109 class StreamableInGlobal {
00110  public:
00111   virtual ~StreamableInGlobal() {}
00112 };
00113 
00114 inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
00115   os << "StreamableInGlobal";
00116 }
00117 
00118 void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
00119   os << "StreamableInGlobal*";
00120 }
00121 
00122 namespace foo {
00123 
00124 // A user-defined unprintable type in a user namespace.
00125 class UnprintableInFoo {
00126  public:
00127   UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
00128  private:
00129   char xy_[8];
00130   double z_;
00131 };
00132 
00133 // A user-defined printable type in a user-chosen namespace.
00134 struct PrintableViaPrintTo {
00135   PrintableViaPrintTo() : value() {}
00136   int value;
00137 };
00138 
00139 void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
00140   *os << "PrintableViaPrintTo: " << x.value;
00141 }
00142 
00143 // A type with a user-defined << for printing its pointer.
00144 struct PointerPrintable {
00145 };
00146 
00147 ::std::ostream& operator<<(::std::ostream& os,
00148                            const PointerPrintable* /* x */) {
00149   return os << "PointerPrintable*";
00150 }
00151 
00152 // A user-defined printable class template in a user-chosen namespace.
00153 template <typename T>
00154 class PrintableViaPrintToTemplate {
00155  public:
00156   explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
00157 
00158   const T& value() const { return value_; }
00159  private:
00160   T value_;
00161 };
00162 
00163 template <typename T>
00164 void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
00165   *os << "PrintableViaPrintToTemplate: " << x.value();
00166 }
00167 
00168 // A user-defined streamable class template in a user namespace.
00169 template <typename T>
00170 class StreamableTemplateInFoo {
00171  public:
00172   StreamableTemplateInFoo() : value_() {}
00173 
00174   const T& value() const { return value_; }
00175  private:
00176   T value_;
00177 };
00178 
00179 template <typename T>
00180 inline ::std::ostream& operator<<(::std::ostream& os,
00181                                   const StreamableTemplateInFoo<T>& x) {
00182   return os << "StreamableTemplateInFoo: " << x.value();
00183 }
00184 
00185 }  // namespace foo
00186 
00187 namespace testing {
00188 namespace gtest_printers_test {
00189 
00190 using ::std::deque;
00191 using ::std::list;
00192 using ::std::make_pair;
00193 using ::std::map;
00194 using ::std::multimap;
00195 using ::std::multiset;
00196 using ::std::pair;
00197 using ::std::set;
00198 using ::std::vector;
00199 using ::testing::PrintToString;
00200 using ::testing::internal::FormatForComparisonFailureMessage;
00201 using ::testing::internal::ImplicitCast_;
00202 using ::testing::internal::NativeArray;
00203 using ::testing::internal::RE;
00204 using ::testing::internal::Strings;
00205 using ::testing::internal::UniversalPrint;
00206 using ::testing::internal::UniversalPrinter;
00207 using ::testing::internal::UniversalTersePrint;
00208 using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
00209 using ::testing::internal::kReference;
00210 using ::testing::internal::string;
00211 
00212 #if GTEST_HAS_TR1_TUPLE
00213 using ::std::tr1::make_tuple;
00214 using ::std::tr1::tuple;
00215 #endif
00216 
00217 // The hash_* classes are not part of the C++ standard.  STLport
00218 // defines them in namespace std.  MSVC defines them in ::stdext.  GCC
00219 // defines them in ::.
00220 #ifdef _STLP_HASH_MAP  // We got <hash_map> from STLport.
00221 using ::std::hash_map;
00222 using ::std::hash_set;
00223 using ::std::hash_multimap;
00224 using ::std::hash_multiset;
00225 #elif _MSC_VER
00226 using ::stdext::hash_map;
00227 using ::stdext::hash_set;
00228 using ::stdext::hash_multimap;
00229 using ::stdext::hash_multiset;
00230 #endif
00231 
00232 // Prints a value to a string using the universal value printer.  This
00233 // is a helper for testing UniversalPrinter<T>::Print() for various types.
00234 template <typename T>
00235 string Print(const T& value) {
00236   ::std::stringstream ss;
00237   UniversalPrinter<T>::Print(value, &ss);
00238   return ss.str();
00239 }
00240 
00241 // Prints a value passed by reference to a string, using the universal
00242 // value printer.  This is a helper for testing
00243 // UniversalPrinter<T&>::Print() for various types.
00244 template <typename T>
00245 string PrintByRef(const T& value) {
00246   ::std::stringstream ss;
00247   UniversalPrinter<T&>::Print(value, &ss);
00248   return ss.str();
00249 }
00250 
00251 // Tests printing various enum types.
00252 
00253 TEST(PrintEnumTest, AnonymousEnum) {
00254   EXPECT_EQ("-1", Print(kAE1));
00255   EXPECT_EQ("1", Print(kAE2));
00256 }
00257 
00258 TEST(PrintEnumTest, EnumWithoutPrinter) {
00259   EXPECT_EQ("-2", Print(kEWP1));
00260   EXPECT_EQ("42", Print(kEWP2));
00261 }
00262 
00263 TEST(PrintEnumTest, EnumWithStreaming) {
00264   EXPECT_EQ("kEWS1", Print(kEWS1));
00265   EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
00266 }
00267 
00268 TEST(PrintEnumTest, EnumWithPrintTo) {
00269   EXPECT_EQ("kEWPT1", Print(kEWPT1));
00270   EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
00271 }
00272 
00273 // Tests printing a class implicitly convertible to BiggestInt.
00274 
00275 TEST(PrintClassTest, BiggestIntConvertible) {
00276   EXPECT_EQ("42", Print(BiggestIntConvertible()));
00277 }
00278 
00279 // Tests printing various char types.
00280 
00281 // char.
00282 TEST(PrintCharTest, PlainChar) {
00283   EXPECT_EQ("'\\0'", Print('\0'));
00284   EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
00285   EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
00286   EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
00287   EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
00288   EXPECT_EQ("'\\a' (7)", Print('\a'));
00289   EXPECT_EQ("'\\b' (8)", Print('\b'));
00290   EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
00291   EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
00292   EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
00293   EXPECT_EQ("'\\t' (9)", Print('\t'));
00294   EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
00295   EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
00296   EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
00297   EXPECT_EQ("' ' (32, 0x20)", Print(' '));
00298   EXPECT_EQ("'a' (97, 0x61)", Print('a'));
00299 }
00300 
00301 // signed char.
00302 TEST(PrintCharTest, SignedChar) {
00303   EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
00304   EXPECT_EQ("'\\xCE' (-50)",
00305             Print(static_cast<signed char>(-50)));
00306 }
00307 
00308 // unsigned char.
