nss.c
Go to the documentation of this file.
00001 /***************************************************************************
00002  *                                  _   _ ____  _
00003  *  Project                     ___| | | |  _ \| |
00004  *                             / __| | | | |_) | |
00005  *                            | (__| |_| |  _ <| |___
00006  *                             \___|\___/|_| \_\_____|
00007  *
00008  * Copyright (C) 1998 - 2016, Daniel Stenberg, <daniel@haxx.se>, et al.
00009  *
00010  * This software is licensed as described in the file COPYING, which
00011  * you should have received as part of this distribution. The terms
00012  * are also available at https://curl.haxx.se/docs/copyright.html.
00013  *
00014  * You may opt to use, copy, modify, merge, publish, distribute and/or sell
00015  * copies of the Software, and permit persons to whom the Software is
00016  * furnished to do so, under the terms of the COPYING file.
00017  *
00018  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
00019  * KIND, either express or implied.
00020  *
00021  ***************************************************************************/
00022 
00023 /*
00024  * Source file for all NSS-specific code for the TLS/SSL layer. No code
00025  * but vtls.c should ever call or use these functions.
00026  */
00027 
00028 #include "curl_setup.h"
00029 
00030 #ifdef USE_NSS
00031 
00032 #include "urldata.h"
00033 #include "sendf.h"
00034 #include "formdata.h" /* for the boundary function */
00035 #include "url.h" /* for the ssl config check function */
00036 #include "connect.h"
00037 #include "strcase.h"
00038 #include "select.h"
00039 #include "vtls.h"
00040 #include "llist.h"
00041 #include "curl_printf.h"
00042 #include "nssg.h"
00043 #include <nspr.h>
00044 #include <nss.h>
00045 #include <ssl.h>
00046 #include <sslerr.h>
00047 #include <secerr.h>
00048 #include <secmod.h>
00049 #include <sslproto.h>
00050 #include <prtypes.h>
00051 #include <pk11pub.h>
00052 #include <prio.h>
00053 #include <secitem.h>
00054 #include <secport.h>
00055 #include <certdb.h>
00056 #include <base64.h>
00057 #include <cert.h>
00058 #include <prerror.h>
00059 #include <keyhi.h>        /* for SECKEY_DestroyPublicKey() */
00060 
00061 #define NSSVERNUM ((NSS_VMAJOR<<16)|(NSS_VMINOR<<8)|NSS_VPATCH)
00062 
00063 #if NSSVERNUM >= 0x030f00 /* 3.15.0 */
00064 #include <ocsp.h>
00065 #endif
00066 
00067 #include "strcase.h"
00068 #include "warnless.h"
00069 #include "x509asn1.h"
00070 
00071 /* The last #include files should be: */
00072 #include "curl_memory.h"
00073 #include "memdebug.h"
00074 
00075 #define SSL_DIR "/etc/pki/nssdb"
00076 
00077 /* enough to fit the string "PEM Token #[0|1]" */
00078 #define SLOTSIZE 13
00079 
00080 PRFileDesc *PR_ImportTCPSocket(PRInt32 osfd);
00081 static PRLock *nss_initlock = NULL;
00082 static PRLock *nss_crllock = NULL;
00083 static PRLock *nss_findslot_lock = NULL;
00084 static struct curl_llist *nss_crl_list = NULL;
00085 static NSSInitContext *nss_context = NULL;
00086 static volatile int initialized = 0;
00087 
00088 typedef struct {
00089   const char *name;
00090   int num;
00091 } cipher_s;
00092 
00093 #define PK11_SETATTRS(_attr, _idx, _type, _val, _len) do {  \
00094   CK_ATTRIBUTE *ptr = (_attr) + ((_idx)++);                 \
00095   ptr->type = (_type);                                      \
00096   ptr->pValue = (_val);                                     \
00097   ptr->ulValueLen = (_len);                                 \
00098 } WHILE_FALSE
00099 
00100 #define CERT_NewTempCertificate __CERT_NewTempCertificate
00101 
00102 #define NUM_OF_CIPHERS sizeof(cipherlist)/sizeof(cipherlist[0])
00103 static const cipher_s cipherlist[] = {
00104   /* SSL2 cipher suites */
00105   {"rc4",                        SSL_EN_RC4_128_WITH_MD5},
00106   {"rc4-md5",                    SSL_EN_RC4_128_WITH_MD5},
00107   {"rc4export",                  SSL_EN_RC4_128_EXPORT40_WITH_MD5},
00108   {"rc2",                        SSL_EN_RC2_128_CBC_WITH_MD5},
00109   {"rc2export",                  SSL_EN_RC2_128_CBC_EXPORT40_WITH_MD5},
00110   {"des",                        SSL_EN_DES_64_CBC_WITH_MD5},
00111   {"desede3",                    SSL_EN_DES_192_EDE3_CBC_WITH_MD5},
00112   /* SSL3/TLS cipher suites */
00113   {"rsa_rc4_128_md5",            SSL_RSA_WITH_RC4_128_MD5},
00114   {"rsa_rc4_128_sha",            SSL_RSA_WITH_RC4_128_SHA},
00115   {"rsa_3des_sha",               SSL_RSA_WITH_3DES_EDE_CBC_SHA},
00116   {"rsa_des_sha",                SSL_RSA_WITH_DES_CBC_SHA},
00117   {"rsa_rc4_40_md5",             SSL_RSA_EXPORT_WITH_RC4_40_MD5},
00118   {"rsa_rc2_40_md5",             SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5},
00119   {"rsa_null_md5",               SSL_RSA_WITH_NULL_MD5},
00120   {"rsa_null_sha",               SSL_RSA_WITH_NULL_SHA},
00121   {"fips_3des_sha",              SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA},
00122   {"fips_des_sha",               SSL_RSA_FIPS_WITH_DES_CBC_SHA},
00123   {"fortezza",                   SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA},
00124   {"fortezza_rc4_128_sha",       SSL_FORTEZZA_DMS_WITH_RC4_128_SHA},
00125   {"fortezza_null",              SSL_FORTEZZA_DMS_WITH_NULL_SHA},
00126   /* TLS 1.0: Exportable 56-bit Cipher Suites. */
00127   {"rsa_des_56_sha",             TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA},
00128   {"rsa_rc4_56_sha",             TLS_RSA_EXPORT1024_WITH_RC4_56_SHA},
00129   /* AES ciphers. */
00130   {"dhe_dss_aes_128_cbc_sha",    TLS_DHE_DSS_WITH_AES_128_CBC_SHA},
00131   {"dhe_dss_aes_256_cbc_sha",    TLS_DHE_DSS_WITH_AES_256_CBC_SHA},
00132   {"dhe_rsa_aes_128_cbc_sha",    TLS_DHE_RSA_WITH_AES_128_CBC_SHA},
00133   {"dhe_rsa_aes_256_cbc_sha",    TLS_DHE_RSA_WITH_AES_256_CBC_SHA},
00134   {"rsa_aes_128_sha",            TLS_RSA_WITH_AES_128_CBC_SHA},
00135   {"rsa_aes_256_sha",            TLS_RSA_WITH_AES_256_CBC_SHA},
00136   /* ECC ciphers. */
00137   {"ecdh_ecdsa_null_sha",        TLS_ECDH_ECDSA_WITH_NULL_SHA},
00138   {"ecdh_ecdsa_rc4_128_sha",     TLS_ECDH_ECDSA_WITH_RC4_128_SHA},
00139   {"ecdh_ecdsa_3des_sha",        TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA},
00140   {"ecdh_ecdsa_aes_128_sha",     TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA},
00141   {"ecdh_ecdsa_aes_256_sha",     TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA},
00142   {"ecdhe_ecdsa_null_sha",       TLS_ECDHE_ECDSA_WITH_NULL_SHA},
00143   {"ecdhe_ecdsa_rc4_128_sha",    TLS_ECDHE_ECDSA_WITH_RC4_128_SHA},
00144   {"ecdhe_ecdsa_3des_sha",       TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA},
00145   {"ecdhe_ecdsa_aes_128_sha",    TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA},
00146   {"ecdhe_ecdsa_aes_256_sha",    TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA},
00147   {"ecdh_rsa_null_sha",          TLS_ECDH_RSA_WITH_NULL_SHA},
00148   {"ecdh_rsa_128_sha",           TLS_ECDH_RSA_WITH_RC4_128_SHA},
00149   {"ecdh_rsa_3des_sha",          TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA},
00150   {"ecdh_rsa_aes_128_sha",       TLS_ECDH_RSA_WITH_AES_128_CBC_SHA},
00151   {"ecdh_rsa_aes_256_sha",       TLS_ECDH_RSA_WITH_AES_256_CBC_SHA},
00152   {"ecdhe_rsa_null",             TLS_ECDHE_RSA_WITH_NULL_SHA},
00153   {"ecdhe_rsa_rc4_128_sha",      TLS_ECDHE_RSA_WITH_RC4_128_SHA},
00154   {"ecdhe_rsa_3des_sha",         TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA},
00155   {"ecdhe_rsa_aes_128_sha",      TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA},
00156   {"ecdhe_rsa_aes_256_sha",      TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA},
00157   {"ecdh_anon_null_sha",         TLS_ECDH_anon_WITH_NULL_SHA},
00158   {"ecdh_anon_rc4_128sha",       TLS_ECDH_anon_WITH_RC4_128_SHA},
00159   {"ecdh_anon_3des_sha",         TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA},
00160   {"ecdh_anon_aes_128_sha",      TLS_ECDH_anon_WITH_AES_128_CBC_SHA},
00161   {"ecdh_anon_aes_256_sha",      TLS_ECDH_anon_WITH_AES_256_CBC_SHA},
00162 #ifdef TLS_RSA_WITH_NULL_SHA256
00163   /* new HMAC-SHA256 cipher suites specified in RFC */
00164   {"rsa_null_sha_256",                TLS_RSA_WITH_NULL_SHA256},
00165   {"rsa_aes_128_cbc_sha_256",         TLS_RSA_WITH_AES_128_CBC_SHA256},
00166   {"rsa_aes_256_cbc_sha_256",         TLS_RSA_WITH_AES_256_CBC_SHA256},
00167   {"dhe_rsa_aes_128_cbc_sha_256",     TLS_DHE_RSA_WITH_AES_128_CBC_SHA256},
00168   {"dhe_rsa_aes_256_cbc_sha_256",     TLS_DHE_RSA_WITH_AES_256_CBC_SHA256},
00169   {"ecdhe_ecdsa_aes_128_cbc_sha_256", TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256},
00170   {"ecdhe_rsa_aes_128_cbc_sha_256",   TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256},
00171 #endif
00172 #ifdef TLS_RSA_WITH_AES_128_GCM_SHA256
00173   /* AES GCM cipher suites in RFC 5288 and RFC 5289 */
00174   {"rsa_aes_128_gcm_sha_256",         TLS_RSA_WITH_AES_128_GCM_SHA256},
00175   {"dhe_rsa_aes_128_gcm_sha_256",     TLS_DHE_RSA_WITH_AES_128_GCM_SHA256},
00176   {"dhe_dss_aes_128_gcm_sha_256",     TLS_DHE_DSS_WITH_AES_128_GCM_SHA256},
00177   {"ecdhe_ecdsa_aes_128_gcm_sha_256", TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256},
00178   {"ecdh_ecdsa_aes_128_gcm_sha_256",  TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256},
00179   {"ecdhe_rsa_aes_128_gcm_sha_256",   TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256},
00180   {"ecdh_rsa_aes_128_gcm_sha_256",    TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256},
00181 #endif
00182 #ifdef TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
00183   /* cipher suites using SHA384 */
00184   {"rsa_aes_256_gcm_sha_384",         TLS_RSA_WITH_AES_256_GCM_SHA384},
00185   {"dhe_rsa_aes_256_gcm_sha_384",     TLS_DHE_RSA_WITH_AES_256_GCM_SHA384},
00186   {"dhe_dss_aes_256_gcm_sha_384",     TLS_DHE_DSS_WITH_AES_256_GCM_SHA384},
00187   {"ecdhe_ecdsa_aes_256_sha_384",     TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384},
00188   {"ecdhe_rsa_aes_256_sha_384",       TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384},
00189   {"ecdhe_ecdsa_aes_256_gcm_sha_384", TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384},
00190   {"ecdhe_rsa_aes_256_gcm_sha_384",   TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384},
