rect_array_to_density_image.cpp
Go to the documentation of this file.
00001 // -*- mode: c++ -*-
00002 /*********************************************************************
00003  * Software License Agreement (BSD License)
00004  *
00005  *  Copyright (c) 2016, JSK Lab
00006  *  All rights reserved.
00007  *
00008  *  Redistribution and use in source and binary forms, with or without
00009  *  modification, are permitted provided that the following conditions
00010  *  are met:
00011  *
00012  *   * Redistributions of source code must retain the above copyright
00013  *     notice, this list of conditions and the following disclaimer.
00014  *   * Redistributions in binary form must reproduce the above
00015  *     copyright notice, this list of conditions and the following
00016  *     disclaimer in the documentation and/o2r other materials provided
00017  *     with the distribution.
00018  *   * Neither the name of the JSK Lab nor the names of its
00019  *     contributors may be used to endorse or promote products derived
00020  *     from this software without specific prior written permission.
00021  *
00022  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00023  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00024  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00025  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00026  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00027  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00028  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00029  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00030  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00032  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00033  *  POSSIBILITY OF SUCH DAMAGE.
00034  *********************************************************************/
00035 
00036 #include "jsk_perception/rect_array_to_density_image.h"
00037 #include <boost/assign.hpp>
00038 #include <jsk_topic_tools/log_utils.h>
00039 #include <sensor_msgs/image_encodings.h>
00040 #include <opencv2/opencv.hpp>
00041 #include <cv_bridge/cv_bridge.h>
00042 
00043 namespace jsk_perception
00044 {
00045   void RectArrayToDensityImage::onInit()
00046   {
00047     DiagnosticNodelet::onInit();
00048     pnh_->param("approximate_sync", approximate_sync_, false);
00049     pnh_->param("queue_size", queue_size_, 100);
00050     pub_ = advertise<sensor_msgs::Image>(*pnh_, "output", 1);
00051     onInitPostProcess();
00052   }
00053 
00054   void RectArrayToDensityImage::subscribe()
00055   {
00056     sub_image_.subscribe(*pnh_, "input/image", 1);
00057     sub_rects_.subscribe(*pnh_, "input/rect_array", 1);
00058     if (approximate_sync_) {
00059       async_ = boost::make_shared<message_filters::Synchronizer<ApproximateSyncPolicy> >(queue_size_);
00060       async_->connectInput(sub_image_, sub_rects_);
00061       async_->registerCallback(boost::bind(&RectArrayToDensityImage::convert, this, _1, _2));
00062     }
00063     else {
00064       sync_ = boost::make_shared<message_filters::Synchronizer<SyncPolicy> >(queue_size_);
00065       sync_->connectInput(sub_image_, sub_rects_);
00066       sync_->registerCallback(boost::bind(&RectArrayToDensityImage::convert, this, _1, _2));
00067     }
00068     ros::V_string names = boost::assign::list_of("~input/image")("~input/rect_array");
00069     jsk_topic_tools::warnNoRemap(names);
00070   }
00071 
00072   void RectArrayToDensityImage::unsubscribe()
00073   {
00074     sub_image_.unsubscribe();
00075     sub_rects_.unsubscribe();
00076   }
00077 
00078   void RectArrayToDensityImage::convert(
00079     const sensor_msgs::Image::ConstPtr& image_msg,
00080     const jsk_recognition_msgs::RectArray::ConstPtr& rects_msg)
00081   {
00082     vital_checker_->poke();
00083     cv::Mat density_image = cv::Mat::zeros(image_msg->height, image_msg->width, CV_32FC1);
00084 
00085     // Compute density
00086     for (size_t k=0; k<rects_msg->rects.size(); k++) {
00087       jsk_recognition_msgs::Rect rect = rects_msg->rects[k];
00088       for (int j=rect.y; j<(rect.y + rect.height); j++) {
00089         for (int i=rect.x; i<(rect.x + rect.width); i++) {
00090           density_image.at<float>(j, i)++;
00091         }
00092       }
00093     }
00094 
00095     // Scale the density image value to [0, 1]
00096     double min_image_value;
00097     double max_image_value;
00098     cv::minMaxLoc(density_image, &min_image_value, &max_image_value);
00099     cv::Mat(density_image - min_image_value).convertTo(
00100         density_image, CV_32FC1, 1. / (max_image_value - min_image_value));
00101 
00102     pub_.publish(cv_bridge::CvImage(
00103                     image_msg->header,
00104                     "32FC1",
00105                     density_image).toImageMsg());
00106   }
00107 }
00108 
00109 #include <pluginlib/class_list_macros.h>
00110 PLUGINLIB_EXPORT_CLASS (jsk_perception::RectArrayToDensityImage, nodelet::Nodelet);


jsk_perception
Author(s): Manabu Saito, Ryohei Ueda
autogenerated on Tue Jul 2 2019 19:41:07