00309 TEST(PrintCharTest, UnsignedChar) {
00310   EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
00311   EXPECT_EQ("'b' (98, 0x62)",
00312             Print(static_cast<unsigned char>('b')));
00313 }
00314 
00315 // Tests printing other simple, built-in types.
00316 
00317 // bool.
00318 TEST(PrintBuiltInTypeTest, Bool) {
00319   EXPECT_EQ("false", Print(false));
00320   EXPECT_EQ("true", Print(true));
00321 }
00322 
00323 // wchar_t.
00324 TEST(PrintBuiltInTypeTest, Wchar_t) {
00325   EXPECT_EQ("L'\\0'", Print(L'\0'));
00326   EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
00327   EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
00328   EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
00329   EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
00330   EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
00331   EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
00332   EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
00333   EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
00334   EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
00335   EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
00336   EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
00337   EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
00338   EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
00339   EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
00340   EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
00341   EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
00342   EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
00343 }
00344 
00345 // Test that Int64 provides more storage than wchar_t.
00346 TEST(PrintTypeSizeTest, Wchar_t) {
00347   EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64));
00348 }
00349 
00350 // Various integer types.
00351 TEST(PrintBuiltInTypeTest, Integer) {
00352   EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255)));  // uint8
00353   EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128)));  // int8
00354   EXPECT_EQ("65535", Print(USHRT_MAX));  // uint16
00355   EXPECT_EQ("-32768", Print(SHRT_MIN));  // int16
00356   EXPECT_EQ("4294967295", Print(UINT_MAX));  // uint32
00357   EXPECT_EQ("-2147483648", Print(INT_MIN));  // int32
00358   EXPECT_EQ("18446744073709551615",
00359             Print(static_cast<testing::internal::UInt64>(-1)));  // uint64
00360   EXPECT_EQ("-9223372036854775808",
00361             Print(static_cast<testing::internal::Int64>(1) << 63));  // int64
00362 }
00363 
00364 // Size types.
00365 TEST(PrintBuiltInTypeTest, Size_t) {
00366   EXPECT_EQ("1", Print(sizeof('a')));  // size_t.
00367 #if !GTEST_OS_WINDOWS
00368   // Windows has no ssize_t type.
00369   EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2)));  // ssize_t.
00370 #endif  // !GTEST_OS_WINDOWS
00371 }
00372 
00373 // Floating-points.
00374 TEST(PrintBuiltInTypeTest, FloatingPoints) {
00375   EXPECT_EQ("1.5", Print(1.5f));   // float
00376   EXPECT_EQ("-2.5", Print(-2.5));  // double
00377 }
00378 
00379 // Since ::std::stringstream::operator<<(const void *) formats the pointer
00380 // output differently with different compilers, we have to create the expected
00381 // output first and use it as our expectation.
00382 static string PrintPointer(const void *p) {
00383   ::std::stringstream expected_result_stream;
00384   expected_result_stream << p;
00385   return expected_result_stream.str();
00386 }
00387 
00388 // Tests printing C strings.
00389 
00390 // const char*.
00391 TEST(PrintCStringTest, Const) {
00392   const char* p = "World";
00393   EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
00394 }
00395 
00396 // char*.
00397 TEST(PrintCStringTest, NonConst) {
00398   char p[] = "Hi";
00399   EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
00400             Print(static_cast<char*>(p)));
00401 }
00402 
00403 // NULL C string.
00404 TEST(PrintCStringTest, Null) {
00405   const char* p = NULL;
00406   EXPECT_EQ("NULL", Print(p));
00407 }
00408 
00409 // Tests that C strings are escaped properly.
00410 TEST(PrintCStringTest, EscapesProperly) {
00411   const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
00412   EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f"
00413             "\\n\\r\\t\\v\\x7F\\xFF a\"",
00414             Print(p));
00415 }
00416 
00417 
00418 
00419 // MSVC compiler can be configured to define whar_t as a typedef
00420 // of unsigned short. Defining an overload for const wchar_t* in that case
00421 // would cause pointers to unsigned shorts be printed as wide strings,
00422 // possibly accessing more memory than intended and causing invalid
00423 // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
00424 // wchar_t is implemented as a native type.
00425 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
00426 
00427 // const wchar_t*.
00428 TEST(PrintWideCStringTest, Const) {
00429   const wchar_t* p = L"World";
00430   EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
00431 }
00432 
00433 // wchar_t*.
00434 TEST(PrintWideCStringTest, NonConst) {
00435   wchar_t p[] = L"Hi";
00436   EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
00437             Print(static_cast<wchar_t*>(p)));
00438 }
00439 
00440 // NULL wide C string.
00441 TEST(PrintWideCStringTest, Null) {
00442   const wchar_t* p = NULL;
00443   EXPECT_EQ("NULL", Print(p));
00444 }
00445 
00446 // Tests that wide C strings are escaped properly.
00447 TEST(PrintWideCStringTest, EscapesProperly) {
00448   const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r',
00449                        '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
00450   EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f"
00451             "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
00452             Print(static_cast<const wchar_t*>(s)));
00453 }
00454 #endif  // native wchar_t
00455 
00456 // Tests printing pointers to other char types.
00457 
00458 // signed char*.
00459 TEST(PrintCharPointerTest, SignedChar) {
00460   signed char* p = reinterpret_cast<signed char*>(0x1234);
00461   EXPECT_EQ(PrintPointer(p), Print(p));
00462   p = NULL;
00463   EXPECT_EQ("NULL", Print(p));
00464 }
00465 
00466 // const signed char*.
00467 TEST(PrintCharPointerTest, ConstSignedChar) {
00468   signed char* p = reinterpret_cast<signed char*>(0x1234);
00469   EXPECT_EQ(PrintPointer(p), Print(p));
00470   p = NULL;
00471   EXPECT_EQ("NULL", Print(p));
00472 }
00473 
00474 // unsigned char*.
00475 TEST(PrintCharPointerTest, UnsignedChar) {
00476   unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
00477   EXPECT_EQ(PrintPointer(p), Print(p));
00478   p = NULL;
00479   EXPECT_EQ("NULL", Print(p));
00480 }
00481 
00482 // const unsigned char*.
00483 TEST(PrintCharPointerTest, ConstUnsignedChar) {
00484   const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
00485   EXPECT_EQ(PrintPointer(p), Print(p));
00486   p = NULL;
00487   EXPECT_EQ("NULL", Print(p));
00488 }
00489 
00490 // Tests printing pointers to simple, built-in types.
00491 
00492 // bool*.