00191 #endif
00192 #ifdef TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
00193   /* chacha20-poly1305 cipher suites */
00194  {"ecdhe_rsa_chacha20_poly1305_sha_256",
00195      TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256},
00196  {"ecdhe_ecdsa_chacha20_poly1305_sha_256",
00197      TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256},
00198  {"dhe_rsa_chacha20_poly1305_sha_256",
00199      TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256},
00200 #endif
00201 };
00202 
00203 static const char *pem_library = "libnsspem.so";
00204 static SECMODModule *mod = NULL;
00205 
00206 /* NSPR I/O layer we use to detect blocking direction during SSL handshake */
00207 static PRDescIdentity nspr_io_identity = PR_INVALID_IO_LAYER;
00208 static PRIOMethods nspr_io_methods;
00209 
00210 static const char *nss_error_to_name(PRErrorCode code)
00211 {
00212   const char *name = PR_ErrorToName(code);
00213   if(name)
00214     return name;
00215 
00216   return "unknown error";
00217 }
00218 
00219 static void nss_print_error_message(struct Curl_easy *data, PRUint32 err)
00220 {
00221   failf(data, "%s", PR_ErrorToString(err, PR_LANGUAGE_I_DEFAULT));
00222 }
00223 
00224 static SECStatus set_ciphers(struct Curl_easy *data, PRFileDesc * model,
00225                              char *cipher_list)
00226 {
00227   unsigned int i;
00228   PRBool cipher_state[NUM_OF_CIPHERS];
00229   PRBool found;
00230   char *cipher;
00231 
00232   /* use accessors to avoid dynamic linking issues after an update of NSS */
00233   const PRUint16 num_implemented_ciphers = SSL_GetNumImplementedCiphers();
00234   const PRUint16 *implemented_ciphers = SSL_GetImplementedCiphers();
00235   if(!implemented_ciphers)
00236     return SECFailure;
00237 
00238   /* First disable all ciphers. This uses a different max value in case
00239    * NSS adds more ciphers later we don't want them available by
00240    * accident
00241    */
00242   for(i = 0; i < num_implemented_ciphers; i++) {
00243     SSL_CipherPrefSet(model, implemented_ciphers[i], PR_FALSE);
00244   }
00245 
00246   /* Set every entry in our list to false */
00247   for(i = 0; i < NUM_OF_CIPHERS; i++) {
00248     cipher_state[i] = PR_FALSE;
00249   }
00250 
00251   cipher = cipher_list;
00252 
00253   while(cipher_list && (cipher_list[0])) {
00254     while((*cipher) && (ISSPACE(*cipher)))
00255       ++cipher;
00256 
00257     cipher_list = strchr(cipher, ',');
00258     if(cipher_list) {
00259       *cipher_list++ = '\0';
00260     }
00261 
00262     found = PR_FALSE;
00263 
00264     for(i=0; i<NUM_OF_CIPHERS; i++) {
00265       if(strcasecompare(cipher, cipherlist[i].name)) {
00266         cipher_state[i] = PR_TRUE;
00267         found = PR_TRUE;
00268         break;
00269       }
00270     }
00271 
00272     if(found == PR_FALSE) {
00273       failf(data, "Unknown cipher in list: %s", cipher);
00274       return SECFailure;
00275     }
00276 
00277     if(cipher_list) {
00278       cipher = cipher_list;
00279     }
00280   }
00281 
00282   /* Finally actually enable the selected ciphers */
00283   for(i=0; i<NUM_OF_CIPHERS; i++) {
00284     if(!cipher_state[i])
00285       continue;
00286 
00287     if(SSL_CipherPrefSet(model, cipherlist[i].num, PR_TRUE) != SECSuccess) {
00288       failf(data, "cipher-suite not supported by NSS: %s", cipherlist[i].name);
00289       return SECFailure;
00290     }
00291   }
00292 
00293   return SECSuccess;
00294 }
00295 
00296 /*
00297  * Return true if at least one cipher-suite is enabled. Used to determine
00298  * if we need to call NSS_SetDomesticPolicy() to enable the default ciphers.
00299  */
00300 static bool any_cipher_enabled(void)
00301 {
00302   unsigned int i;
00303 
00304   for(i=0; i<NUM_OF_CIPHERS; i++) {
00305     PRInt32 policy = 0;
00306     SSL_CipherPolicyGet(cipherlist[i].num, &policy);
00307     if(policy)
00308       return TRUE;
00309   }
00310 
00311   return FALSE;
00312 }
00313 
00314 /*
00315  * Determine whether the nickname passed in is a filename that needs to
00316  * be loaded as a PEM or a regular NSS nickname.
00317  *
00318  * returns 1 for a file
00319  * returns 0 for not a file (NSS nickname)
00320  */
00321 static int is_file(const char *filename)
00322 {
00323   struct_stat st;
00324 
00325   if(filename == NULL)
00326     return 0;
00327 
00328   if(stat(filename, &st) == 0)
00329     if(S_ISREG(st.st_mode))
00330       return 1;
00331 
00332   return 0;
00333 }
00334 
00335 /* Check if the given string is filename or nickname of a certificate.  If the
00336  * given string is recognized as filename, return NULL.  If the given string is
00337  * recognized as nickname, return a duplicated string.  The returned string
00338  * should be later deallocated using free().  If the OOM failure occurs, we
00339  * return NULL, too.
00340  */
00341 static char *dup_nickname(struct Curl_easy *data, const char *str)
00342 {
00343   const char *n;
00344 
00345   if(!is_file(str))
00346     /* no such file exists, use the string as nickname */
00347     return strdup(str);
00348 
00349   /* search the first slash; we require at least one slash in a file name */
00350   n = strchr(str, '/');
00351   if(!n) {
00352     infof(data, "warning: certificate file name \"%s\" handled as nickname; "
00353           "please use \"./%s\" to force file name\n", str, str);
00354     return strdup(str);
00355   }
00356 
00357   /* we'll use the PEM reader to read the certificate from file */
00358   return NULL;
00359 }
00360 
00361 /* Lock/unlock wrapper for PK11_FindSlotByName() to work around race condition
00362  * in nssSlot_IsTokenPresent() causing spurious SEC_ERROR_NO_TOKEN.  For more
00363  * details, go to <https://bugzilla.mozilla.org/1297397>.
00364  */
00365 static PK11SlotInfo* nss_find_slot_by_name(const char *slot_name)
00366 {
00367   PK11SlotInfo *slot;
00368   PR_Lock(nss_initlock);
00369   slot = PK11_FindSlotByName(slot_name);
00370   PR_Unlock(nss_initlock);
00371   return slot;
00372 }
00373 
00374 /* Call PK11_CreateGenericObject() with the given obj_class and filename.  If
00375  * the call succeeds, append the object handle to the list of objects so that
00376  * the object can be destroyed in Curl_nss_close(). */
00377 static CURLcode nss_create_object(struct ssl_connect_data *ssl,
00378                                   CK_OBJECT_CLASS obj_class,
00379                                   const char *filename, bool cacert)
00380 {
00381   PK11SlotInfo *slot;
00382   PK11GenericObject *obj;
00383   CK_BBOOL cktrue = CK_TRUE;
00384   CK_BBOOL ckfalse = CK_FALSE;
00385   CK_ATTRIBUTE attrs[/* max count of attributes */ 4];
00386   int attr_cnt = 0;
00387   CURLcode result = (cacert)
00388     ? CURLE_SSL_CACERT_BADFILE
00389     : CURLE_SSL_CERTPROBLEM;
00390 
00391   const int slot_id = (cacert) ? 0 : 1;
00392   char *slot_name = aprintf("PEM Token #%d", slot_id);
00393   if(!slot_name)
00394     return CURLE_OUT_OF_MEMORY;
00395 
00396   slot = nss_find_slot_by_name(slot_name);
00397   free(slot_name);
00398   if(!slot)
00399     return result;
00400 
00401   PK11_SETATTRS(attrs, attr_cnt, CKA_CLASS, &obj_class, sizeof(obj_class));
00402   PK11_SETATTRS(attrs, attr_cnt, CKA_TOKEN, &cktrue, sizeof(CK_BBOOL));
00403   PK11_SETATTRS(attrs, attr_cnt, CKA_LABEL, (unsigned char *)filename,
00404                 strlen(filename) + 1);
00405 
00406   if(CKO_CERTIFICATE == obj_class) {
00407     CK_BBOOL *pval = (cacert) ? (&cktrue) : (&ckfalse);
00408     PK11_SETATTRS(attrs, attr_cnt, CKA_TRUST, pval, sizeof(*pval));
00409   }
00410 
00411   obj = PK11_CreateGenericObject(slot, attrs, attr_cnt, PR_FALSE);
00412   PK11_FreeSlot(slot);
00413   if(!obj)
00414     return result;
00415 
00416   if(!Curl_llist_insert_next(ssl->obj_list, ssl->obj_list->tail, obj)) {
00417     PK11_DestroyGenericObject(obj);
00418     return CURLE_OUT_OF_MEMORY;
00419   }
00420 
00421   if(!cacert && CKO_CERTIFICATE == obj_class)
00422     /* store reference to a client certificate */
00423     ssl->obj_clicert = obj;
00424 
00425   return CURLE_OK;
00426 }
00427 
00428 /* Destroy the NSS object whose handle is given by ptr.  This function is
00429  * a callback of Curl_llist_alloc() used by Curl_llist_destroy() to destroy
00430  * NSS objects in Curl_nss_close() */
00431 static void nss_destroy_object(void *user, void *ptr)
00432 {
00433   PK11GenericObject *obj = (PK11GenericObject *)ptr;
00434   (void) user;
00435   PK11_DestroyGenericObject(obj);
00436 }
00437 
00438 /* same as nss_destroy_object() but for CRL items */
00439 static void nss_destroy_crl_item(void *user, void *ptr)
00440 {
00441   SECItem *crl_der = (SECItem *)ptr;
00442   (void) user;
00443   SECITEM_FreeItem(crl_der, PR_TRUE);
00444 }
00445 
00446 static CURLcode nss_load_cert(struct ssl_connect_data *ssl,
00447                               const char *filename, PRBool cacert)
00448 {
00449   CURLcode result = (cacert)
00450     ? CURLE_SSL_CACERT_BADFILE
00451     : CURLE_SSL_CERTPROBLEM;
00452 
00453   /* libnsspem.so leaks memory if the requested file does not exist.  For more
00454    * details, go to <https://bugzilla.redhat.com/734760>. */
00455   if(is_file(filename))
00456     result = nss_create_object(ssl, CKO_CERTIFICATE, filename, cacert);
00457 
00458   if(!result && !cacert) {
00459     /* we have successfully loaded a client certificate */
00460     CERTCertificate *cert;
00461     char *nickname = NULL;
00462     char *n = strrchr(filename, '/');
00463     if(n)
00464       n++;
00465 
00466     /* The following undocumented magic helps to avoid a SIGSEGV on call
00467      * of PK11_ReadRawAttribute() from SelectClientCert() when using an
00468      * immature version of libnsspem.so.  For more details, go to
00469      * <https://bugzilla.redhat.com/733685>. */
00470     nickname = aprintf("PEM Token #1:%s", n);
00471     if(nickname) {
00472       cert = PK11_FindCertFromNickname(nickname, NULL);
00473       if(cert)
00474         CERT_DestroyCertificate(cert);
00475 
00476       free(nickname);
00477     }
00478   }
00479 
00480   return result;
00481 }
00482 
00483 /* add given CRL to cache if it is not already there */
00484 static CURLcode nss_cache_crl(SECItem *crl_der)
