triangle.cpp
Go to the documentation of this file.
00001 /*****************************************************************************/
00002 /*                                                                           */
00003 /*      888888888        ,o,                          / 888                  */
00004 /*         888    88o88o  "    o8888o  88o8888o o88888o 888  o88888o         */
00005 /*         888    888    888       88b 888  888 888 888 888 d888  88b        */
00006 /*         888    888    888  o88^o888 888  888 "88888" 888 8888oo888        */
00007 /*         888    888    888 C888  888 888  888  /      888 q888             */
00008 /*         888    888    888  "88o^888 888  888 Cb      888  "88oooo"        */
00009 /*                                              "8oo8D                       */
00010 /*                                                                           */
00011 /*  A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.      */
00012 /*  (triangle.c)                                                             */
00013 /*                                                                           */
00014 /*  Version 1.6                                                              */
00015 /*  July 28, 2005                                                            */
00016 /*                                                                           */
00017 /*  Copyright 1993, 1995, 1997, 1998, 2002, 2005                             */
00018 /*  Jonathan Richard Shewchuk                                                */
00019 /*  2360 Woolsey #H                                                          */
00020 /*  Berkeley, California  94705-1927                                         */
00021 /*  jrs@cs.berkeley.edu                                                      */
00022 /*                                                                           */
00023 /*  Modified by Andreas Geiger, 2011                                         */
00024 /*                                                                           */
00025 /*  This program may be freely redistributed under the condition that the    */
00026 /*    copyright notices (including this entire header and the copyright      */
00027 /*    notice printed when the `-h' switch is selected) are not removed, and  */
00028 /*    no compensation is received.  Private, research, and institutional     */
00029 /*    use is free.  You may distribute modified versions of this code UNDER  */
00030 /*    THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE   */
00031 /*    SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE   */
00032 /*    AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR    */
00033 /*    NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as    */
00034 /*    part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT  */
00035 /*    WITH THE AUTHOR.  (If you are not directly supplying this code to a    */
00036 /*    customer, and you are instead telling them how they can obtain it for  */
00037 /*    free, then you are not required to make any arrangement with me.)      */
00038 /*                                                                           */
00039 /*  Hypertext instructions for Triangle are available on the Web at          */
00040 /*                                                                           */
00041 /*      http://www.cs.cmu.edu/~quake/triangle.html                           */
00042 /*                                                                           */
00043 /*  Disclaimer:  Neither I nor Carnegie Mellon warrant this code in any way  */
00044 /*    whatsoever.  This code is provided "as-is".  Use at your own risk.     */
00045 /*                                                                           */
00046 /*  Some of the references listed below are marked with an asterisk.  [*]    */
00047 /*    These references are available for downloading from the Web page       */
00048 /*                                                                           */
00049 /*      http://www.cs.cmu.edu/~quake/triangle.research.html                  */
00050 /*                                                                           */
00051 /*  Three papers discussing aspects of Triangle are available.  A short      */
00052 /*    overview appears in "Triangle:  Engineering a 2D Quality Mesh          */
00053 /*    Generator and Delaunay Triangulator," in Applied Computational         */
00054 /*    Geometry:  Towards Geometric Engineering, Ming C. Lin and Dinesh       */
00055 /*    Manocha, editors, Lecture Notes in Computer Science volume 1148,       */
00056 /*    pages 203-222, Springer-Verlag, Berlin, May 1996 (from the First ACM   */
00057 /*    Workshop on Applied Computational Geometry).  [*]                      */
00058 /*                                                                           */