00493 TEST(PrintPointerToBuiltInTypeTest, Bool) {
00494   bool* p = reinterpret_cast<bool*>(0xABCD);
00495   EXPECT_EQ(PrintPointer(p), Print(p));
00496   p = NULL;
00497   EXPECT_EQ("NULL", Print(p));
00498 }
00499 
00500 // void*.
00501 TEST(PrintPointerToBuiltInTypeTest, Void) {
00502   void* p = reinterpret_cast<void*>(0xABCD);
00503   EXPECT_EQ(PrintPointer(p), Print(p));
00504   p = NULL;
00505   EXPECT_EQ("NULL", Print(p));
00506 }
00507 
00508 // const void*.
00509 TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
00510   const void* p = reinterpret_cast<const void*>(0xABCD);
00511   EXPECT_EQ(PrintPointer(p), Print(p));
00512   p = NULL;
00513   EXPECT_EQ("NULL", Print(p));
00514 }
00515 
00516 // Tests printing pointers to pointers.
00517 TEST(PrintPointerToPointerTest, IntPointerPointer) {
00518   int** p = reinterpret_cast<int**>(0xABCD);
00519   EXPECT_EQ(PrintPointer(p), Print(p));
00520   p = NULL;
00521   EXPECT_EQ("NULL", Print(p));
00522 }
00523 
00524 // Tests printing (non-member) function pointers.
00525 
00526 void MyFunction(int /* n */) {}
00527 
00528 TEST(PrintPointerTest, NonMemberFunctionPointer) {
00529   // We cannot directly cast &MyFunction to const void* because the
00530   // standard disallows casting between pointers to functions and
00531   // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
00532   // this limitation.
00533   EXPECT_EQ(
00534       PrintPointer(reinterpret_cast<const void*>(
00535           reinterpret_cast<internal::BiggestInt>(&MyFunction))),
00536       Print(&MyFunction));
00537   int (*p)(bool) = NULL;  // NOLINT
00538   EXPECT_EQ("NULL", Print(p));
00539 }
00540 
00541 // An assertion predicate determining whether a one string is a prefix for
00542 // another.
00543 template <typename StringType>
00544 AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
00545   if (str.find(prefix, 0) == 0)
00546     return AssertionSuccess();
00547 
00548   const bool is_wide_string = sizeof(prefix[0]) > 1;
00549   const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
00550   return AssertionFailure()
00551       << begin_string_quote << prefix << "\" is not a prefix of "
00552       << begin_string_quote << str << "\"\n";
00553 }
00554 
00555 // Tests printing member variable pointers.  Although they are called
00556 // pointers, they don't point to a location in the address space.
00557 // Their representation is implementation-defined.  Thus they will be
00558 // printed as raw bytes.
00559 
00560 struct Foo {
00561  public:
00562   virtual ~Foo() {}
00563   int MyMethod(char x) { return x + 1; }
00564   virtual char MyVirtualMethod(int /* n */) { return 'a'; }
00565 
00566   int value;
00567 };
00568 
00569 TEST(PrintPointerTest, MemberVariablePointer) {
00570   EXPECT_TRUE(HasPrefix(Print(&Foo::value),
00571                         Print(sizeof(&Foo::value)) + "-byte object "));
00572   int (Foo::*p) = NULL;  // NOLINT
00573   EXPECT_TRUE(HasPrefix(Print(p),
00574                         Print(sizeof(p)) + "-byte object "));
00575 }
00576 
00577 // Tests printing member function pointers.  Although they are called
00578 // pointers, they don't point to a location in the address space.
00579 // Their representation is implementation-defined.  Thus they will be
00580 // printed as raw bytes.
00581 TEST(PrintPointerTest, MemberFunctionPointer) {
00582   EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
00583                         Print(sizeof(&Foo::MyMethod)) + "-byte object "));
00584   EXPECT_TRUE(
00585       HasPrefix(Print(&Foo::MyVirtualMethod),
00586                 Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
00587   int (Foo::*p)(char) = NULL;  // NOLINT
00588   EXPECT_TRUE(HasPrefix(Print(p),
00589                         Print(sizeof(p)) + "-byte object "));
00590 }
00591 
00592 // Tests printing C arrays.
00593 
00594 // The difference between this and Print() is that it ensures that the
00595 // argument is a reference to an array.
00596 template <typename T, size_t N>
00597 string PrintArrayHelper(T (&a)[N]) {
00598   return Print(a);
00599 }
00600 
00601 // One-dimensional array.
00602 TEST(PrintArrayTest, OneDimensionalArray) {
00603   int a[5] = { 1, 2, 3, 4, 5 };
00604   EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
00605 }
00606 
00607 // Two-dimensional array.
00608 TEST(PrintArrayTest, TwoDimensionalArray) {
00609   int a[2][5] = {
00610     { 1, 2, 3, 4, 5 },
00611     { 6, 7, 8, 9, 0 }
00612   };
00613   EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
00614 }
00615 
00616 // Array of const elements.
00617 TEST(PrintArrayTest, ConstArray) {
00618   const bool a[1] = { false };
00619   EXPECT_EQ("{ false }", PrintArrayHelper(a));
00620 }
00621 
00622 // char array without terminating NUL.
00623 TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
00624   // Array a contains '\0' in the middle and doesn't end with '\0'.
00625   char a[] = { 'H', '\0', 'i' };
00626   EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
00627 }
00628 
00629 // const char array with terminating NUL.
00630 TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) {
00631   const char a[] = "\0Hi";
00632   EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
00633 }
00634 
00635 // const wchar_t array without terminating NUL.
00636 TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
00637   // Array a contains '\0' in the middle and doesn't end with '\0'.
00638   const wchar_t a[] = { L'H', L'\0', L'i' };
00639   EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
00640 }
00641 
00642 // wchar_t array with terminating NUL.
00643 TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) {
00644   const wchar_t a[] = L"\0Hi";
00645   EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
00646 }
00647 
00648 // Array of objects.
00649 TEST(PrintArrayTest, ObjectArray) {
00650   string a[3] = { "Hi", "Hello", "Ni hao" };
00651   EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
00652 }
00653 
00654 // Array with many elements.
00655 TEST(PrintArrayTest, BigArray) {
00656   int a[100] = { 1, 2, 3 };
00657   EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
00658             PrintArrayHelper(a));
00659 }
00660 
00661 // Tests printing ::string and ::std::string.
00662 
00663 #if GTEST_HAS_GLOBAL_STRING
00664 // ::string.
00665 TEST(PrintStringTest, StringInGlobalNamespace) {
00666   const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
00667   const ::string str(s, sizeof(s));
00668   EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
00669             Print(str));
00670 }
00671 #endif  // GTEST_HAS_GLOBAL_STRING
00672 
00673 // ::std::string.