00485 {
00486   CERTCertDBHandle *db = CERT_GetDefaultCertDB();
00487   CERTSignedCrl *crl = SEC_FindCrlByDERCert(db, crl_der, 0);
00488   if(crl) {
00489     /* CRL already cached */
00490     SEC_DestroyCrl(crl);
00491     SECITEM_FreeItem(crl_der, PR_TRUE);
00492     return CURLE_OK;
00493   }
00494 
00495   /* acquire lock before call of CERT_CacheCRL() and accessing nss_crl_list */
00496   PR_Lock(nss_crllock);
00497 
00498   /* store the CRL item so that we can free it in Curl_nss_cleanup() */
00499   if(!Curl_llist_insert_next(nss_crl_list, nss_crl_list->tail, crl_der)) {
00500     SECITEM_FreeItem(crl_der, PR_TRUE);
00501     PR_Unlock(nss_crllock);
00502     return CURLE_OUT_OF_MEMORY;
00503   }
00504 
00505   if(SECSuccess != CERT_CacheCRL(db, crl_der)) {
00506     /* unable to cache CRL */
00507     PR_Unlock(nss_crllock);
00508     return CURLE_SSL_CRL_BADFILE;
00509   }
00510 
00511   /* we need to clear session cache, so that the CRL could take effect */
00512   SSL_ClearSessionCache();
00513   PR_Unlock(nss_crllock);
00514   return CURLE_OK;
00515 }
00516 
00517 static CURLcode nss_load_crl(const char *crlfilename)
00518 {
00519   PRFileDesc *infile;
00520   PRFileInfo  info;
00521   SECItem filedata = { 0, NULL, 0 };
00522   SECItem *crl_der = NULL;
00523   char *body;
00524 
00525   infile = PR_Open(crlfilename, PR_RDONLY, 0);
00526   if(!infile)
00527     return CURLE_SSL_CRL_BADFILE;
00528 
00529   if(PR_SUCCESS != PR_GetOpenFileInfo(infile, &info))
00530     goto fail;
00531 
00532   if(!SECITEM_AllocItem(NULL, &filedata, info.size + /* zero ended */ 1))
00533     goto fail;
00534 
00535   if(info.size != PR_Read(infile, filedata.data, info.size))
00536     goto fail;
00537 
00538   crl_der = SECITEM_AllocItem(NULL, NULL, 0U);
00539   if(!crl_der)
00540     goto fail;
00541 
00542   /* place a trailing zero right after the visible data */
00543   body = (char *)filedata.data;
00544   body[--filedata.len] = '\0';
00545 
00546   body = strstr(body, "-----BEGIN");
00547   if(body) {
00548     /* assume ASCII */
00549     char *trailer;
00550     char *begin = PORT_Strchr(body, '\n');
00551     if(!begin)
00552       begin = PORT_Strchr(body, '\r');
00553     if(!begin)
00554       goto fail;
00555 
00556     trailer = strstr(++begin, "-----END");
00557     if(!trailer)
00558       goto fail;
00559 
00560     /* retrieve DER from ASCII */
00561     *trailer = '\0';
00562     if(ATOB_ConvertAsciiToItem(crl_der, begin))
00563       goto fail;
00564 
00565     SECITEM_FreeItem(&filedata, PR_FALSE);
00566   }
00567   else
00568     /* assume DER */
00569     *crl_der = filedata;
00570 
00571   PR_Close(infile);
00572   return nss_cache_crl(crl_der);
00573 
00574 fail:
00575   PR_Close(infile);
00576   SECITEM_FreeItem(crl_der, PR_TRUE);
00577   SECITEM_FreeItem(&filedata, PR_FALSE);
00578   return CURLE_SSL_CRL_BADFILE;
00579 }
00580 
00581 static CURLcode nss_load_key(struct connectdata *conn, int sockindex,
00582                              char *key_file)
00583 {
00584   PK11SlotInfo *slot;
00585   SECStatus status;
00586   CURLcode result;
00587   struct ssl_connect_data *ssl = conn->ssl;
00588   struct Curl_easy *data = conn->data;
00589 
00590   (void)sockindex; /* unused */
00591 
00592   result = nss_create_object(ssl, CKO_PRIVATE_KEY, key_file, FALSE);
00593   if(result) {
00594     PR_SetError(SEC_ERROR_BAD_KEY, 0);
00595     return result;
00596   }
00597 
00598   slot = nss_find_slot_by_name("PEM Token #1");
00599   if(!slot)
00600     return CURLE_SSL_CERTPROBLEM;
00601 
00602   /* This will force the token to be seen as re-inserted */
00603   SECMOD_WaitForAnyTokenEvent(mod, 0, 0);
00604   PK11_IsPresent(slot);
00605 
00606   status = PK11_Authenticate(slot, PR_TRUE, SSL_SET_OPTION(key_passwd));
00607   PK11_FreeSlot(slot);
00608 
00609   return (SECSuccess == status) ? CURLE_OK : CURLE_SSL_CERTPROBLEM;
00610 }
00611 
00612 static int display_error(struct connectdata *conn, PRInt32 err,
00613                          const char *filename)
00614 {
00615   switch(err) {
00616   case SEC_ERROR_BAD_PASSWORD:
00617     failf(conn->data, "Unable to load client key: Incorrect password");
00618     return 1;
00619   case SEC_ERROR_UNKNOWN_CERT:
00620     failf(conn->data, "Unable to load certificate %s", filename);
00621     return 1;
00622   default:
00623     break;
00624   }
00625   return 0; /* The caller will print a generic error */
00626 }
00627 
00628 static CURLcode cert_stuff(struct connectdata *conn, int sockindex,
00629                            char *cert_file, char *key_file)
00630 {
00631   struct Curl_easy *data = conn->data;
00632   CURLcode result;
00633 
00634   if(cert_file) {
00635     result = nss_load_cert(&conn->ssl[sockindex], cert_file, PR_FALSE);
00636     if(result) {
00637       const PRErrorCode err = PR_GetError();
00638       if(!display_error(conn, err, cert_file)) {
00639         const char *err_name = nss_error_to_name(err);
00640         failf(data, "unable to load client cert: %d (%s)", err, err_name);
00641       }
00642 
00643       return result;
00644     }
00645   }
00646 
00647   if(key_file || (is_file(cert_file))) {
00648     if(key_file)
00649       result = nss_load_key(conn, sockindex, key_file);
00650     else
00651       /* In case the cert file also has the key */
00652       result = nss_load_key(conn, sockindex, cert_file);
00653     if(result) {
00654       const PRErrorCode err = PR_GetError();
00655       if(!display_error(conn, err, key_file)) {
00656         const char *err_name = nss_error_to_name(err);
00657         failf(data, "unable to load client key: %d (%s)", err, err_name);
00658       }
00659 
00660       return result;
00661     }
00662   }
00663 
00664   return CURLE_OK;
00665 }
00666 
00667 static char *nss_get_password(PK11SlotInfo *slot, PRBool retry, void *arg)
00668 {
00669   (void)slot; /* unused */
00670 
00671   if(retry || NULL == arg)
00672     return NULL;
00673   else
00674     return (char *)PORT_Strdup((char *)arg);
00675 }
00676 
00677 /* bypass the default SSL_AuthCertificate() hook in case we do not want to
00678  * verify peer */
00679 static SECStatus nss_auth_cert_hook(void *arg, PRFileDesc *fd, PRBool checksig,
00680                                     PRBool isServer)
00681 {
00682   struct connectdata *conn = (struct connectdata *)arg;
00683 
00684 #ifdef SSL_ENABLE_OCSP_STAPLING
00685   if(SSL_CONN_CONFIG(verifystatus)) {
00686     SECStatus cacheResult;
00687 
00688     const SECItemArray *csa = SSL_PeerStapledOCSPResponses(fd);
00689     if(!csa) {
00690       failf(conn->data, "Invalid OCSP response");
00691       return SECFailure;
00692     }
00693 
00694     if(csa->len == 0) {
00695       failf(conn->data, "No OCSP response received");
00696       return SECFailure;
00697     }
00698 
00699     cacheResult = CERT_CacheOCSPResponseFromSideChannel(
00700       CERT_GetDefaultCertDB(), SSL_PeerCertificate(fd),
00701       PR_Now(), &csa->items[0], arg
00702     );
00703 
00704     if(cacheResult != SECSuccess) {
00705       failf(conn->data, "Invalid OCSP response");
00706       return cacheResult;
00707     }
00708   }
00709 #endif
00710 
00711   if(!SSL_CONN_CONFIG(verifypeer)) {
00712     infof(conn->data, "skipping SSL peer certificate verification\n");
00713     return SECSuccess;
00714   }
00715 
00716   return SSL_AuthCertificate(CERT_GetDefaultCertDB(), fd, checksig, isServer);
00717 }
00718 
00722 static void HandshakeCallback(PRFileDesc *sock, void *arg)
00723 {
00724   struct connectdata *conn = (struct connectdata*) arg;
00725   unsigned int buflenmax = 50;
00726   unsigned char buf[50];
00727   unsigned int buflen;
00728   SSLNextProtoState state;
00729 
00730   if(!conn->bits.tls_enable_npn && !conn->bits.tls_enable_alpn) {
00731     return;
00732   }
00733 
00734   if(SSL_GetNextProto(sock, &state, buf, &buflen, buflenmax) == SECSuccess) {
00735 
00736     switch(state) {
00737 #if NSSVERNUM >= 0x031a00 /* 3.26.0 */
00738     /* used by NSS internally to implement 0-RTT */
00739     case SSL_NEXT_PROTO_EARLY_VALUE:
00740       /* fall through! */
00741 #endif
00742     case SSL_NEXT_PROTO_NO_SUPPORT:
00743     case SSL_NEXT_PROTO_NO_OVERLAP:
00744       infof(conn->data, "ALPN/NPN, server did not agree to a protocol\n");
00745       return;
00746 #ifdef SSL_ENABLE_ALPN
00747     case SSL_NEXT_PROTO_SELECTED:
00748       infof(conn->data, "ALPN, server accepted to use %.*s\n", buflen, buf);
00749       break;
00750 #endif
00751     case SSL_NEXT_PROTO_NEGOTIATED:
00752       infof(conn->data, "NPN, server accepted to use %.*s\n", buflen, buf);
00753       break;
00754     }
00755 
00756 #ifdef USE_NGHTTP2
00757     if(buflen == NGHTTP2_PROTO_VERSION_ID_LEN &&
00758        !memcmp(NGHTTP2_PROTO_VERSION_ID, buf, NGHTTP2_PROTO_VERSION_ID_LEN)) {
00759       conn->negnpn = CURL_HTTP_VERSION_2;
00760     }
00761     else
00762 #endif
00763     if(buflen == ALPN_HTTP_1_1_LENGTH &&
00764        !memcmp(ALPN_HTTP_1_1, buf, ALPN_HTTP_1_1_LENGTH)) {
00765       conn->negnpn = CURL_HTTP_VERSION_1_1;
00766     }
00767   }
00768 }
00769 
00770 #if NSSVERNUM >= 0x030f04 /* 3.15.4 */
00771 static SECStatus CanFalseStartCallback(PRFileDesc *sock, void *client_data,
00772                                        PRBool *canFalseStart)
00773 {
00774   struct connectdata *conn = client_data;
00775   struct Curl_easy *data = conn->data;
00776 
00777   SSLChannelInfo channelInfo;
00778   SSLCipherSuiteInfo cipherInfo;
00779 
00780   SECStatus rv;
00781   PRBool negotiatedExtension;
00782 
00783   *canFalseStart = PR_FALSE;
00784 
00785   if(SSL_GetChannelInfo(sock, &channelInfo, sizeof(channelInfo)) != SECSuccess)
00786     return SECFailure;
00787 
00788   if(SSL_GetCipherSuiteInfo(channelInfo.cipherSuite, &cipherInfo,
00789                             sizeof(cipherInfo)) != SECSuccess)
00790     return SECFailure;
00791 
00792   /* Prevent version downgrade attacks from TLS 1.2, and avoid False Start for
00793    * TLS 1.3 and later. See https://bugzilla.mozilla.org/show_bug.cgi?id=861310
00794    */
00795   if(channelInfo.protocolVersion != SSL_LIBRARY_VERSION_TLS_1_2)
00796     goto end;
00797 
00798   /* Only allow ECDHE key exchange algorithm.