00059 /*    The algorithms are discussed in the greatest detail in "Delaunay       */
00060 /*    Refinement Algorithms for Triangular Mesh Generation," Computational   */
00061 /*    Geometry:  Theory and Applications 22(1-3):21-74, May 2002.  [*]       */
00062 /*                                                                           */
00063 /*    More detail about the data structures may be found in my dissertation: */
00064 /*    "Delaunay Refinement Mesh Generation," Ph.D. thesis, Technical Report  */
00065 /*    CMU-CS-97-137, School of Computer Science, Carnegie Mellon University, */
00066 /*    Pittsburgh, Pennsylvania, 18 May 1997.  [*]                            */
00067 /*                                                                           */
00068 /*  Triangle was created as part of the Quake Project in the School of       */
00069 /*    Computer Science at Carnegie Mellon University.  For further           */
00070 /*    information, see Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F.   */
00071 /*    Kallivokas, David R. O'Hallaron, Jonathan R. Shewchuk, and Jifeng Xu,  */
00072 /*    "Large-scale Simulation of Elastic Wave Propagation in Heterogeneous   */
00073 /*    Media on Parallel Computers," Computer Methods in Applied Mechanics    */
00074 /*    and Engineering 152(1-2):85-102, 22 January 1998.                      */
00075 /*                                                                           */
00076 /*  Triangle's Delaunay refinement algorithm for quality mesh generation is  */
00077 /*    a hybrid of one due to Jim Ruppert, "A Delaunay Refinement Algorithm   */
00078 /*    for Quality 2-Dimensional Mesh Generation," Journal of Algorithms      */
00079 /*    18(3):548-585, May 1995 [*], and one due to L. Paul Chew, "Guaranteed- */
00080 /*    Quality Mesh Generation for Curved Surfaces," Proceedings of the Ninth */
00081 /*    Annual Symposium on Computational Geometry (San Diego, California),    */
00082 /*    pages 274-280, Association for Computing Machinery, May 1993,          */
00083 /*    http://portal.acm.org/citation.cfm?id=161150 .                         */
00084 /*                                                                           */
00085 /*  The Delaunay refinement algorithm has been modified so that it meshes    */
00086 /*    domains with small input angles well, as described in Gary L. Miller,  */
00087 /*    Steven E. Pav, and Noel J. Walkington, "When and Why Ruppert's         */
00088 /*    Algorithm Works," Twelfth International Meshing Roundtable, pages      */
00089 /*    91-102, Sandia National Laboratories, September 2003.  [*]             */
00090 /*                                                                           */
00091 /*  My implementation of the divide-and-conquer and incremental Delaunay     */
00092 /*    triangulation algorithms follows closely the presentation of Guibas    */
00093 /*    and Stolfi, even though I use a triangle-based data structure instead  */
00094 /*    of their quad-edge data structure.  (In fact, I originally implemented */
00095 /*    Triangle using the quad-edge data structure, but the switch to a       */
00096 /*    triangle-based data structure sped Triangle by a factor of two.)  The  */
00097 /*    mesh manipulation primitives and the two aforementioned Delaunay       */
00098 /*    triangulation algorithms are described by Leonidas J. Guibas and Jorge */
00099 /*    Stolfi, "Primitives for the Manipulation of General Subdivisions and   */
00100 /*    the Computation of Voronoi Diagrams," ACM Transactions on Graphics     */
00101 /*    4(2):74-123, April 1985, http://portal.acm.org/citation.cfm?id=282923 .*/
00102 /*                                                                           */
00103 /*  Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai   */
00104 /*    Lee and Bruce J. Schachter, "Two Algorithms for Constructing the       */
00105 /*    Delaunay Triangulation," International Journal of Computer and         */
00106 /*    Information Science 9(3):219-242, 1980.  Triangle's improvement of the */
00107 /*    divide-and-conquer algorithm by alternating between vertical and       */
00108 /*    horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and-  */
00109 /*    Conquer Algorithm for Constructing Delaunay Triangulations,"           */
00110 /*    Algorithmica 2(2):137-151, 1987.                                       */
00111 /*                                                                           */
00112 /*  The incremental insertion algorithm was first proposed by C. L. Lawson,  */
00113 /*    "Software for C1 Surface Interpolation," in Mathematical Software III, */
00114 /*    John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977.     */
00115 /*    For point location, I use the algorithm of Ernst P. Mucke, Isaac       */