00674 TEST(PrintStringTest, StringInStdNamespace) {
00675   const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
00676   const ::std::string str(s, sizeof(s));
00677   EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
00678             Print(str));
00679 }
00680 
00681 TEST(PrintStringTest, StringAmbiguousHex) {
00682   // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
00683   // '\x6', '\x6B', or '\x6BA'.
00684 
00685   // a hex escaping sequence following by a decimal digit
00686   EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3")));
00687   // a hex escaping sequence following by a hex digit (lower-case)
00688   EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas")));
00689   // a hex escaping sequence following by a hex digit (upper-case)
00690   EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA")));
00691   // a hex escaping sequence following by a non-xdigit
00692   EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
00693 }
00694 
00695 // Tests printing ::wstring and ::std::wstring.
00696 
00697 #if GTEST_HAS_GLOBAL_WSTRING
00698 // ::wstring.
00699 TEST(PrintWideStringTest, StringInGlobalNamespace) {
00700   const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
00701   const ::wstring str(s, sizeof(s)/sizeof(wchar_t));
00702   EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
00703             "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
00704             Print(str));
00705 }
00706 #endif  // GTEST_HAS_GLOBAL_WSTRING
00707 
00708 #if GTEST_HAS_STD_WSTRING
00709 // ::std::wstring.
00710 TEST(PrintWideStringTest, StringInStdNamespace) {
00711   const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
00712   const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t));
00713   EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
00714             "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
00715             Print(str));
00716 }
00717 
00718 TEST(PrintWideStringTest, StringAmbiguousHex) {
00719   // same for wide strings.
00720   EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3")));
00721   EXPECT_EQ("L\"mm\\x6\" L\"bananas\"",
00722             Print(::std::wstring(L"mm\x6" L"bananas")));
00723   EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"",
00724             Print(::std::wstring(L"NOM\x6" L"BANANA")));
00725   EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
00726 }
00727 #endif  // GTEST_HAS_STD_WSTRING
00728 
00729 // Tests printing types that support generic streaming (i.e. streaming
00730 // to std::basic_ostream<Char, CharTraits> for any valid Char and
00731 // CharTraits types).
00732 
00733 // Tests printing a non-template type that supports generic streaming.
00734 
00735 class AllowsGenericStreaming {};
00736 
00737 template <typename Char, typename CharTraits>
00738 std::basic_ostream<Char, CharTraits>& operator<<(
00739     std::basic_ostream<Char, CharTraits>& os,
00740     const AllowsGenericStreaming& /* a */) {
00741   return os << "AllowsGenericStreaming";
00742 }
00743 
00744 TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
00745   AllowsGenericStreaming a;
00746   EXPECT_EQ("AllowsGenericStreaming", Print(a));
00747 }
00748 
00749 // Tests printing a template type that supports generic streaming.
00750 
00751 template <typename T>
00752 class AllowsGenericStreamingTemplate {};
00753 
00754 template <typename Char, typename CharTraits, typename T>
00755 std::basic_ostream<Char, CharTraits>& operator<<(
00756     std::basic_ostream<Char, CharTraits>& os,
00757     const AllowsGenericStreamingTemplate<T>& /* a */) {
00758   return os << "AllowsGenericStreamingTemplate";
00759 }
00760 
00761 TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
00762   AllowsGenericStreamingTemplate<int> a;
00763   EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
00764 }
00765 
00766 // Tests printing a type that supports generic streaming and can be
00767 // implicitly converted to another printable type.
00768 
00769 template <typename T>
00770 class AllowsGenericStreamingAndImplicitConversionTemplate {
00771  public:
00772   operator bool() const { return false; }
00773 };
00774 
00775 template <typename Char, typename CharTraits, typename T>
00776 std::basic_ostream<Char, CharTraits>& operator<<(
00777     std::basic_ostream<Char, CharTraits>& os,
00778     const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) {
00779   return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
00780 }
00781 
00782 TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
00783   AllowsGenericStreamingAndImplicitConversionTemplate<int> a;
00784   EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
00785 }
00786 
00787 #if GTEST_HAS_STRING_PIECE_
00788 
00789 // Tests printing StringPiece.
00790 
00791 TEST(PrintStringPieceTest, SimpleStringPiece) {
00792   const StringPiece sp = "Hello";
00793   EXPECT_EQ("\"Hello\"", Print(sp));
00794 }
00795 
00796 TEST(PrintStringPieceTest, UnprintableCharacters) {
00797   const char str[] = "NUL (\0) and \r\t";
00798   const StringPiece sp(str, sizeof(str) - 1);
00799   EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
00800 }
00801 
00802 #endif  // GTEST_HAS_STRING_PIECE_
00803 
00804 // Tests printing STL containers.
00805 
00806 TEST(PrintStlContainerTest, EmptyDeque) {
00807   deque<char> empty;
00808   EXPECT_EQ("{}", Print(empty));
00809 }
00810 
00811 TEST(PrintStlContainerTest, NonEmptyDeque) {
00812   deque<int> non_empty;
00813   non_empty.push_back(1);
00814   non_empty.push_back(3);
00815   EXPECT_EQ("{ 1, 3 }", Print(non_empty));
00816 }
00817 
00818 #if GTEST_HAS_HASH_MAP_
00819 
00820 TEST(PrintStlContainerTest, OneElementHashMap) {
00821   hash_map<int, char> map1;
00822   map1[1] = 'a';
00823   EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
00824 }
00825 
00826 TEST(PrintStlContainerTest, HashMultiMap) {
00827   hash_multimap<int, bool> map1;
00828   map1.insert(make_pair(5, true));
00829   map1.insert(make_pair(5, false));
00830 
00831   // Elements of hash_multimap can be printed in any order.
00832   const string result = Print(map1);
00833   EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
00834               result == "{ (5, false), (5, true) }")
00835                   << " where Print(map1) returns \"" << result << "\".";
00836 }
00837 
00838 #endif  // GTEST_HAS_HASH_MAP_
00839 
00840 #if GTEST_HAS_HASH_SET_
00841 
00842 TEST(PrintStlContainerTest, HashSet) {
00843   hash_set<string> set1;
00844   set1.insert("hello");
00845   EXPECT_EQ("{ \"hello\" }", Print(set1));
00846 }
00847 
00848 TEST(PrintStlContainerTest, HashMultiSet) {
00849   const int kSize = 5;
00850   int a[kSize] = { 1, 1, 2, 5, 1 };
00851   hash_multiset<int> set1(a, a + kSize);
00852 
00853   // Elements of hash_multiset can be printed in any order.
00854   const string result = Print(set1);
00855   const string expected_pattern = "{ d, d, d, d, d }";  // d means a digit.