00799    * See https://bugzilla.mozilla.org/show_bug.cgi?id=952863 */
00800   if(cipherInfo.keaType != ssl_kea_ecdh)
00801     goto end;
00802 
00803   /* Prevent downgrade attacks on the symmetric cipher. We do not allow CBC
00804    * mode due to BEAST, POODLE, and other attacks on the MAC-then-Encrypt
00805    * design. See https://bugzilla.mozilla.org/show_bug.cgi?id=1109766 */
00806   if(cipherInfo.symCipher != ssl_calg_aes_gcm)
00807     goto end;
00808 
00809   /* Enforce ALPN or NPN to do False Start, as an indicator of server
00810    * compatibility. */
00811   rv = SSL_HandshakeNegotiatedExtension(sock, ssl_app_layer_protocol_xtn,
00812                                         &negotiatedExtension);
00813   if(rv != SECSuccess || !negotiatedExtension) {
00814     rv = SSL_HandshakeNegotiatedExtension(sock, ssl_next_proto_nego_xtn,
00815                                           &negotiatedExtension);
00816   }
00817 
00818   if(rv != SECSuccess || !negotiatedExtension)
00819     goto end;
00820 
00821   *canFalseStart = PR_TRUE;
00822 
00823   infof(data, "Trying TLS False Start\n");
00824 
00825 end:
00826   return SECSuccess;
00827 }
00828 #endif
00829 
00830 static void display_cert_info(struct Curl_easy *data,
00831                               CERTCertificate *cert)
00832 {
00833   char *subject, *issuer, *common_name;
00834   PRExplodedTime printableTime;
00835   char timeString[256];
00836   PRTime notBefore, notAfter;
00837 
00838   subject = CERT_NameToAscii(&cert->subject);
00839   issuer = CERT_NameToAscii(&cert->issuer);
00840   common_name = CERT_GetCommonName(&cert->subject);
00841   infof(data, "\tsubject: %s\n", subject);
00842 
00843   CERT_GetCertTimes(cert, &notBefore, &notAfter);
00844   PR_ExplodeTime(notBefore, PR_GMTParameters, &printableTime);
00845   PR_FormatTime(timeString, 256, "%b %d %H:%M:%S %Y GMT", &printableTime);
00846   infof(data, "\tstart date: %s\n", timeString);
00847   PR_ExplodeTime(notAfter, PR_GMTParameters, &printableTime);
00848   PR_FormatTime(timeString, 256, "%b %d %H:%M:%S %Y GMT", &printableTime);
00849   infof(data, "\texpire date: %s\n", timeString);
00850   infof(data, "\tcommon name: %s\n", common_name);
00851   infof(data, "\tissuer: %s\n", issuer);
00852 
00853   PR_Free(subject);
00854   PR_Free(issuer);
00855   PR_Free(common_name);
00856 }
00857 
00858 static CURLcode display_conn_info(struct connectdata *conn, PRFileDesc *sock)
00859 {
00860   CURLcode result = CURLE_OK;
00861   SSLChannelInfo channel;
00862   SSLCipherSuiteInfo suite;
00863   CERTCertificate *cert;
00864   CERTCertificate *cert2;
00865   CERTCertificate *cert3;
00866   PRTime now;
00867   int i;
00868 
00869   if(SSL_GetChannelInfo(sock, &channel, sizeof channel) ==
00870      SECSuccess && channel.length == sizeof channel &&
00871      channel.cipherSuite) {
00872     if(SSL_GetCipherSuiteInfo(channel.cipherSuite,
00873                               &suite, sizeof suite) == SECSuccess) {
00874       infof(conn->data, "SSL connection using %s\n", suite.cipherSuiteName);
00875     }
00876   }
00877 
00878   cert = SSL_PeerCertificate(sock);
00879   if(cert) {
00880     infof(conn->data, "Server certificate:\n");
00881 
00882     if(!conn->data->set.ssl.certinfo) {
00883       display_cert_info(conn->data, cert);
00884       CERT_DestroyCertificate(cert);
00885     }
00886     else {
00887       /* Count certificates in chain. */
00888       now = PR_Now();
00889       i = 1;
00890       if(!cert->isRoot) {
00891         cert2 = CERT_FindCertIssuer(cert, now, certUsageSSLCA);
00892         while(cert2) {
00893           i++;
00894           if(cert2->isRoot) {
00895             CERT_DestroyCertificate(cert2);
00896             break;
00897           }
00898           cert3 = CERT_FindCertIssuer(cert2, now, certUsageSSLCA);
00899           CERT_DestroyCertificate(cert2);
00900           cert2 = cert3;
00901         }
00902       }
00903 
00904       result = Curl_ssl_init_certinfo(conn->data, i);
00905       if(!result) {
00906         for(i = 0; cert; cert = cert2) {
00907           result = Curl_extract_certinfo(conn, i++, (char *)cert->derCert.data,
00908                                          (char *)cert->derCert.data +
00909                                                  cert->derCert.len);
00910           if(result)
00911             break;
00912 
00913           if(cert->isRoot) {
00914             CERT_DestroyCertificate(cert);
00915             break;
00916           }
00917 
00918           cert2 = CERT_FindCertIssuer(cert, now, certUsageSSLCA);
00919           CERT_DestroyCertificate(cert);
00920         }
00921       }
00922     }
00923   }
00924 
00925   return result;
00926 }
00927 
00928 static SECStatus BadCertHandler(void *arg, PRFileDesc *sock)
00929 {
00930   struct connectdata *conn = (struct connectdata *)arg;
00931   struct Curl_easy *data = conn->data;
00932   PRErrorCode err = PR_GetError();
00933   CERTCertificate *cert;
00934 
00935   /* remember the cert verification result */
00936   if(SSL_IS_PROXY())
00937     data->set.proxy_ssl.certverifyresult = err;
00938   else
00939     data->set.ssl.certverifyresult = err;
00940 
00941   if(err == SSL_ERROR_BAD_CERT_DOMAIN && !SSL_CONN_CONFIG(verifyhost))
00942     /* we are asked not to verify the host name */
00943     return SECSuccess;
00944 
00945   /* print only info about the cert, the error is printed off the callback */
00946   cert = SSL_PeerCertificate(sock);
00947   if(cert) {
00948     infof(data, "Server certificate:\n");
00949     display_cert_info(data, cert);
00950     CERT_DestroyCertificate(cert);
00951   }
00952 
00953   return SECFailure;
00954 }
00955 
00963 static SECStatus check_issuer_cert(PRFileDesc *sock,
00964                                    char *issuer_nickname)
00965 {
00966   CERTCertificate *cert, *cert_issuer, *issuer;
00967   SECStatus res=SECSuccess;
00968   void *proto_win = NULL;
00969 
00970   cert = SSL_PeerCertificate(sock);
00971   cert_issuer = CERT_FindCertIssuer(cert, PR_Now(), certUsageObjectSigner);
00972 
00973   proto_win = SSL_RevealPinArg(sock);
00974   issuer = PK11_FindCertFromNickname(issuer_nickname, proto_win);
00975 
00976   if((!cert_issuer) || (!issuer))
00977     res = SECFailure;
00978   else if(SECITEM_CompareItem(&cert_issuer->derCert,
00979                               &issuer->derCert)!=SECEqual)
00980     res = SECFailure;
00981 
00982   CERT_DestroyCertificate(cert);
00983   CERT_DestroyCertificate(issuer);
00984   CERT_DestroyCertificate(cert_issuer);
00985   return res;
00986 }
00987 
00988 static CURLcode cmp_peer_pubkey(struct ssl_connect_data *connssl,
00989                                 const char *pinnedpubkey)
00990 {
00991   CURLcode result = CURLE_SSL_PINNEDPUBKEYNOTMATCH;
00992   struct Curl_easy *data = connssl->data;
00993   CERTCertificate *cert;
00994 
00995   if(!pinnedpubkey)
00996     /* no pinned public key specified */
00997     return CURLE_OK;
00998 
00999   /* get peer certificate */
01000   cert = SSL_PeerCertificate(connssl->handle);
01001   if(cert) {
01002     /* extract public key from peer certificate */
01003     SECKEYPublicKey *pubkey = CERT_ExtractPublicKey(cert);
01004     if(pubkey) {
01005       /* encode the public key as DER */
01006       SECItem *cert_der = PK11_DEREncodePublicKey(pubkey);
01007       if(cert_der) {
01008         /* compare the public key with the pinned public key */
01009         result = Curl_pin_peer_pubkey(data, pinnedpubkey, cert_der->data,
01010                                       cert_der->len);
01011         SECITEM_FreeItem(cert_der, PR_TRUE);
01012       }
01013       SECKEY_DestroyPublicKey(pubkey);
01014     }
01015     CERT_DestroyCertificate(cert);
01016   }
01017 
01018   /* report the resulting status */
01019   switch(result) {
01020   case CURLE_OK:
01021     infof(data, "pinned public key verified successfully!\n");
01022     break;
01023   case CURLE_SSL_PINNEDPUBKEYNOTMATCH:
01024     failf(data, "failed to verify pinned public key");
01025     break;
01026   default:
01027     /* OOM, etc. */
01028     break;
01029   }
01030 
01031   return result;
01032 }
01033 
01038 static SECStatus SelectClientCert(void *arg, PRFileDesc *sock,
01039                                   struct CERTDistNamesStr *caNames,
01040                                   struct CERTCertificateStr **pRetCert,
01041                                   struct SECKEYPrivateKeyStr **pRetKey)
01042 {
01043   struct ssl_connect_data *connssl = (struct ssl_connect_data *)arg;
01044   struct Curl_easy *data = connssl->data;
01045   const char *nickname = connssl->client_nickname;
01046   static const char pem_slotname[] = "PEM Token #1";
01047 
01048   if(connssl->obj_clicert) {
01049     /* use the cert/key provided by PEM reader */
01050     SECItem cert_der = { 0, NULL, 0 };
01051     void *proto_win = SSL_RevealPinArg(sock);
01052     struct CERTCertificateStr *cert;
01053     struct SECKEYPrivateKeyStr *key;
01054 
01055     PK11SlotInfo *slot = nss_find_slot_by_name(pem_slotname);
01056     if(NULL == slot) {
01057       failf(data, "NSS: PK11 slot not found: %s", pem_slotname);
01058       return SECFailure;
01059     }
01060 
01061     if(PK11_ReadRawAttribute(PK11_TypeGeneric, connssl->obj_clicert, CKA_VALUE,
01062                              &cert_der) != SECSuccess) {
01063       failf(data, "NSS: CKA_VALUE not found in PK11 generic object");
01064       PK11_FreeSlot(slot);
01065       return SECFailure;
01066     }
01067 