00116 /*    Saias, and Binhai Zhu, "Fast Randomized Point Location Without         */
00117 /*    Preprocessing in Two- and Three-Dimensional Delaunay Triangulations,"  */
00118 /*    Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
00119 /*    ACM, May 1996.  [*]  If I were to randomize the order of vertex        */
00120 /*    insertion (I currently don't bother), their result combined with the   */
00121 /*    result of Kenneth L. Clarkson and Peter W. Shor, "Applications of      */
00122 /*    Random Sampling in Computational Geometry II," Discrete &              */
00123 /*    Computational Geometry 4(1):387-421, 1989, would yield an expected     */
00124 /*    O(n^{4/3}) bound on running time.                                      */
00125 /*                                                                           */
00126 /*  The O(n log n) sweepline Delaunay triangulation algorithm is taken from  */
00127 /*    Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams",          */
00128 /*    Algorithmica 2(2):153-174, 1987.  A random sample of edges on the      */
00129 /*    boundary of the triangulation are maintained in a splay tree for the   */
00130 /*    purpose of point location.  Splay trees are described by Daniel        */
00131 /*    Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
00132 /*    Trees," Journal of the ACM 32(3):652-686, July 1985,                   */
00133 /*    http://portal.acm.org/citation.cfm?id=3835 .                           */
00134 /*                                                                           */
00135 /*  The algorithms for exact computation of the signs of determinants are    */
00136 /*    described in Jonathan Richard Shewchuk, "Adaptive Precision Floating-  */
00137 /*    Point Arithmetic and Fast Robust Geometric Predicates," Discrete &     */
00138 /*    Computational Geometry 18(3):305-363, October 1997.  (Also available   */
00139 /*    as Technical Report CMU-CS-96-140, School of Computer Science,         */
00140 /*    Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996.)  [*]  */
00141 /*    An abbreviated version appears as Jonathan Richard Shewchuk, "Robust   */
00142 /*    Adaptive Floating-Point Geometric Predicates," Proceedings of the      */
00143 /*    Twelfth Annual Symposium on Computational Geometry, ACM, May 1996. [*] */
00144 /*    Many of the ideas for my exact arithmetic routines originate with      */
00145 /*    Douglas M. Priest, "Algorithms for Arbitrary Precision Floating Point  */
00146 /*    Arithmetic," Tenth Symposium on Computer Arithmetic, pp. 132-143, IEEE */
00147 /*    Computer Society Press, 1991.  [*]  Many of the ideas for the correct  */
00148 /*    evaluation of the signs of determinants are taken from Steven Fortune  */
00149 /*    and Christopher J. Van Wyk, "Efficient Exact Arithmetic for Computa-   */
00150 /*    tional Geometry," Proceedings of the Ninth Annual Symposium on         */
00151 /*    Computational Geometry, ACM, pp. 163-172, May 1993, and from Steven    */
00152 /*    Fortune, "Numerical Stability of Algorithms for 2D Delaunay Triangu-   */
00153 /*    lations," International Journal of Computational Geometry & Applica-   */
00154 /*    tions 5(1-2):193-213, March-June 1995.                                 */
00155 /*                                                                           */
00156 /*  The method of inserting new vertices off-center (not precisely at the    */
00157 /*    circumcenter of every poor-quality triangle) is from Alper Ungor,      */
00158 /*    "Off-centers:  A New Type of Steiner Points for Computing Size-Optimal */
00159 /*    Quality-Guaranteed Delaunay Triangulations," Proceedings of LATIN      */
00160 /*    2004 (Buenos Aires, Argentina), April 2004.                            */
00161 /*                                                                           */
00162 /*  For definitions of and results involving Delaunay triangulations,        */
00163 /*    constrained and conforming versions thereof, and other aspects of      */
00164 /*    triangular mesh generation, see the excellent survey by Marshall Bern  */
00165 /*    and David Eppstein, "Mesh Generation and Optimal Triangulation," in    */
00166 /*    Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang,         */
00167 /*    editors, World Scientific, Singapore, pp. 23-90, 1992.  [*]            */
00168 /*                                                                           */
00169 /*  The time for incrementally adding PSLG (planar straight line graph)      */
00170 /*    segments to create a constrained Delaunay triangulation is probably    */
00171 /*    O(t^2) per segment in the worst case and O(t) per segment in the       */
00172 /*    common case, where t is the number of triangles that intersect the     */
00173 /*    segment before it is inserted.  This doesn't count point location,     */