00856 
00857   // Verifies the result matches the expected pattern; also extracts
00858   // the numbers in the result.
00859   ASSERT_EQ(expected_pattern.length(), result.length());
00860   std::vector<int> numbers;
00861   for (size_t i = 0; i != result.length(); i++) {
00862     if (expected_pattern[i] == 'd') {
00863       ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
00864       numbers.push_back(result[i] - '0');
00865     } else {
00866       EXPECT_EQ(expected_pattern[i], result[i]) << " where result is "
00867                                                 << result;
00868     }
00869   }
00870 
00871   // Makes sure the result contains the right numbers.
00872   std::sort(numbers.begin(), numbers.end());
00873   std::sort(a, a + kSize);
00874   EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
00875 }
00876 
00877 #endif  // GTEST_HAS_HASH_SET_
00878 
00879 TEST(PrintStlContainerTest, List) {
00880   const string a[] = {
00881     "hello",
00882     "world"
00883   };
00884   const list<string> strings(a, a + 2);
00885   EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
00886 }
00887 
00888 TEST(PrintStlContainerTest, Map) {
00889   map<int, bool> map1;
00890   map1[1] = true;
00891   map1[5] = false;
00892   map1[3] = true;
00893   EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
00894 }
00895 
00896 TEST(PrintStlContainerTest, MultiMap) {
00897   multimap<bool, int> map1;
00898   // The make_pair template function would deduce the type as
00899   // pair<bool, int> here, and since the key part in a multimap has to
00900   // be constant, without a templated ctor in the pair class (as in
00901   // libCstd on Solaris), make_pair call would fail to compile as no
00902   // implicit conversion is found.  Thus explicit typename is used
00903   // here instead.
00904   map1.insert(pair<const bool, int>(true, 0));
00905   map1.insert(pair<const bool, int>(true, 1));
00906   map1.insert(pair<const bool, int>(false, 2));
00907   EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
00908 }
00909 
00910 TEST(PrintStlContainerTest, Set) {
00911   const unsigned int a[] = { 3, 0, 5 };
00912   set<unsigned int> set1(a, a + 3);
00913   EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
00914 }
00915 
00916 TEST(PrintStlContainerTest, MultiSet) {
00917   const int a[] = { 1, 1, 2, 5, 1 };
00918   multiset<int> set1(a, a + 5);
00919   EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
00920 }
00921 
00922 TEST(PrintStlContainerTest, Pair) {
00923   pair<const bool, int> p(true, 5);
00924   EXPECT_EQ("(true, 5)", Print(p));
00925 }
00926 
00927 TEST(PrintStlContainerTest, Vector) {
00928   vector<int> v;
00929   v.push_back(1);
00930   v.push_back(2);
00931   EXPECT_EQ("{ 1, 2 }", Print(v));
00932 }
00933 
00934 TEST(PrintStlContainerTest, LongSequence) {
00935   const int a[100] = { 1, 2, 3 };
00936   const vector<int> v(a, a + 100);
00937   EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
00938             "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v));
00939 }
00940 
00941 TEST(PrintStlContainerTest, NestedContainer) {
00942   const int a1[] = { 1, 2 };
00943   const int a2[] = { 3, 4, 5 };
00944   const list<int> l1(a1, a1 + 2);
00945   const list<int> l2(a2, a2 + 3);
00946 
00947   vector<list<int> > v;
00948   v.push_back(l1);
00949   v.push_back(l2);
00950   EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
00951 }
00952 
00953 TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
00954   const int a[3] = { 1, 2, 3 };
00955   NativeArray<int> b(a, 3, kReference);
00956   EXPECT_EQ("{ 1, 2, 3 }", Print(b));
00957 }
00958 
00959 TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
00960   const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
00961   NativeArray<int[3]> b(a, 2, kReference);
00962   EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
00963 }
00964 
00965 // Tests that a class named iterator isn't treated as a container.
00966 
00967 struct iterator {
00968   char x;
00969 };
00970 
00971 TEST(PrintStlContainerTest, Iterator) {
00972   iterator it = {};
00973   EXPECT_EQ("1-byte object <00>", Print(it));
00974 }
00975 
00976 // Tests that a class named const_iterator isn't treated as a container.
00977 
00978 struct const_iterator {
00979   char x;
00980 };
00981 
00982 TEST(PrintStlContainerTest, ConstIterator) {
00983   const_iterator it = {};
00984   EXPECT_EQ("1-byte object <00>", Print(it));
00985 }
00986 
00987 #if GTEST_HAS_TR1_TUPLE
00988 // Tests printing tuples.
00989 
00990 // Tuples of various arities.
00991 TEST(PrintTupleTest, VariousSizes) {
00992   tuple<> t0;
00993   EXPECT_EQ("()", Print(t0));
00994 
00995   tuple<int> t1(5);
00996   EXPECT_EQ("(5)", Print(t1));
00997 
00998   tuple<char, bool> t2('a', true);
00999   EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
01000 
01001   tuple<bool, int, int> t3(false, 2, 3);
01002   EXPECT_EQ("(false, 2, 3)", Print(t3));
01003 
01004   tuple<bool, int, int, int> t4(false, 2, 3, 4);
01005   EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
01006 
01007   tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
01008   EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
01009 
01010   tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
01011   EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
01012 
01013   tuple<bool, int, int, int, bool, int, int> t7(false, 2, 3, 4, true, 6, 7);
01014   EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
01015 
01016   tuple<bool, int, int, int, bool, int, int, bool> t8(
01017       false, 2, 3, 4, true, 6, 7, true);
01018   EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
01019 
01020   tuple<bool, int, int, int, bool, int, int, bool, int> t9(
01021       false, 2, 3, 4, true, 6, 7, true, 9);
01022   EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
01023 
01024   const char* const str = "8";
01025   // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
01026   // an explicit type cast of NULL to be used.
01027   tuple<bool, char, short, testing::internal::Int32,  // NOLINT
01028       testing::internal::Int64, float, double, const char*, void*, string>
01029       t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str,
01030           ImplicitCast_<void*>(NULL), "10");
01031   EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
01032             " pointing to \"8\", NULL, \"10\")",
01033             Print(t10));
01034 }
01035 
01036 // Nested tuples.
01037 TEST(PrintTupleTest, NestedTuple) {
01038   tuple<tuple<int, bool>, char> nested(make_tuple(5, true), 'a');
01039   EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
01040 }
01041 
01042 #endif  // GTEST_HAS_TR1_TUPLE
01043 
01044 // Tests printing user-defined unprintable types.
01045 
01046 // Unprintable types in the global namespace.