01068     cert = PK11_FindCertFromDERCertItem(slot, &cert_der, proto_win);
01069     SECITEM_FreeItem(&cert_der, PR_FALSE);
01070     if(NULL == cert) {
01071       failf(data, "NSS: client certificate from file not found");
01072       PK11_FreeSlot(slot);
01073       return SECFailure;
01074     }
01075 
01076     key = PK11_FindPrivateKeyFromCert(slot, cert, NULL);
01077     PK11_FreeSlot(slot);
01078     if(NULL == key) {
01079       failf(data, "NSS: private key from file not found");
01080       CERT_DestroyCertificate(cert);
01081       return SECFailure;
01082     }
01083 
01084     infof(data, "NSS: client certificate from file\n");
01085     display_cert_info(data, cert);
01086 
01087     *pRetCert = cert;
01088     *pRetKey = key;
01089     return SECSuccess;
01090   }
01091 
01092   /* use the default NSS hook */
01093   if(SECSuccess != NSS_GetClientAuthData((void *)nickname, sock, caNames,
01094                                           pRetCert, pRetKey)
01095       || NULL == *pRetCert) {
01096 
01097     if(NULL == nickname)
01098       failf(data, "NSS: client certificate not found (nickname not "
01099             "specified)");
01100     else
01101       failf(data, "NSS: client certificate not found: %s", nickname);
01102 
01103     return SECFailure;
01104   }
01105 
01106   /* get certificate nickname if any */
01107   nickname = (*pRetCert)->nickname;
01108   if(NULL == nickname)
01109     nickname = "[unknown]";
01110 
01111   if(!strncmp(nickname, pem_slotname, sizeof(pem_slotname) - 1U)) {
01112     failf(data, "NSS: refusing previously loaded certificate from file: %s",
01113           nickname);
01114     return SECFailure;
01115   }
01116 
01117   if(NULL == *pRetKey) {
01118     failf(data, "NSS: private key not found for certificate: %s", nickname);
01119     return SECFailure;
01120   }
01121 
01122   infof(data, "NSS: using client certificate: %s\n", nickname);
01123   display_cert_info(data, *pRetCert);
01124   return SECSuccess;
01125 }
01126 
01127 /* update blocking direction in case of PR_WOULD_BLOCK_ERROR */
01128 static void nss_update_connecting_state(ssl_connect_state state, void *secret)
01129 {
01130   struct ssl_connect_data *connssl = (struct ssl_connect_data *)secret;
01131   if(PR_GetError() != PR_WOULD_BLOCK_ERROR)
01132     /* an unrelated error is passing by */
01133     return;
01134 
01135   switch(connssl->connecting_state) {
01136   case ssl_connect_2:
01137   case ssl_connect_2_reading:
01138   case ssl_connect_2_writing:
01139     break;
01140   default:
01141     /* we are not called from an SSL handshake */
01142     return;
01143   }
01144 
01145   /* update the state accordingly */
01146   connssl->connecting_state = state;
01147 }
01148 
01149 /* recv() wrapper we use to detect blocking direction during SSL handshake */
01150 static PRInt32 nspr_io_recv(PRFileDesc *fd, void *buf, PRInt32 amount,
01151                             PRIntn flags, PRIntervalTime timeout)
01152 {
01153   const PRRecvFN recv_fn = fd->lower->methods->recv;
01154   const PRInt32 rv = recv_fn(fd->lower, buf, amount, flags, timeout);
01155   if(rv < 0)
01156     /* check for PR_WOULD_BLOCK_ERROR and update blocking direction */
01157     nss_update_connecting_state(ssl_connect_2_reading, fd->secret);
01158   return rv;
01159 }
01160 
01161 /* send() wrapper we use to detect blocking direction during SSL handshake */
01162 static PRInt32 nspr_io_send(PRFileDesc *fd, const void *buf, PRInt32 amount,
01163                             PRIntn flags, PRIntervalTime timeout)
01164 {
01165   const PRSendFN send_fn = fd->lower->methods->send;
01166   const PRInt32 rv = send_fn(fd->lower, buf, amount, flags, timeout);
01167   if(rv < 0)
01168     /* check for PR_WOULD_BLOCK_ERROR and update blocking direction */
01169     nss_update_connecting_state(ssl_connect_2_writing, fd->secret);
01170   return rv;
01171 }
01172 
01173 /* close() wrapper to avoid assertion failure due to fd->secret != NULL */
01174 static PRStatus nspr_io_close(PRFileDesc *fd)
01175 {
01176   const PRCloseFN close_fn = PR_GetDefaultIOMethods()->close;
01177   fd->secret = NULL;
01178   return close_fn(fd);
01179 }
01180 
01181 /* data might be NULL */
01182 static CURLcode nss_init_core(struct Curl_easy *data, const char *cert_dir)
01183 {
01184   NSSInitParameters initparams;
01185 
01186   if(nss_context != NULL)
01187     return CURLE_OK;
01188 
01189   memset((void *) &initparams, '\0', sizeof(initparams));
01190   initparams.length = sizeof(initparams);
01191 
01192   if(cert_dir) {
01193     char *certpath = aprintf("sql:%s", cert_dir);
01194     if(!certpath)
01195       return CURLE_OUT_OF_MEMORY;
01196 
01197     infof(data, "Initializing NSS with certpath: %s\n", certpath);
01198     nss_context = NSS_InitContext(certpath, "", "", "", &initparams,
01199             NSS_INIT_READONLY | NSS_INIT_PK11RELOAD);
01200     free(certpath);
01201 
01202     if(nss_context != NULL)
01203       return CURLE_OK;
01204 
01205     infof(data, "Unable to initialize NSS database\n");
01206   }
01207 
01208   infof(data, "Initializing NSS with certpath: none\n");
01209   nss_context = NSS_InitContext("", "", "", "", &initparams, NSS_INIT_READONLY
01210          | NSS_INIT_NOCERTDB   | NSS_INIT_NOMODDB       | NSS_INIT_FORCEOPEN
01211          | NSS_INIT_NOROOTINIT | NSS_INIT_OPTIMIZESPACE | NSS_INIT_PK11RELOAD);
01212   if(nss_context != NULL)
01213     return CURLE_OK;
01214 
01215   infof(data, "Unable to initialize NSS\n");
01216   return CURLE_SSL_CACERT_BADFILE;
01217 }
01218 
01219 /* data might be NULL */
01220 static CURLcode nss_init(struct Curl_easy *data)
01221 {
01222   char *cert_dir;
01223   struct_stat st;
01224   CURLcode result;
01225 
01226   if(initialized)
01227     return CURLE_OK;
01228 
01229   /* list of all CRL items we need to destroy in Curl_nss_cleanup() */
01230   nss_crl_list = Curl_llist_alloc(nss_destroy_crl_item);
01231   if(!nss_crl_list)
01232     return CURLE_OUT_OF_MEMORY;
01233 
01234   /* First we check if $SSL_DIR points to a valid dir */
01235   cert_dir = getenv("SSL_DIR");
01236   if(cert_dir) {
01237     if((stat(cert_dir, &st) != 0) ||
01238         (!S_ISDIR(st.st_mode))) {
01239       cert_dir = NULL;
01240     }
01241   }
01242 
01243   /* Now we check if the default location is a valid dir */
01244   if(!cert_dir) {
01245     if((stat(SSL_DIR, &st) == 0) &&
01246         (S_ISDIR(st.st_mode))) {
01247       cert_dir = (char *)SSL_DIR;
01248     }
01249   }
01250 
01251   if(nspr_io_identity == PR_INVALID_IO_LAYER) {
01252     /* allocate an identity for our own NSPR I/O layer */
01253     nspr_io_identity = PR_GetUniqueIdentity("libcurl");
01254     if(nspr_io_identity == PR_INVALID_IO_LAYER)
01255       return CURLE_OUT_OF_MEMORY;
01256 
01257     /* the default methods just call down to the lower I/O layer */
01258     memcpy(&nspr_io_methods, PR_GetDefaultIOMethods(), sizeof nspr_io_methods);
01259 
01260     /* override certain methods in the table by our wrappers */
01261     nspr_io_methods.recv  = nspr_io_recv;
01262     nspr_io_methods.send  = nspr_io_send;
01263     nspr_io_methods.close = nspr_io_close;
01264   }
01265 
01266   result = nss_init_core(data, cert_dir);
01267   if(result)
01268     return result;
01269 
01270   if(!any_cipher_enabled())
01271     NSS_SetDomesticPolicy();
01272 
01273   initialized = 1;
01274 
01275   return CURLE_OK;
01276 }
01277 
01284 int Curl_nss_init(void)
01285 {
01286   /* curl_global_init() is not thread-safe so this test is ok */
01287   if(nss_initlock == NULL) {
01288     PR_Init(PR_USER_THREAD, PR_PRIORITY_NORMAL, 256);
01289     nss_initlock = PR_NewLock();
01290     nss_crllock = PR_NewLock();
01291     nss_findslot_lock = PR_NewLock();
01292   }
01293 
01294   /* We will actually initialize NSS later */
01295 
01296   return 1;
01297 }
01298 
01299 /* data might be NULL */
01300 CURLcode Curl_nss_force_init(struct Curl_easy *data)
01301 {
01302   CURLcode result;
01303   if(!nss_initlock) {
01304     if(data)
01305       failf(data, "unable to initialize NSS, curl_global_init() should have "
01306                   "been called with CURL_GLOBAL_SSL or CURL_GLOBAL_ALL");
01307     return CURLE_FAILED_INIT;
01308   }
01309 
01310   PR_Lock(nss_initlock);
01311   result = nss_init(data);
01312   PR_Unlock(nss_initlock);
01313 
01314   return result;
01315 }
01316 
01317 /* Global cleanup */
01318 void Curl_nss_cleanup(void)
01319 {
01320   /* This function isn't required to be threadsafe and this is only done
01321    * as a safety feature.
01322    */
01323   PR_Lock(nss_initlock);
01324   if(initialized) {
01325     /* Free references to client certificates held in the SSL session cache.
01326      * Omitting this hampers destruction of the security module owning
01327      * the certificates. */
01328     SSL_ClearSessionCache();
01329 
01330     if(mod && SECSuccess == SECMOD_UnloadUserModule(mod)) {
01331       SECMOD_DestroyModule(mod);
01332       mod = NULL;
01333     }
01334     NSS_ShutdownContext(nss_context);
01335     nss_context = NULL;
01336   }
01337 
01338   /* destroy all CRL items */
01339   Curl_llist_destroy(nss_crl_list, NULL);
01340   nss_crl_list = NULL;
01341 
01342   PR_Unlock(nss_initlock);
01343 
01344   PR_DestroyLock(nss_initlock);
01345   PR_DestroyLock(nss_crllock);
01346   PR_DestroyLock(nss_findslot_lock);
01347   nss_initlock = NULL;
01348 
01349   initialized = 0;
01350 }
01351 
01352 /*
01353  * This function uses SSL_peek to determine connection status.
