install_trained_data.py
Go to the documentation of this file.
00001 #!/usr/bin/env python
00002 
00003 import argparse
00004 import multiprocessing
00005 import os.path as osp
00006 
00007 try:
00008     import chainer  # NOQA
00009     _chainer_available = True
00010 except:
00011     print('### Failed to import chainer')
00012     _chainer_available = False
00013 
00014 import jsk_data
00015 
00016 
00017 def download_data(*args, **kwargs):
00018     p = multiprocessing.Process(
00019             target=jsk_data.download_data,
00020             args=args,
00021             kwargs=kwargs)
00022     p.start()
00023 
00024 
00025 def main():
00026     parser = argparse.ArgumentParser()
00027     parser.add_argument('-v', '--verbose', dest='quiet', action='store_false')
00028     args = parser.parse_args()
00029     quiet = args.quiet
00030 
00031     PKG = 'jsk_perception'
00032 
00033     download_data(
00034         pkg_name=PKG,
00035         path='trained_data/drill_svm.xml',
00036         url='https://drive.google.com/uc?id=0B5hRAGKTOm_KWW11R0FTX0xjTDg',
00037         md5='762d0da4bcbf50e0e92939372988901a',
00038         quiet=quiet,
00039     )
00040 
00041     download_data(
00042         pkg_name=PKG,
00043         path='trained_data/apc2015_sample_bof.pkl.gz',
00044         url='https://drive.google.com/uc?id=0B9P1L--7Wd2vemVRaDBOWDVpb28',
00045         md5='97eb737f71a33bfc23ec573f1d351bd8',
00046         quiet=quiet,
00047     )
00048 
00049     download_data(
00050         pkg_name=PKG,
00051         path='trained_data/apc2015_sample_bof_sklearn==0.20.0.pkl.gz',
00052         url='https://drive.google.com/uc?id=1VRwQxbjtSI4I1cjIqUFaemiUTHE4wlDj',
00053         md5='001dbd0767369daff0cafb8fc7b39e92',
00054         quiet=quiet,
00055     )
00056 
00057     download_data(
00058         pkg_name=PKG,
00059         path='trained_data/apc2015_sample_clf.pkl.gz',
00060         url='https://drive.google.com/uc?id=0B9P1L--7Wd2veFY5ZFNqbzAzNmc',
00061         md5='25e396358e9d7bfd1bd08334953fc287',
00062         quiet=quiet,
00063     )
00064 
00065     files = [
00066         ('ObjNessB2W8HSV.idx.yml.gz', 'e066c100d60246a3911d4559182d9d2a'),
00067         ('ObjNessB2W8HSV.wS1.yml.gz', '728507d99521d7dba9b0eb114ccbb830'),
00068         ('ObjNessB2W8HSV.wS2.yml.gz', '790e27251267d86168a12f2bd2d96f8d'),
00069         ('ObjNessB2W8I.idx.yml.gz', '9425dd4d31521fced82aeb6fc56ce4d5'),
00070         ('ObjNessB2W8I.wS1.yml.gz', 'a04d4b4504887fc16800b8b42bac9e70'),
00071         ('ObjNessB2W8I.wS2.yml.gz', 'f2e2f5726e352bfa16224066e2bdc7ad'),
00072         ('ObjNessB2W8MAXBGR.idx.yml.gz', 'ef2fbd5da0ffb5fe4332685b8529dc5c'),
00073         ('ObjNessB2W8MAXBGR.wS1.yml.gz', 'cbe8147fca9a5885b7bb25d38fa5f4d1'),
00074         ('ObjNessB2W8MAXBGR.wS2.yml.gz', '02b76364df35cef862da041585b537de'),
00075     ]
00076     dirname = 'https://github.com/Itseez/opencv_contrib/raw/3.1.0/modules/saliency/samples/ObjectnessTrainedModel'  # NOQA
00077     for fname, md5 in files:
00078         download_data(
00079             pkg_name=PKG,
00080             path=osp.join('trained_data/ObjectnessTrainedModel/', fname),
00081             url=osp.join(dirname, fname),
00082             md5=md5,
00083             quiet=quiet,
00084         )
00085 
00086     # node_scripts/fast_rcnn.py
00087     download_data(
00088         pkg_name=PKG,