01047 TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
01048   EXPECT_EQ("1-byte object <00>",
01049             Print(UnprintableTemplateInGlobal<char>()));
01050 }
01051 
01052 // Unprintable types in a user namespace.
01053 TEST(PrintUnprintableTypeTest, InUserNamespace) {
01054   EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
01055             Print(::foo::UnprintableInFoo()));
01056 }
01057 
01058 // Unprintable types are that too big to be printed completely.
01059 
01060 struct Big {
01061   Big() { memset(array, 0, sizeof(array)); }
01062   char array[257];
01063 };
01064 
01065 TEST(PrintUnpritableTypeTest, BigObject) {
01066   EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
01067             "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
01068             "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
01069             "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
01070             "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
01071             "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
01072             "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
01073             Print(Big()));
01074 }
01075 
01076 // Tests printing user-defined streamable types.
01077 
01078 // Streamable types in the global namespace.
01079 TEST(PrintStreamableTypeTest, InGlobalNamespace) {
01080   StreamableInGlobal x;
01081   EXPECT_EQ("StreamableInGlobal", Print(x));
01082   EXPECT_EQ("StreamableInGlobal*", Print(&x));
01083 }
01084 
01085 // Printable template types in a user namespace.
01086 TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
01087   EXPECT_EQ("StreamableTemplateInFoo: 0",
01088             Print(::foo::StreamableTemplateInFoo<int>()));
01089 }
01090 
01091 // Tests printing user-defined types that have a PrintTo() function.
01092 TEST(PrintPrintableTypeTest, InUserNamespace) {
01093   EXPECT_EQ("PrintableViaPrintTo: 0",
01094             Print(::foo::PrintableViaPrintTo()));
01095 }
01096 
01097 // Tests printing a pointer to a user-defined type that has a <<
01098 // operator for its pointer.
01099 TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
01100   ::foo::PointerPrintable x;
01101   EXPECT_EQ("PointerPrintable*", Print(&x));
01102 }
01103 
01104 // Tests printing user-defined class template that have a PrintTo() function.
01105 TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
01106   EXPECT_EQ("PrintableViaPrintToTemplate: 5",
01107             Print(::foo::PrintableViaPrintToTemplate<int>(5)));
01108 }
01109 
01110 #if GTEST_HAS_PROTOBUF_
01111 
01112 // Tests printing a protocol message.
01113 TEST(PrintProtocolMessageTest, PrintsShortDebugString) {
01114   testing::internal::TestMessage msg;
01115   msg.set_member("yes");
01116   EXPECT_EQ("<member:\"yes\">", Print(msg));
01117 }
01118 
01119 // Tests printing a short proto2 message.
01120 TEST(PrintProto2MessageTest, PrintsShortDebugStringWhenItIsShort) {
01121   testing::internal::FooMessage msg;
01122   msg.set_int_field(2);
01123   msg.set_string_field("hello");
01124   EXPECT_PRED2(RE::FullMatch, Print(msg),
01125                "<int_field:\\s*2\\s+string_field:\\s*\"hello\">");
01126 }
01127 
01128 // Tests printing a long proto2 message.
01129 TEST(PrintProto2MessageTest, PrintsDebugStringWhenItIsLong) {
01130   testing::internal::FooMessage msg;
01131   msg.set_int_field(2);
01132   msg.set_string_field("hello");
01133   msg.add_names("peter");
01134   msg.add_names("paul");
01135   msg.add_names("mary");
01136   EXPECT_PRED2(RE::FullMatch, Print(msg),
01137                "<\n"
01138                "int_field:\\s*2\n"
01139                "string_field:\\s*\"hello\"\n"
01140                "names:\\s*\"peter\"\n"
01141                "names:\\s*\"paul\"\n"
01142                "names:\\s*\"mary\"\n"
01143                ">");
01144 }
01145 
01146 #endif  // GTEST_HAS_PROTOBUF_
01147 
01148 // Tests that the universal printer prints both the address and the
01149 // value of a reference.
01150 TEST(PrintReferenceTest, PrintsAddressAndValue) {
01151   int n = 5;
01152   EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
01153 
01154   int a[2][3] = {
01155     { 0, 1, 2 },
01156     { 3, 4, 5 }
01157   };
01158   EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
01159             PrintByRef(a));
01160 
01161   const ::foo::UnprintableInFoo x;
01162   EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object "
01163             "<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
01164             PrintByRef(x));
01165 }
01166 
01167 // Tests that the universal printer prints a function pointer passed by
01168 // reference.
01169 TEST(PrintReferenceTest, HandlesFunctionPointer) {
01170   void (*fp)(int n) = &MyFunction;
01171   const string fp_pointer_string =
01172       PrintPointer(reinterpret_cast<const void*>(&fp));
01173   // We cannot directly cast &MyFunction to const void* because the
01174   // standard disallows casting between pointers to functions and
01175   // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
01176   // this limitation.
01177   const string fp_string = PrintPointer(reinterpret_cast<const void*>(
01178       reinterpret_cast<internal::BiggestInt>(fp)));
01179   EXPECT_EQ("@" + fp_pointer_string + " " + fp_string,
01180             PrintByRef(fp));
01181 }
01182 
01183 // Tests that the universal printer prints a member function pointer
01184 // passed by reference.
01185 TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
01186   int (Foo::*p)(char ch) = &Foo::MyMethod;
01187   EXPECT_TRUE(HasPrefix(
01188       PrintByRef(p),
01189       "@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " +
01190           Print(sizeof(p)) + "-byte object "));
01191 
01192   char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
01193   EXPECT_TRUE(HasPrefix(
01194       PrintByRef(p2),
01195       "@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " +
01196           Print(sizeof(p2)) + "-byte object "));
01197 }
01198 
01199 // Tests that the universal printer prints a member variable pointer
01200 // passed by reference.
01201 TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
01202   int (Foo::*p) = &Foo::value;  // NOLINT
01203   EXPECT_TRUE(HasPrefix(
01204       PrintByRef(p),
01205       "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
01206 }
01207 
01208 // Tests that FormatForComparisonFailureMessage(), which is used to print
01209 // an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
01210 // fails, formats the operand in the desired way.
01211 
01212 // scalar
01213 TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
01214   EXPECT_STREQ("123",
01215                FormatForComparisonFailureMessage(123, 124).c_str());
01216 }
01217 
01218 // non-char pointer
01219 TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
01220   int n = 0;
01221   EXPECT_EQ(PrintPointer(&n),
01222             FormatForComparisonFailureMessage(&n, &n).c_str());
01223 }
01224 
01225 // non-char array
01226 TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
01227   // In expression 'array == x', 'array' is compared by pointer.
01228   // Therefore we want to print an array operand as a pointer.