01354  *
01355  * Return codes:
01356  *     1 means the connection is still in place
01357  *     0 means the connection has been closed
01358  *    -1 means the connection status is unknown
01359  */
01360 int
01361 Curl_nss_check_cxn(struct connectdata *conn)
01362 {
01363   int rc;
01364   char buf;
01365 
01366   rc =
01367     PR_Recv(conn->ssl[FIRSTSOCKET].handle, (void *)&buf, 1, PR_MSG_PEEK,
01368             PR_SecondsToInterval(1));
01369   if(rc > 0)
01370     return 1; /* connection still in place */
01371 
01372   if(rc == 0)
01373     return 0; /* connection has been closed */
01374 
01375   return -1;  /* connection status unknown */
01376 }
01377 
01378 static void nss_close(struct ssl_connect_data *connssl)
01379 {
01380   /* before the cleanup, check whether we are using a client certificate */
01381   const bool client_cert = (connssl->client_nickname != NULL)
01382     || (connssl->obj_clicert != NULL);
01383 
01384   free(connssl->client_nickname);
01385   connssl->client_nickname = NULL;
01386 
01387   /* destroy all NSS objects in order to avoid failure of NSS shutdown */
01388   Curl_llist_destroy(connssl->obj_list, NULL);
01389   connssl->obj_list = NULL;
01390   connssl->obj_clicert = NULL;
01391 
01392   if(connssl->handle) {
01393     if(client_cert)
01394       /* A server might require different authentication based on the
01395        * particular path being requested by the client.  To support this
01396        * scenario, we must ensure that a connection will never reuse the
01397        * authentication data from a previous connection. */
01398       SSL_InvalidateSession(connssl->handle);
01399 
01400     PR_Close(connssl->handle);
01401     connssl->handle = NULL;
01402   }
01403 }
01404 
01405 /*
01406  * This function is called when an SSL connection is closed.
01407  */
01408 void Curl_nss_close(struct connectdata *conn, int sockindex)
01409 {
01410   struct ssl_connect_data *connssl = &conn->ssl[sockindex];
01411   struct ssl_connect_data *connssl_proxy = &conn->proxy_ssl[sockindex];
01412 
01413   if(connssl->handle || connssl_proxy->handle) {
01414     /* NSS closes the socket we previously handed to it, so we must mark it
01415        as closed to avoid double close */
01416     fake_sclose(conn->sock[sockindex]);
01417     conn->sock[sockindex] = CURL_SOCKET_BAD;
01418   }
01419 
01420   if(connssl->handle)
01421     /* nss_close(connssl) will transitively close also connssl_proxy->handle
01422        if both are used. Clear it to avoid a double close leading to crash. */
01423     connssl_proxy->handle = NULL;
01424 
01425   nss_close(connssl);
01426   nss_close(connssl_proxy);
01427 }
01428 
01429 /* return true if NSS can provide error code (and possibly msg) for the
01430    error */
01431 static bool is_nss_error(CURLcode err)
01432 {
01433   switch(err) {
01434   case CURLE_PEER_FAILED_VERIFICATION:
01435   case CURLE_SSL_CACERT:
01436   case CURLE_SSL_CERTPROBLEM:
01437   case CURLE_SSL_CONNECT_ERROR:
01438   case CURLE_SSL_ISSUER_ERROR:
01439     return true;
01440 
01441   default:
01442     return false;
01443   }
01444 }
01445 
01446 /* return true if the given error code is related to a client certificate */
01447 static bool is_cc_error(PRInt32 err)
01448 {
01449   switch(err) {
01450   case SSL_ERROR_BAD_CERT_ALERT:
01451   case SSL_ERROR_EXPIRED_CERT_ALERT:
01452   case SSL_ERROR_REVOKED_CERT_ALERT:
01453     return true;
01454 
01455   default:
01456     return false;
01457   }
01458 }
01459 
01460 static Curl_recv nss_recv;
01461 static Curl_send nss_send;
01462 
01463 static CURLcode nss_load_ca_certificates(struct connectdata *conn,
01464                                          int sockindex)
01465 {
01466   struct Curl_easy *data = conn->data;
01467   const char *cafile = SSL_CONN_CONFIG(CAfile);
01468   const char *capath = SSL_CONN_CONFIG(CApath);
01469 
01470   if(cafile) {
01471     CURLcode result = nss_load_cert(&conn->ssl[sockindex], cafile, PR_TRUE);
01472     if(result)
01473       return result;
01474   }
01475 
01476   if(capath) {
01477     struct_stat st;
01478     if(stat(capath, &st) == -1)
01479       return CURLE_SSL_CACERT_BADFILE;
01480 
01481     if(S_ISDIR(st.st_mode)) {
01482       PRDirEntry *entry;
01483       PRDir *dir = PR_OpenDir(capath);
01484       if(!dir)
01485         return CURLE_SSL_CACERT_BADFILE;
01486 
01487       while((entry = PR_ReadDir(dir, PR_SKIP_BOTH | PR_SKIP_HIDDEN))) {
01488         char *fullpath = aprintf("%s/%s", capath, entry->name);
01489         if(!fullpath) {
01490           PR_CloseDir(dir);
01491           return CURLE_OUT_OF_MEMORY;
01492         }
01493 
01494         if(CURLE_OK != nss_load_cert(&conn->ssl[sockindex], fullpath, PR_TRUE))
01495           /* This is purposefully tolerant of errors so non-PEM files can
01496            * be in the same directory */
01497           infof(data, "failed to load '%s' from CURLOPT_CAPATH\n", fullpath);
01498 
01499         free(fullpath);
01500       }
01501 
01502       PR_CloseDir(dir);
01503     }
01504     else
01505       infof(data, "warning: CURLOPT_CAPATH not a directory (%s)\n", capath);
01506   }
01507 
01508   infof(data, "  CAfile: %s\n  CApath: %s\n",
01509       cafile ? cafile : "none",
01510       capath ? capath : "none");
01511 
01512   return CURLE_OK;
01513 }
01514 
01515 static CURLcode nss_init_sslver(SSLVersionRange *sslver,
01516                                 struct Curl_easy *data,
01517                                 struct connectdata *conn)
01518 {
01519   switch(SSL_CONN_CONFIG(version)) {
01520   case CURL_SSLVERSION_DEFAULT:
01521     /* map CURL_SSLVERSION_DEFAULT to NSS default */
01522     if(SSL_VersionRangeGetDefault(ssl_variant_stream, sslver) != SECSuccess)
01523       return CURLE_SSL_CONNECT_ERROR;
01524     /* ... but make sure we use at least TLSv1.0 according to libcurl API */
01525     if(sslver->min < SSL_LIBRARY_VERSION_TLS_1_0)
01526       sslver->min = SSL_LIBRARY_VERSION_TLS_1_0;
01527     return CURLE_OK;
01528 
01529   case CURL_SSLVERSION_TLSv1:
01530     sslver->min = SSL_LIBRARY_VERSION_TLS_1_0;
01531     /* TODO: set sslver->max to SSL_LIBRARY_VERSION_TLS_1_3 once stable */
01532 #ifdef SSL_LIBRARY_VERSION_TLS_1_2
01533     sslver->max = SSL_LIBRARY_VERSION_TLS_1_2;
01534 #elif defined SSL_LIBRARY_VERSION_TLS_1_1
01535     sslver->max = SSL_LIBRARY_VERSION_TLS_1_1;
01536 #else
01537     sslver->max = SSL_LIBRARY_VERSION_TLS_1_0;
01538 #endif
01539     return CURLE_OK;
01540 
01541   case CURL_SSLVERSION_SSLv2:
01542     sslver->min = SSL_LIBRARY_VERSION_2;
01543     sslver->max = SSL_LIBRARY_VERSION_2;
01544     return CURLE_OK;
01545 
01546   case CURL_SSLVERSION_SSLv3:
01547     sslver->min = SSL_LIBRARY_VERSION_3_0;
01548     sslver->max = SSL_LIBRARY_VERSION_3_0;
01549     return CURLE_OK;
01550 
01551   case CURL_SSLVERSION_TLSv1_0:
01552     sslver->min = SSL_LIBRARY_VERSION_TLS_1_0;
01553     sslver->max = SSL_LIBRARY_VERSION_TLS_1_0;
01554     return CURLE_OK;
01555 
01556   case CURL_SSLVERSION_TLSv1_1:
01557 #ifdef SSL_LIBRARY_VERSION_TLS_1_1
01558     sslver->min = SSL_LIBRARY_VERSION_TLS_1_1;
01559     sslver->max = SSL_LIBRARY_VERSION_TLS_1_1;
01560     return CURLE_OK;
01561 #endif
01562     break;
01563 
01564   case CURL_SSLVERSION_TLSv1_2:
01565 #ifdef SSL_LIBRARY_VERSION_TLS_1_2
01566     sslver->min = SSL_LIBRARY_VERSION_TLS_1_2;
01567     sslver->max = SSL_LIBRARY_VERSION_TLS_1_2;
01568     return CURLE_OK;
01569 #endif
01570     break;
01571 
01572   case CURL_SSLVERSION_TLSv1_3:
01573 #ifdef SSL_LIBRARY_VERSION_TLS_1_3
01574     sslver->min = SSL_LIBRARY_VERSION_TLS_1_3;
01575     sslver->max = SSL_LIBRARY_VERSION_TLS_1_3;
01576     return CURLE_OK;
01577 #endif
01578     break;
01579 
01580   default:
01581     failf(data, "Unrecognized parameter passed via CURLOPT_SSLVERSION");
01582     return CURLE_SSL_CONNECT_ERROR;
01583   }
01584 
01585   failf(data, "TLS minor version cannot be set");
01586   return CURLE_SSL_CONNECT_ERROR;
01587 }
01588 
01589 static CURLcode nss_fail_connect(struct ssl_connect_data *connssl,
01590                                  struct Curl_easy *data,
01591                                  CURLcode curlerr)
01592 {
01593   PRErrorCode err = 0;
01594 
01595   if(is_nss_error(curlerr)) {
01596     /* read NSPR error code */
01597     err = PR_GetError();
01598     if(is_cc_error(err))
01599       curlerr = CURLE_SSL_CERTPROBLEM;
01600 
01601     /* print the error number and error string */
01602     infof(data, "NSS error %d (%s)\n", err, nss_error_to_name(err));
01603 
01604     /* print a human-readable message describing the error if available */
01605     nss_print_error_message(data, err);
01606   }
01607 
01608   /* cleanup on connection failure */
01609   Curl_llist_destroy(connssl->obj_list, NULL);
01610   connssl->obj_list = NULL;
01611 
01612   return curlerr;
01613 }
01614 
01615 /* Switch the SSL socket into non-blocking mode. */
01616 static CURLcode nss_set_nonblock(struct ssl_connect_data *connssl,
01617                                  struct Curl_easy *data)
01618 {
01619   static PRSocketOptionData sock_opt;
01620   sock_opt.option = PR_SockOpt_Nonblocking;
01621   sock_opt.value.non_blocking = PR_TRUE;
01622 
01623   if(PR_SetSocketOption(connssl->handle, &sock_opt) != PR_SUCCESS)
01624     return nss_fail_connect(connssl, data, CURLE_SSL_CONNECT_ERROR);
01625 
01626   return CURLE_OK;
01627 }
01628 
01629 static CURLcode nss_setup_connect(struct connectdata *conn, int sockindex)
01630 {
01631   PRFileDesc *model = NULL;
01632   PRFileDesc *nspr_io = NULL;
01633   PRFileDesc *nspr_io_stub = NULL;
01634   PRBool ssl_no_cache;
01635   PRBool ssl_cbc_random_iv;
01636   struct Curl_easy *data = conn->data;