00089         path='trained_data/vgg16_fast_rcnn.chainermodel',
00090         url='https://drive.google.com/uc?id=0B9P1L--7Wd2vX015UzB4aC13cVk',
00091         md5='5ae12288962e96124cce212fd3f18cad',
00092         quiet=quiet,
00093     )
00094     download_data(
00095         pkg_name=PKG,
00096         path='trained_data/vgg_cnn_m_1024.chainermodel',
00097         url='https://drive.google.com/uc?id=0B9P1L--7Wd2vZzJuaFRIdDMtLWc',
00098         md5='eb33103e36f299b4433c63fcfc165cbd',
00099         quiet=quiet,
00100     )
00101     download_data(
00102         pkg_name=PKG,
00103         path='trained_data/vgg16_bn_apc2015_496000.chainermodel',
00104         url='https://drive.google.com/uc?id=0B9P1L--7Wd2vQ2tCN1hoYV84eHM',
00105         md5='4a48c2f39234e46937759f4cc43bb257',
00106         quiet=quiet,
00107     )
00108 
00109     # node_scripts/fcn_object_segmentation.py
00110     # ref: https://github.com/wkentaro/fcn#training
00111     download_data(
00112         pkg_name=PKG,
00113         path='trained_data/fcn8s_voc.npz',
00114         url = 'https://drive.google.com/uc?id=0B9P1L--7Wd2vWG5MeUEwWmxudU0',
00115         md5 = '75128c0e175767fc82a7d4f1e21f4009',
00116     )
00117 
00118     # node_scripts/vgg16_object_recognition.py
00119     download_data(
00120         pkg_name=PKG,
00121         path='trained_data/bvlc_vgg16.chainermodel',
00122         url='https://drive.google.com/uc?id=0B9P1L--7Wd2vSlFjQlJFQjM5TEk',
00123         md5='292e6472062392f5de02ef431bba4a48',
00124     )
00125 
00126     # node_scripts/alexnet_object_recognition.py
00127     download_data(
00128         pkg_name=PKG,
00129         path='trained_data/bvlc_alexnet.chainermodel',
00130         url='https://drive.google.com/uc?id=0B5DV6gwLHtyJZkd1ZTRiNUdrUXM',
00131         md5='2175620a2237bbd33e35bf38867d84b2',
00132     )
00133 
00134     # node_scripts/people_pose_estimation_2d.py
00135     if _chainer_available:
00136         download_data(
00137             pkg_name=PKG,
00138             path='trained_data/pose_estimation_2d_chainermodel.pkl',
00139             url='https://drive.google.com/'
00140             'uc?id=1la-B-I1Dh00BRkJuNC3TAXju6p3ccmmb',
00141             md5='c0683094aa42eab1b9424e05112190c5',
00142         )
00143     path = 'trained_data/pose_estimation_2d_hand.chainermodel'
00144     if _chainer_available:
00145         download_data(
00146             pkg_name=PKG,
00147             path=path,
00148             url='https://drive.google.com/'
00149             'uc?id=1cpLVVS63Q2T7EgPMcA5u6iwcMWSvUycM',
00150             md5='d7d2413e5be2f71d1fcf38db6c86fd49',
00151         )
00152 
00153     # node_scripts/human_mesh_recovery.py
00154         download_data(
00155             pkg_name=PKG,
00156             path='trained_data/hmr_smpl.npz',
00157             url='https://drive.google.com/'
00158             'uc?id=10TIlcXBdKreTapQuZEIjWeeWwxG32gM6',
00159             md5='d4a0c097b0ee26b93fa07f83c1c5e259',
00160         )
00161         download_data(
00162             pkg_name=PKG,
00163             path='trained_data/hmr_resnet_v2_50_model.npz',
00164             url='https://drive.google.com/'
00165             'uc?id=1_JGxDnANk1pj23PW3T4JFRfei6Qs2Wwz',
00166             md5='742a129d5b6dd62e71a081973128beb9',
00167         )
00168         download_data(
00169             pkg_name=PKG,