01229   int n[] = { 1, 2, 3 };
01230   EXPECT_EQ(PrintPointer(n),
01231             FormatForComparisonFailureMessage(n, n).c_str());
01232 }
01233 
01234 // Tests formatting a char pointer when it's compared with another pointer.
01235 // In this case we want to print it as a raw pointer, as the comparision is by
01236 // pointer.
01237 
01238 // char pointer vs pointer
01239 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
01240   // In expression 'p == x', where 'p' and 'x' are (const or not) char
01241   // pointers, the operands are compared by pointer.  Therefore we
01242   // want to print 'p' as a pointer instead of a C string (we don't
01243   // even know if it's supposed to point to a valid C string).
01244 
01245   // const char*
01246   const char* s = "hello";
01247   EXPECT_EQ(PrintPointer(s),
01248             FormatForComparisonFailureMessage(s, s).c_str());
01249 
01250   // char*
01251   char ch = 'a';
01252   EXPECT_EQ(PrintPointer(&ch),
01253             FormatForComparisonFailureMessage(&ch, &ch).c_str());
01254 }
01255 
01256 // wchar_t pointer vs pointer
01257 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
01258   // In expression 'p == x', where 'p' and 'x' are (const or not) char
01259   // pointers, the operands are compared by pointer.  Therefore we
01260   // want to print 'p' as a pointer instead of a wide C string (we don't
01261   // even know if it's supposed to point to a valid wide C string).
01262 
01263   // const wchar_t*
01264   const wchar_t* s = L"hello";
01265   EXPECT_EQ(PrintPointer(s),
01266             FormatForComparisonFailureMessage(s, s).c_str());
01267 
01268   // wchar_t*
01269   wchar_t ch = L'a';
01270   EXPECT_EQ(PrintPointer(&ch),
01271             FormatForComparisonFailureMessage(&ch, &ch).c_str());
01272 }
01273 
01274 // Tests formatting a char pointer when it's compared to a string object.
01275 // In this case we want to print the char pointer as a C string.
01276 
01277 #if GTEST_HAS_GLOBAL_STRING
01278 // char pointer vs ::string
01279 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) {
01280   const char* s = "hello \"world";
01281   EXPECT_STREQ("\"hello \\\"world\"",  // The string content should be escaped.
01282                FormatForComparisonFailureMessage(s, ::string()).c_str());
01283 
01284   // char*
01285   char str[] = "hi\1";
01286   char* p = str;
01287   EXPECT_STREQ("\"hi\\x1\"",  // The string content should be escaped.
01288                FormatForComparisonFailureMessage(p, ::string()).c_str());
01289 }
01290 #endif
01291 
01292 // char pointer vs std::string
01293 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
01294   const char* s = "hello \"world";
01295   EXPECT_STREQ("\"hello \\\"world\"",  // The string content should be escaped.
01296                FormatForComparisonFailureMessage(s, ::std::string()).c_str());
01297 
01298   // char*
01299   char str[] = "hi\1";
01300   char* p = str;
01301   EXPECT_STREQ("\"hi\\x1\"",  // The string content should be escaped.
01302                FormatForComparisonFailureMessage(p, ::std::string()).c_str());
01303 }
01304 
01305 #if GTEST_HAS_GLOBAL_WSTRING
01306 // wchar_t pointer vs ::wstring
01307 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) {
01308   const wchar_t* s = L"hi \"world";
01309   EXPECT_STREQ("L\"hi \\\"world\"",  // The string content should be escaped.
01310                FormatForComparisonFailureMessage(s, ::wstring()).c_str());
01311 
01312   // wchar_t*
01313   wchar_t str[] = L"hi\1";
01314   wchar_t* p = str;
01315   EXPECT_STREQ("L\"hi\\x1\"",  // The string content should be escaped.
01316                FormatForComparisonFailureMessage(p, ::wstring()).c_str());
01317 }
01318 #endif
01319 
01320 #if GTEST_HAS_STD_WSTRING
01321 // wchar_t pointer vs std::wstring
01322 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
01323   const wchar_t* s = L"hi \"world";
01324   EXPECT_STREQ("L\"hi \\\"world\"",  // The string content should be escaped.
01325                FormatForComparisonFailureMessage(s, ::std::wstring()).c_str());
01326 
01327   // wchar_t*
01328   wchar_t str[] = L"hi\1";
01329   wchar_t* p = str;
01330   EXPECT_STREQ("L\"hi\\x1\"",  // The string content should be escaped.
01331                FormatForComparisonFailureMessage(p, ::std::wstring()).c_str());
01332 }
01333 #endif
01334 
01335 // Tests formatting a char array when it's compared with a pointer or array.
01336 // In this case we want to print the array as a row pointer, as the comparison
01337 // is by pointer.
01338 
01339 // char array vs pointer
01340 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
01341   char str[] = "hi \"world\"";
01342   char* p = NULL;
01343   EXPECT_EQ(PrintPointer(str),
01344             FormatForComparisonFailureMessage(str, p).c_str());
01345 }
01346 
01347 // char array vs char array
01348 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
01349   const char str[] = "hi \"world\"";
01350   EXPECT_EQ(PrintPointer(str),
01351             FormatForComparisonFailureMessage(str, str).c_str());
01352 }
01353 
01354 // wchar_t array vs pointer
01355 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
01356   wchar_t str[] = L"hi \"world\"";
01357   wchar_t* p = NULL;
01358   EXPECT_EQ(PrintPointer(str),
01359             FormatForComparisonFailureMessage(str, p).c_str());
01360 }
01361 
01362 // wchar_t array vs wchar_t array
01363 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
01364   const wchar_t str[] = L"hi \"world\"";
01365   EXPECT_EQ(PrintPointer(str),
01366             FormatForComparisonFailureMessage(str, str).c_str());
01367 }
01368 
01369 // Tests formatting a char array when it's compared with a string object.
01370 // In this case we want to print the array as a C string.
01371 
01372 #if GTEST_HAS_GLOBAL_STRING
01373 // char array vs string
01374 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) {
01375   const char str[] = "hi \"w\0rld\"";
01376   EXPECT_STREQ("\"hi \\\"w\"",  // The content should be escaped.
01377                                 // Embedded NUL terminates the string.