00174 /*    which can be much more expensive.  I could improve this to O(d log d)  */
00175 /*    time, but d is usually quite small, so it's not worth the bother.      */
00176 /*    (This note does not apply when the -s switch is used, invoking a       */
00177 /*    different method is used to insert segments.)                          */
00178 /*                                                                           */
00179 /*  The time for deleting a vertex from a Delaunay triangulation is O(d^2)   */
00180 /*    in the worst case and O(d) in the common case, where d is the degree   */
00181 /*    of the vertex being deleted.  I could improve this to O(d log d) time, */
00182 /*    but d is usually quite small, so it's not worth the bother.            */
00183 /*                                                                           */
00184 /*  Ruppert's Delaunay refinement algorithm typically generates triangles    */
00185 /*    at a linear rate (constant time per triangle) after the initial        */
00186 /*    triangulation is formed.  There may be pathological cases where        */
00187 /*    quadratic time is required, but these never arise in practice.         */
00188 /*                                                                           */
00189 /*  The geometric predicates (circumcenter calculations, segment             */
00190 /*    intersection formulae, etc.) appear in my "Lecture Notes on Geometric  */
00191 /*    Robustness" at http://www.cs.berkeley.edu/~jrs/mesh .                  */
00192 /*                                                                           */
00193 /*  If you make any improvements to this code, please please please let me   */
00194 /*    know, so that I may obtain the improvements.  Even if you don't change */
00195 /*    the code, I'd still love to hear what it's being used for.             */
00196 /*                                                                           */
00197 /*****************************************************************************/
00198 
00199 /* Maximum number of characters in a file name (including the null).         */
00200 
00201 #define FILENAMESIZE 2048
00202 
00203 /* Maximum number of characters in a line read from a file (including the    */
00204 /*   null).                                                                  */
00205 
00206 #define INPUTLINESIZE 1024
00207 
00208 /* For efficiency, a variety of data structures are allocated in bulk.  The  */
00209 /*   following constants determine how many of each structure is allocated   */
00210 /*   at once.                                                                */
00211 
00212 #define TRIPERBLOCK 4092           /* Number of triangles allocated at once. */
00213 #define SUBSEGPERBLOCK 508       /* Number of subsegments allocated at once. */
00214 #define VERTEXPERBLOCK 4092         /* Number of vertices allocated at once. */
00215 #define VIRUSPERBLOCK 1020   /* Number of virus triangles allocated at once. */
00216 #define BADSUBSEGPERBLOCK 252 /* Number of encroached subsegments allocated at once. */
00217 #define BADTRIPERBLOCK 4092 /* Number of skinny triangles allocated at once. */
00218 #define FLIPSTACKERPERBLOCK 252 /* Number of flipped triangles allocated at once. */
00219 #define SPLAYNODEPERBLOCK 508 /* Number of splay tree nodes allocated at once. */
00220 
00221 /* The vertex types.   A DEADVERTEX has been deleted entirely.  An           */
00222 /*   UNDEADVERTEX is not part of the mesh, but is written to the output      */
00223 /*   .node file and affects the node indexing in the other output files.     */
00224 
00225 #define INPUTVERTEX 0
00226 #define SEGMENTVERTEX 1
00227 #define FREEVERTEX 2
00228 #define DEADVERTEX -32768
00229 #define UNDEADVERTEX -32767
00230 
00231 /* Two constants for algorithms based on random sampling.  Both constants    */
00232 /*   have been chosen empirically to optimize their respective algorithms.   */
00233 
00234 /* Used for the point location scheme of Mucke, Saias, and Zhu, to decide    */
00235 /*   how large a random sample of triangles to inspect.                      */
00236 
00237 #define SAMPLEFACTOR 11
00238 
00239 /* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
00240 /*   of boundary edges should be maintained in the splay tree for point      */
00241 /*   location on the front.                                                  */
00242 
00243 #define SAMPLERATE 10
00244 
00245 /* A number that speaks for itself, every kissable digit.                    */
00246 
00247 #define PI 3.141592653589793238462643383279502884197169399375105820974944592308
00248 
00249 /* Another fave.                                                             */
00250 
00251 #define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732
00252 
00253 /* And here's one for those of you who are intimidated by math.              */