00170             path='trained_data/hmr_encoder_fc3_model.npz',
00171             url='https://drive.google.com/'
00172             'uc?id=19nGjVyIaXMhILS32J4whQgApY_qKYURj',
00173             md5='33d80575b507b66c975f350f2f24ee91',
00174         )
00175 
00176         download_data(
00177             pkg_name=PKG,
00178             path='trained_data/hand_ssd300_chainermodel.npz',
00179             url='https://drive.google.com/'
00180             'uc?id=1rJ_ZYY-AjKqvlJGLF6RJ_I_vuaOp3lXg',
00181             md5='ba1226f8dd816514e610a746278be02e',
00182          )
00183 
00184     # node_scripts/deep_sort_tracker_node.py
00185     path = 'trained_data/deepsort_chainermodel.npz'
00186     if _chainer_available:
00187         download_data(
00188             pkg_name=PKG,
00189             path=path,
00190             url='https://drive.google.com/'
00191             'uc?id=1td1CQzH0RefCJN9iCiYpsHGh5ZiN8E48',
00192             md5='51c69c182b3bb04a728d256e93a3be36',
00193         )
00194 
00195     # node_scripts/feature_based_object_recognition.py
00196     download_data(
00197         pkg_name=PKG,
00198         path='trained_data/resnet_lsvrc2012_mean.npy',
00199         url='https://drive.google.com/uc?id=0B9P1L--7Wd2vTDV3ZzUyTlBFZE0',
00200         md5='00431426c4fab22985885da0e2ff31b8',
00201     )
00202     download_data(
00203         pkg_name=PKG,
00204         path='trained_data/resnet152_from_caffe.npz',
00205         url='https://drive.google.com/uc?id=0B9P1L--7Wd2vQVBodlFsMnpGbkU',
00206         md5='77fe66a229a2444688a21e3b63fa0661',
00207     )
00208 
00209     # node_scripts/fcn_depth_prediction.py
00210     download_data(
00211         pkg_name=PKG,
00212         path='trained_data/fcn8s_depth_prediction_refrigerator.npz',
00213         url='https://drive.google.com/uc?id=15n00783FVwxrG9DRdBQOmi8xu1pz-FYl',
00214         md5='a585e4d41ed67d5052417ade6fb2d608',
00215     )
00216 
00217     # node_scripts/mask_rcnn_instance_segmentation.py
00218     download_data(
00219         pkg_name=PKG,
00220         path='trained_data/mask_rcnn_resnet50_voc_20180516.npz',
00221         url='https://drive.google.com/uc?id=1uv_jK-CAIJUXsRNmccFEISSKW4vXqI46',
00222         md5='47a507934b6bc20f0d9274825b734942',
00223     )
00224     download_data(
00225         pkg_name=PKG,
00226         path='trained_data/mask_rcnn_resnet50_coco_20180730.npz',
00227         url='https://drive.google.com/uc?id=1XC-Mx4HX0YBIy0Fbp59EjJFOF7a3XK0R',
00228         md5='410b2aa065ebe6ca3607c98f3337ae49',
00229     )
00230 
00231     # node_scripts/mask_rcnn_instance_segmentation.py 73B2 kitchen
00232     download_data(
00233         pkg_name=PKG,
00234         path='trained_data/mask_rcnn_resnet50_73B2_kitchen_20190619.npz',
00235         url='https://drive.google.com/uc?id=1ZK-6qGKb87MpXVo4aW8LEyx0OI3uBitt',
00236         md5='ccefb23d17f057b25b16815fd88edb8f',
00237     )
00238     download_data(
00239         pkg_name=PKG,
00240         path='trained_data/'
00241         'mask_rcnn_resnet50_73B2_kitchen_20190619_classnames.yaml',
00242         url='https://drive.google.com/uc?id=1BTnVD0vHcwFIqAKchIuDZ8LZmaNr4qr0',
00243         md5='183631f938aef7786a1bcfd6343946bc',
00244     )
00245 
00246 
00247 if __name__ == '__main__':
00248     main()


jsk_perception
Author(s): Manabu Saito, Ryohei Ueda
autogenerated on Tue Jul 2 2019 19:41:07