01378                FormatForComparisonFailureMessage(str, ::string()).c_str());
01379 }
01380 #endif
01381 
01382 // char array vs std::string
01383 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
01384   const char str[] = "hi \"world\"";
01385   EXPECT_STREQ("\"hi \\\"world\\\"\"",  // The content should be escaped.
01386                FormatForComparisonFailureMessage(str, ::std::string()).c_str());
01387 }
01388 
01389 #if GTEST_HAS_GLOBAL_WSTRING
01390 // wchar_t array vs wstring
01391 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) {
01392   const wchar_t str[] = L"hi \"world\"";
01393   EXPECT_STREQ("L\"hi \\\"world\\\"\"",  // The content should be escaped.
01394                FormatForComparisonFailureMessage(str, ::wstring()).c_str());
01395 }
01396 #endif
01397 
01398 #if GTEST_HAS_STD_WSTRING
01399 // wchar_t array vs std::wstring
01400 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
01401   const wchar_t str[] = L"hi \"w\0rld\"";
01402   EXPECT_STREQ(
01403       "L\"hi \\\"w\"",  // The content should be escaped.
01404                         // Embedded NUL terminates the string.
01405       FormatForComparisonFailureMessage(str, ::std::wstring()).c_str());
01406 }
01407 #endif
01408 
01409 // Useful for testing PrintToString().  We cannot use EXPECT_EQ()
01410 // there as its implementation uses PrintToString().  The caller must
01411 // ensure that 'value' has no side effect.
01412 #define EXPECT_PRINT_TO_STRING_(value, expected_string)         \
01413   EXPECT_TRUE(PrintToString(value) == (expected_string))        \
01414       << " where " #value " prints as " << (PrintToString(value))
01415 
01416 TEST(PrintToStringTest, WorksForScalar) {
01417   EXPECT_PRINT_TO_STRING_(123, "123");
01418 }
01419 
01420 TEST(PrintToStringTest, WorksForPointerToConstChar) {
01421   const char* p = "hello";
01422   EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
01423 }
01424 
01425 TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
01426   char s[] = "hello";
01427   char* p = s;
01428   EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
01429 }
01430 
01431 TEST(PrintToStringTest, EscapesForPointerToConstChar) {
01432   const char* p = "hello\n";
01433   EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
01434 }
01435 
01436 TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
01437   char s[] = "hello\1";
01438   char* p = s;
01439   EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
01440 }
01441 
01442 TEST(PrintToStringTest, WorksForArray) {
01443   int n[3] = { 1, 2, 3 };
01444   EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
01445 }
01446 
01447 TEST(PrintToStringTest, WorksForCharArray) {
01448   char s[] = "hello";
01449   EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
01450 }
01451 
01452 TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
01453   const char str_with_nul[] = "hello\0 world";
01454   EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
01455 
01456   char mutable_str_with_nul[] = "hello\0 world";
01457   EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
01458 }
01459 
01460 #undef EXPECT_PRINT_TO_STRING_
01461 
01462 TEST(UniversalTersePrintTest, WorksForNonReference) {
01463   ::std::stringstream ss;
01464   UniversalTersePrint(123, &ss);
01465   EXPECT_EQ("123", ss.str());
01466 }
01467 
01468 TEST(UniversalTersePrintTest, WorksForReference) {
01469   const int& n = 123;
01470   ::std::stringstream ss;
01471   UniversalTersePrint(n, &ss);
01472   EXPECT_EQ("123", ss.str());
01473 }
01474 
01475 TEST(UniversalTersePrintTest, WorksForCString) {
01476   const char* s1 = "abc";
01477   ::std::stringstream ss1;
01478   UniversalTersePrint(s1, &ss1);
01479   EXPECT_EQ("\"abc\"", ss1.str());
01480 
01481   char* s2 = const_cast<char*>(s1);
01482   ::std::stringstream ss2;
01483   UniversalTersePrint(s2, &ss2);
01484   EXPECT_EQ("\"abc\"", ss2.str());
01485 
01486   const char* s3 = NULL;
01487   ::std::stringstream ss3;
01488   UniversalTersePrint(s3, &ss3);
01489   EXPECT_EQ("NULL", ss3.str());
01490 }
01491 
01492 TEST(UniversalPrintTest, WorksForNonReference) {
01493   ::std::stringstream ss;
01494   UniversalPrint(123, &ss);
01495   EXPECT_EQ("123", ss.str());
01496 }
01497 
01498 TEST(UniversalPrintTest, WorksForReference) {
01499   const int& n = 123;
01500   ::std::stringstream ss;
01501   UniversalPrint(n, &ss);
01502   EXPECT_EQ("123", ss.str());
01503 }
01504 
01505 TEST(UniversalPrintTest, WorksForCString) {
01506   const char* s1 = "abc";
01507   ::std::stringstream ss1;
01508   UniversalPrint(s1, &ss1);
01509   EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", string(ss1.str()));
01510 
01511   char* s2 = const_cast<char*>(s1);
01512   ::std::stringstream ss2;
01513   UniversalPrint(s2, &ss2);
01514   EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", string(ss2.str()));
01515 
01516   const char* s3 = NULL;
01517   ::std::stringstream ss3;
01518   UniversalPrint(s3, &ss3);
01519   EXPECT_EQ("NULL", ss3.str());
01520 }
01521 
01522 TEST(UniversalPrintTest, WorksForCharArray) {
01523   const char str[] = "\"Line\0 1\"\nLine 2";
01524   ::std::stringstream ss1;
01525   UniversalPrint(str, &ss1);
01526   EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
01527 
01528   const char mutable_str[] = "\"Line\0 1\"\nLine 2";
01529   ::std::stringstream ss2;
01530   UniversalPrint(mutable_str, &ss2);
01531   EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
01532 }
01533 
01534 #if GTEST_HAS_TR1_TUPLE
01535 
01536 TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsEmptyTuple) {
01537   Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple());
01538   EXPECT_EQ(0u, result.size());
01539 }
01540 
01541 TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsOneTuple) {
01542   Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple(1));
01543   ASSERT_EQ(1u, result.size());
01544   EXPECT_EQ("1", result[0]);
01545 }
01546 
01547 TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsTwoTuple) {
01548   Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple(1, 'a'));
01549   ASSERT_EQ(2u, result.size());
01550   EXPECT_EQ("1", result[0]);
01551   EXPECT_EQ("'a' (97, 0x61)", result[1]);
01552 }
01553 
01554 TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsTersely) {
01555   const int n = 1;
01556   Strings result = UniversalTersePrintTupleFieldsToStrings(
01557       tuple<const int&, const char*>(n, "a"));
01558   ASSERT_EQ(2u, result.size());
01559   EXPECT_EQ("1", result[0]);
01560   EXPECT_EQ("\"a\"", result[1]);
01561 }
01562 
01563 #endif  // GTEST_HAS_TR1_TUPLE
01564 
01565 }  // namespace gtest_printers_test
01566 }  // namespace testing


ros_opcua_impl_freeopcua
Author(s): Denis Štogl
autogenerated on Sat Jun 8 2019 18:24:47