00001 // Copyright 2005, Google Inc. 00002 // All rights reserved. 00003 // 00004 // Redistribution and use in source and binary forms, with or without 00005 // modification, are permitted provided that the following conditions are 00006 // met: 00007 // 00008 // * Redistributions of source code must retain the above copyright 00009 // notice, this list of conditions and the following disclaimer. 00010 // * Redistributions in binary form must reproduce the above 00011 // copyright notice, this list of conditions and the following disclaimer 00012 // in the documentation and/or other materials provided with the 00013 // distribution. 00014 // * Neither the name of Google Inc. nor the names of its 00015 // contributors may be used to endorse or promote products derived from 00016 // this software without specific prior written permission. 00017 // 00018 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00019 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00020 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 00021 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 00022 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00023 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 00024 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 00025 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 00026 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 00027 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 00028 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00029 00030 // A sample program demonstrating using Google C++ testing framework. 00031 // 00032 // Author: wan@google.com (Zhanyong Wan) 00033 00034 #include "sample1.h" 00035 00036 // Returns n! (the factorial of n). For negative n, n! is defined to be 1. 00037 int Factorial(int n) { 00038 int result = 1; 00039 for (int i = 1; i <= n; i++) { 00040 result *= i; 00041 } 00042 00043 return result; 00044 } 00045 00046 // Returns true iff n is a prime number. 00047 bool IsPrime(int n) { 00048 // Trivial case 1: small numbers 00049 if (n <= 1) return false; 00050 00051 // Trivial case 2: even numbers 00052 if (n % 2 == 0) return n == 2; 00053 00054 // Now, we have that n is odd and n >= 3. 00055 00056 // Try to divide n by every odd number i, starting from 3 00057 for (int i = 3; ; i += 2) { 00058 // We only have to try i up to the squre root of n 00059 if (i > n/i) break; 00060 00061 // Now, we have i <= n/i < n. 00062 // If n is divisible by i, n is not prime. 00063 if (n % i == 0) return false; 00064 } 00065 00066 // n has no integer factor in the range (1, n), and thus is prime. 00067 return true; 00068 }