01637   curl_socket_t sockfd = conn->sock[sockindex];
01638   struct ssl_connect_data *connssl = &conn->ssl[sockindex];
01639   CURLcode result;
01640   bool second_layer = FALSE;
01641 
01642   SSLVersionRange sslver = {
01643     SSL_LIBRARY_VERSION_TLS_1_0,  /* min */
01644     SSL_LIBRARY_VERSION_TLS_1_0   /* max */
01645   };
01646 
01647   connssl->data = data;
01648 
01649   /* list of all NSS objects we need to destroy in Curl_nss_close() */
01650   connssl->obj_list = Curl_llist_alloc(nss_destroy_object);
01651   if(!connssl->obj_list)
01652     return CURLE_OUT_OF_MEMORY;
01653 
01654   /* FIXME. NSS doesn't support multiple databases open at the same time. */
01655   PR_Lock(nss_initlock);
01656   result = nss_init(conn->data);
01657   if(result) {
01658     PR_Unlock(nss_initlock);
01659     goto error;
01660   }
01661 
01662   result = CURLE_SSL_CONNECT_ERROR;
01663 
01664   if(!mod) {
01665     char *configstring = aprintf("library=%s name=PEM", pem_library);
01666     if(!configstring) {
01667       PR_Unlock(nss_initlock);
01668       goto error;
01669     }
01670     mod = SECMOD_LoadUserModule(configstring, NULL, PR_FALSE);
01671     free(configstring);
01672 
01673     if(!mod || !mod->loaded) {
01674       if(mod) {
01675         SECMOD_DestroyModule(mod);
01676         mod = NULL;
01677       }
01678       infof(data, "WARNING: failed to load NSS PEM library %s. Using "
01679                   "OpenSSL PEM certificates will not work.\n", pem_library);
01680     }
01681   }
01682 
01683   PK11_SetPasswordFunc(nss_get_password);
01684   PR_Unlock(nss_initlock);
01685 
01686   model = PR_NewTCPSocket();
01687   if(!model)
01688     goto error;
01689   model = SSL_ImportFD(NULL, model);
01690 
01691   if(SSL_OptionSet(model, SSL_SECURITY, PR_TRUE) != SECSuccess)
01692     goto error;
01693   if(SSL_OptionSet(model, SSL_HANDSHAKE_AS_SERVER, PR_FALSE) != SECSuccess)
01694     goto error;
01695   if(SSL_OptionSet(model, SSL_HANDSHAKE_AS_CLIENT, PR_TRUE) != SECSuccess)
01696     goto error;
01697 
01698   /* do not use SSL cache if disabled or we are not going to verify peer */
01699   ssl_no_cache = (data->set.general_ssl.sessionid
01700                   && SSL_CONN_CONFIG(verifypeer)) ? PR_FALSE : PR_TRUE;
01701   if(SSL_OptionSet(model, SSL_NO_CACHE, ssl_no_cache) != SECSuccess)
01702     goto error;
01703 
01704   /* enable/disable the requested SSL version(s) */
01705   if(nss_init_sslver(&sslver, data, conn) != CURLE_OK)
01706     goto error;
01707   if(SSL_VersionRangeSet(model, &sslver) != SECSuccess)
01708     goto error;
01709 
01710   ssl_cbc_random_iv = !SSL_SET_OPTION(enable_beast);
01711 #ifdef SSL_CBC_RANDOM_IV
01712   /* unless the user explicitly asks to allow the protocol vulnerability, we
01713      use the work-around */
01714   if(SSL_OptionSet(model, SSL_CBC_RANDOM_IV, ssl_cbc_random_iv) != SECSuccess)
01715     infof(data, "warning: failed to set SSL_CBC_RANDOM_IV = %d\n",
01716           ssl_cbc_random_iv);
01717 #else
01718   if(ssl_cbc_random_iv)
01719     infof(data, "warning: support for SSL_CBC_RANDOM_IV not compiled in\n");
01720 #endif
01721 
01722   if(SSL_CONN_CONFIG(cipher_list)) {
01723     if(set_ciphers(data, model, SSL_CONN_CONFIG(cipher_list)) != SECSuccess) {
01724       result = CURLE_SSL_CIPHER;
01725       goto error;
01726     }
01727   }
01728 
01729   if(!SSL_CONN_CONFIG(verifypeer) && SSL_CONN_CONFIG(verifyhost))
01730     infof(data, "warning: ignoring value of ssl.verifyhost\n");
01731 
01732   /* bypass the default SSL_AuthCertificate() hook in case we do not want to
01733    * verify peer */
01734   if(SSL_AuthCertificateHook(model, nss_auth_cert_hook, conn) != SECSuccess)
01735     goto error;
01736 
01737   /* not checked yet */
01738   if(SSL_IS_PROXY())
01739     data->set.proxy_ssl.certverifyresult = 0;
01740   else
01741     data->set.ssl.certverifyresult = 0;
01742 
01743   if(SSL_BadCertHook(model, BadCertHandler, conn) != SECSuccess)
01744     goto error;
01745 
01746   if(SSL_HandshakeCallback(model, HandshakeCallback, conn) != SECSuccess)
01747     goto error;
01748 
01749   if(SSL_CONN_CONFIG(verifypeer)) {
01750     const CURLcode rv = nss_load_ca_certificates(conn, sockindex);
01751     if(rv) {
01752       result = rv;
01753       goto error;
01754     }
01755   }
01756 
01757   if(SSL_SET_OPTION(CRLfile)) {
01758     const CURLcode rv = nss_load_crl(SSL_SET_OPTION(CRLfile));
01759     if(rv) {
01760       result = rv;
01761       goto error;
01762     }
01763     infof(data, "  CRLfile: %s\n", SSL_SET_OPTION(CRLfile));
01764   }
01765 
01766   if(SSL_SET_OPTION(cert)) {
01767     char *nickname = dup_nickname(data, SSL_SET_OPTION(cert));
01768     if(nickname) {
01769       /* we are not going to use libnsspem.so to read the client cert */
01770       connssl->obj_clicert = NULL;
01771     }
01772     else {
01773       CURLcode rv = cert_stuff(conn, sockindex, SSL_SET_OPTION(cert),
01774                                SSL_SET_OPTION(key));
01775       if(rv) {
01776         /* failf() is already done in cert_stuff() */
01777         result = rv;
01778         goto error;
01779       }
01780     }
01781 
01782     /* store the nickname for SelectClientCert() called during handshake */
01783     connssl->client_nickname = nickname;
01784   }
01785   else
01786     connssl->client_nickname = NULL;
01787 
01788   if(SSL_GetClientAuthDataHook(model, SelectClientCert,
01789                                (void *)connssl) != SECSuccess) {
01790     result = CURLE_SSL_CERTPROBLEM;
01791     goto error;
01792   }
01793 
01794   if(conn->proxy_ssl[sockindex].use) {
01795     DEBUGASSERT(ssl_connection_complete == conn->proxy_ssl[sockindex].state);
01796     DEBUGASSERT(conn->proxy_ssl[sockindex].handle != NULL);
01797     nspr_io = conn->proxy_ssl[sockindex].handle;
01798     second_layer = TRUE;
01799   }
01800   else {
01801     /* wrap OS file descriptor by NSPR's file descriptor abstraction */
01802     nspr_io = PR_ImportTCPSocket(sockfd);
01803     if(!nspr_io)
01804       goto error;
01805   }
01806 
01807   /* create our own NSPR I/O layer */
01808   nspr_io_stub = PR_CreateIOLayerStub(nspr_io_identity, &nspr_io_methods);
01809   if(!nspr_io_stub) {
01810     if(!second_layer)
01811       PR_Close(nspr_io);
01812     goto error;
01813   }
01814 
01815   /* make the per-connection data accessible from NSPR I/O callbacks */
01816   nspr_io_stub->secret = (void *)connssl;
01817 
01818   /* push our new layer to the NSPR I/O stack */
01819   if(PR_PushIOLayer(nspr_io, PR_TOP_IO_LAYER, nspr_io_stub) != PR_SUCCESS) {
01820     if(!second_layer)
01821       PR_Close(nspr_io);
01822     PR_Close(nspr_io_stub);
01823     goto error;
01824   }
01825 
01826   /* import our model socket onto the current I/O stack */
01827   connssl->handle = SSL_ImportFD(model, nspr_io);
01828   if(!connssl->handle) {
01829     if(!second_layer)
01830       PR_Close(nspr_io);
01831     goto error;
01832   }
01833 
01834   PR_Close(model); /* We don't need this any more */
01835   model = NULL;
01836 
01837   /* This is the password associated with the cert that we're using */
01838   if(SSL_SET_OPTION(key_passwd)) {
01839     SSL_SetPKCS11PinArg(connssl->handle, SSL_SET_OPTION(key_passwd));
01840   }
01841 
01842 #ifdef SSL_ENABLE_OCSP_STAPLING
01843   if(SSL_CONN_CONFIG(verifystatus)) {
01844     if(SSL_OptionSet(connssl->handle, SSL_ENABLE_OCSP_STAPLING, PR_TRUE)
01845         != SECSuccess)
01846       goto error;
01847   }
01848 #endif
01849 
01850 #ifdef SSL_ENABLE_NPN
01851   if(SSL_OptionSet(connssl->handle, SSL_ENABLE_NPN, conn->bits.tls_enable_npn
01852                    ? PR_TRUE : PR_FALSE) != SECSuccess)
01853     goto error;
01854 #endif
01855 
01856 #ifdef SSL_ENABLE_ALPN
01857   if(SSL_OptionSet(connssl->handle, SSL_ENABLE_ALPN, conn->bits.tls_enable_alpn
01858                    ? PR_TRUE : PR_FALSE) != SECSuccess)
01859     goto error;
01860 #endif
01861 
01862 #if NSSVERNUM >= 0x030f04 /* 3.15.4 */
01863   if(data->set.ssl.falsestart) {
01864     if(SSL_OptionSet(connssl->handle, SSL_ENABLE_FALSE_START, PR_TRUE)
01865         != SECSuccess)
01866       goto error;
01867 
01868     if(SSL_SetCanFalseStartCallback(connssl->handle, CanFalseStartCallback,
01869         conn) != SECSuccess)
01870       goto error;
01871   }
01872 #endif
01873 
01874 #if defined(SSL_ENABLE_NPN) || defined(SSL_ENABLE_ALPN)
01875   if(conn->bits.tls_enable_npn || conn->bits.tls_enable_alpn) {
01876     int cur = 0;
01877     unsigned char protocols[128];
01878 
01879 #ifdef USE_NGHTTP2
01880     if(data->set.httpversion >= CURL_HTTP_VERSION_2) {
01881       protocols[cur++] = NGHTTP2_PROTO_VERSION_ID_LEN;
01882       memcpy(&protocols[cur], NGHTTP2_PROTO_VERSION_ID,
01883           NGHTTP2_PROTO_VERSION_ID_LEN);
01884       cur += NGHTTP2_PROTO_VERSION_ID_LEN;
01885     }
01886 #endif
01887     protocols[cur++] = ALPN_HTTP_1_1_LENGTH;
01888     memcpy(&protocols[cur], ALPN_HTTP_1_1, ALPN_HTTP_1_1_LENGTH);
01889     cur += ALPN_HTTP_1_1_LENGTH;
01890 
01891     if(SSL_SetNextProtoNego(connssl->handle, protocols, cur) != SECSuccess)
01892       goto error;
01893   }
01894 #endif
01895 
01896 
01897   /* Force handshake on next I/O */
01898   if(SSL_ResetHandshake(connssl->handle, /* asServer */ PR_FALSE)
01899       != SECSuccess)
01900     goto error;
01901 
01902   /* propagate hostname to the TLS layer */
01903   if(SSL_SetURL(connssl->handle, SSL_IS_PROXY() ? conn->http_proxy.host.name :
01904                 conn->host.name) != SECSuccess)
01905     goto error;
01906 
01907   /* prevent NSS from re-using the session for a different hostname */
01908   if(SSL_SetSockPeerID(connssl->handle, SSL_IS_PROXY() ?
01909                        conn->http_proxy.host.name : conn->host.name)
01910      != SECSuccess)
01911     goto error;
01912 
01913   return CURLE_OK;
01914 
01915 error:
01916   if(model)
01917     PR_Close(model);
01918 
01919   return nss_fail_connect(connssl, data, result);
01920 }
01921 
01922 static CURLcode nss_do_connect(struct connectdata *conn, int sockindex)
01923 {
01924   struct ssl_connect_data *connssl = &conn->ssl[sockindex];
01925   struct Curl_easy *data = conn->data;
01926   CURLcode result = CURLE_SSL_CONNECT_ERROR;
01927   PRUint32 timeout;
01928   long * const certverifyresult = SSL_IS_PROXY() ?
01929     &data->set.proxy_ssl.certverifyresult : &data->set.ssl.certverifyresult;
01930   const char * const pinnedpubkey = SSL_IS_PROXY() ?
01931               data->set.str[STRING_SSL_PINNEDPUBLICKEY_PROXY] :
01932               data->set.str[STRING_SSL_PINNEDPUBLICKEY_ORIG];
01933 
01934 
01935   /* check timeout situation */
01936   const long time_left = Curl_timeleft(data, NULL, TRUE);
01937   if(time_left < 0L) {
01938     failf(data, "timed out before SSL handshake");
01939     result = CURLE_OPERATION_TIMEDOUT;
01940     goto error;
01941   }
01942 
01943   /* Force the handshake now */
01944   timeout = PR_MillisecondsToInterval((PRUint32) time_left);
01945   if(SSL_ForceHandshakeWithTimeout(connssl->handle, timeout) != SECSuccess) {
01946     if(PR_GetError() == PR_WOULD_BLOCK_ERROR)
01947       /* blocking direction is updated by nss_update_connecting_state() */
01948       return CURLE_AGAIN;
01949     else if(*certverifyresult == SSL_ERROR_BAD_CERT_DOMAIN)
01950       result = CURLE_PEER_FAILED_VERIFICATION;
01951     else if(*certverifyresult != 0)
01952       result = CURLE_SSL_CACERT;
01953     goto error;
01954   }
01955 
01956   result = display_conn_info(conn, connssl->handle);
01957   if(result)
01958     goto error;
01959 
01960   if(SSL_SET_OPTION(issuercert)) {
01961     SECStatus ret = SECFailure;
01962     char *nickname = dup_nickname(data, SSL_SET_OPTION(issuercert));
01963     if(nickname) {
01964       /* we support only nicknames in case of issuercert for now */
01965       ret = check_issuer_cert(connssl->handle, nickname);
01966       free(nickname);
01967     }
01968 
01969     if(SECFailure == ret) {
01970       infof(data, "SSL certificate issuer check failed\n");
01971       result = CURLE_SSL_ISSUER_ERROR;
01972       goto error;
01973     }
01974     else {
01975       infof(data, "SSL certificate issuer check ok\n");
01976     }
01977   }
01978 
01979   result = cmp_peer_pubkey(connssl, pinnedpubkey);
01980   if(result)
01981     /* status already printed */
01982     goto error;
01983 
01984   return CURLE_OK;
01985 
01986 error:
01987   return nss_fail_connect(connssl, data, result);
01988 }
01989 
01990 static CURLcode nss_connect_common(struct connectdata *conn, int sockindex,
01991                                    bool *done)
01992 {
01993   struct ssl_connect_data *connssl = &conn->ssl[sockindex];
01994   struct Curl_easy *data = conn->data;
01995   const bool blocking = (done == NULL);
01996   CURLcode result;
01997 
01998   if(connssl->state == ssl_connection_complete) {
01999     if(!blocking)
02000       *done = TRUE;
02001     return CURLE_OK;
02002   }
02003 
02004   if(connssl->connecting_state == ssl_connect_1) {
02005     result = nss_setup_connect(conn, sockindex);
02006     if(result)
02007       /* we do not expect CURLE_AGAIN from nss_setup_connect() */
02008       return result;
02009 
02010     if(!blocking) {
02011       /* in non-blocking mode, set NSS non-blocking mode before handshake */
02012       result = nss_set_nonblock(connssl, data);
02013       if(result)
02014         return result;
02015     }
02016 
02017     connssl->connecting_state = ssl_connect_2;
02018   }
02019 
02020   result = nss_do_connect(conn, sockindex);
02021   switch(result) {
02022   case CURLE_OK:
02023     break;
02024   case CURLE_AGAIN:
02025     if(!blocking)
02026       /* CURLE_AGAIN in non-blocking mode is not an error */
02027       return CURLE_OK;
02028     /* fall through */
02029   default:
02030     return result;
02031   }
02032 
02033   if(blocking) {
02034     /* in blocking mode, set NSS non-blocking mode _after_ SSL handshake */
02035     result = nss_set_nonblock(connssl, data);
02036     if(result)
02037       return result;
02038   }
02039   else
02040     /* signal completed SSL handshake */
02041     *done = TRUE;
02042 
02043   connssl->state = ssl_connection_complete;
02044   conn->recv[sockindex] = nss_recv;
02045   conn->send[sockindex] = nss_send;
02046 
02047   /* ssl_connect_done is never used outside, go back to the initial state */
02048   connssl->connecting_state = ssl_connect_1;
02049 
02050   return CURLE_OK;
02051 }
02052 
02053 CURLcode Curl_nss_connect(struct connectdata *conn, int sockindex)
02054 {
02055   return nss_connect_common(conn, sockindex, /* blocking */ NULL);
02056 }
02057 
02058 CURLcode Curl_nss_connect_nonblocking(struct connectdata *conn,
02059                                       int sockindex, bool *done)
02060 {
02061   return nss_connect_common(conn, sockindex, done);
02062 }
02063 
02064 static ssize_t nss_send(struct connectdata *conn,  /* connection data */
02065                         int sockindex,             /* socketindex */
02066                         const void *mem,           /* send this data */
02067                         size_t len,                /* amount to write */
02068                         CURLcode *curlcode)
02069 {
02070   ssize_t rc = PR_Send(conn->ssl[sockindex].handle, mem, (int)len, 0,
02071                        PR_INTERVAL_NO_WAIT);
02072   if(rc < 0) {
02073     PRInt32 err = PR_GetError();
02074     if(err == PR_WOULD_BLOCK_ERROR)
02075       *curlcode = CURLE_AGAIN;
02076     else {
02077       /* print the error number and error string */
02078       const char *err_name = nss_error_to_name(err);
02079       infof(conn->data, "SSL write: error %d (%s)\n", err, err_name);
02080 
02081       /* print a human-readable message describing the error if available */
02082       nss_print_error_message(conn->data, err);
02083 
02084       *curlcode = (is_cc_error(err))
02085         ? CURLE_SSL_CERTPROBLEM
02086         : CURLE_SEND_ERROR;
02087     }
02088 
02089     return -1;
02090   }
02091 
02092   return rc; /* number of bytes */
02093 }
02094 
02095 static ssize_t nss_recv(struct connectdata * conn, /* connection data */
02096                         int num,                   /* socketindex */
02097                         char *buf,                 /* store read data here */
02098                         size_t buffersize,         /* max amount to read */
02099                         CURLcode *curlcode)
02100 {
02101   ssize_t nread = PR_Recv(conn->ssl[num].handle, buf, (int)buffersize, 0,
02102                           PR_INTERVAL_NO_WAIT);
02103   if(nread < 0) {
02104     /* failed SSL read */
02105     PRInt32 err = PR_GetError();
02106 
02107     if(err == PR_WOULD_BLOCK_ERROR)
02108       *curlcode = CURLE_AGAIN;
02109     else {
02110       /* print the error number and error string */
02111       const char *err_name = nss_error_to_name(err);
02112       infof(conn->data, "SSL read: errno %d (%s)\n", err, err_name);
02113 
02114       /* print a human-readable message describing the error if available */
02115       nss_print_error_message(conn->data, err);
02116 
02117       *curlcode = (is_cc_error(err))
02118         ? CURLE_SSL_CERTPROBLEM
02119         : CURLE_RECV_ERROR;
02120     }
02121 
02122     return -1;
02123   }
02124 
02125   return nread;
02126 }
02127 
02128 size_t Curl_nss_version(char *buffer, size_t size)
02129 {
02130   return snprintf(buffer, size, "NSS/%s", NSS_VERSION);
02131 }
02132 
02133 /* data might be NULL */
02134 int Curl_nss_seed(struct Curl_easy *data)
02135 {
02136   /* make sure that NSS is initialized */
02137   return !!Curl_nss_force_init(data);
02138 }
02139 
02140 /* data might be NULL */
02141 int Curl_nss_random(struct Curl_easy *data,
02142                     unsigned char *entropy,
02143                     size_t length)
02144 {
02145   Curl_nss_seed(data);  /* Initiate the seed if not already done */
02146 
02147   if(SECSuccess != PK11_GenerateRandom(entropy, curlx_uztosi(length)))
02148     /* signal a failure */
02149     return -1;
02150 
02151   return 0;
02152 }
02153 
02154 void Curl_nss_md5sum(unsigned char *tmp, /* input */
02155                      size_t tmplen,
02156                      unsigned char *md5sum, /* output */
02157                      size_t md5len)
02158 {
02159   PK11Context *MD5pw = PK11_CreateDigestContext(SEC_OID_MD5);
02160   unsigned int MD5out;
02161 
02162   PK11_DigestOp(MD5pw, tmp, curlx_uztoui(tmplen));
02163   PK11_DigestFinal(MD5pw, md5sum, &MD5out, curlx_uztoui(md5len));
02164   PK11_DestroyContext(MD5pw, PR_TRUE);
02165 }
02166 
02167 void Curl_nss_sha256sum(const unsigned char *tmp, /* input */
02168                      size_t tmplen,
02169                      unsigned char *sha256sum, /* output */
02170                      size_t sha256len)
02171 {
02172   PK11Context *SHA256pw = PK11_CreateDigestContext(SEC_OID_SHA256);
02173   unsigned int SHA256out;
02174 
02175   PK11_DigestOp(SHA256pw, tmp, curlx_uztoui(tmplen));
02176   PK11_DigestFinal(SHA256pw, sha256sum, &SHA256out, curlx_uztoui(sha256len));
02177   PK11_DestroyContext(SHA256pw, PR_TRUE);
02178 }
02179 
02180 bool Curl_nss_cert_status_request(void)
02181 {
02182 #ifdef SSL_ENABLE_OCSP_STAPLING
02183   return TRUE;
02184 #else
02185   return FALSE;
02186 #endif
02187 }
02188 
02189 bool Curl_nss_false_start(void)
02190 {
02191 #if NSSVERNUM >= 0x030f04 /* 3.15.4 */
02192   return TRUE;
02193 #else
02194   return FALSE;
02195 #endif
02196 }
02197 
02198 #endif /* USE_NSS */


rc_visard_driver
Author(s): Heiko Hirschmueller , Christian Emmerich , Felix Ruess
autogenerated on Thu Jun 6 2019 20:43:05