00254 
00255 #define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333
00256 
00257 #include <stdio.h>
00258 #include <stdlib.h>
00259 #include <string.h>
00260 #include <math.h>
00261 
00262 #include "triangle.h"
00263 
00264 /* Labels that signify the result of point location.  The result of a        */
00265 /*   search indicates that the point falls in the interior of a triangle, on */
00266 /*   an edge, on a vertex, or outside the mesh.                              */
00267 
00268 enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};
00269 
00270 /* Labels that signify the result of vertex insertion.  The result indicates */
00271 /*   that the vertex was inserted with complete success, was inserted but    */
00272 /*   encroaches upon a subsegment, was not inserted because it lies on a     */
00273 /*   segment, or was not inserted because another vertex occupies the same   */
00274 /*   location.                                                               */
00275 
00276 enum insertvertexresult {SUCCESSFULVERTEX, ENCROACHINGVERTEX, VIOLATINGVERTEX,
00277                          DUPLICATEVERTEX};
00278 
00279 /* Labels that signify the result of direction finding.  The result          */
00280 /*   indicates that a segment connecting the two query points falls within   */
00281 /*   the direction triangle, along the left edge of the direction triangle,  */
00282 /*   or along the right edge of the direction triangle.                      */
00283 
00284 enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};
00285 
00286 /*****************************************************************************/
00287 /*                                                                           */
00288 /*  The basic mesh data structures                                           */
00289 /*                                                                           */
00290 /*  There are three:  vertices, triangles, and subsegments (abbreviated      */
00291 /*  `subseg').  These three data structures, linked by pointers, comprise    */
00292 /*  the mesh.  A vertex simply represents a mesh vertex and its properties.  */
00293 /*  A triangle is a triangle.  A subsegment is a special data structure used */
00294 /*  to represent an impenetrable edge of the mesh (perhaps on the outer      */
00295 /*  boundary, on the boundary of a hole, or part of an internal boundary     */
00296 /*  separating two triangulated regions).  Subsegments represent boundaries, */
00297 /*  defined by the user, that triangles may not lie across.                  */
00298 /*                                                                           */
00299 /*  A triangle consists of a list of three vertices, a list of three         */
00300 /*  adjoining triangles, a list of three adjoining subsegments (when         */
00301 /*  segments exist), an arbitrary number of optional user-defined            */
00302 /*  floating-point attributes, and an optional area constraint.  The latter  */
00303 /*  is an upper bound on the permissible area of each triangle in a region,  */
00304 /*  used for mesh refinement.                                                */
00305 /*                                                                           */
00306 /*  For a triangle on a boundary of the mesh, some or all of the neighboring */
00307 /*  triangles may not be present.  For a triangle in the interior of the     */
00308 /*  mesh, often no neighboring subsegments are present.  Such absent         */
00309 /*  triangles and subsegments are never represented by NULL pointers; they   */
00310 /*  are represented by two special records:  `dummytri', the triangle that   */
00311 /*  fills "outer space", and `dummysub', the omnipresent subsegment.         */
00312 /*  `dummytri' and `dummysub' are used for several reasons; for instance,    */
00313 /*  they can be dereferenced and their contents examined without violating   */
00314 /*  protected memory.                                                        */
00315 /*                                                                           */
00316 /*  However, it is important to understand that a triangle includes other    */
00317 /*  information as well.  The pointers to adjoining vertices, triangles, and */
00318 /*  subsegments are ordered in a way that indicates their geometric relation */
00319 /*  to each other.  Furthermore, each of these pointers contains orientation */
00320 /*  information.  Each pointer to an adjoining triangle indicates which face */
00321 /*  of that triangle is contacted.  Similarly, each pointer to an adjoining  */
00322 /*  subsegment indicates which side of that subsegment is contacted, and how */
00323 /*  the subsegment is oriented relative to the triangle.                     */
00324 /*                                                                           */
00325 /*  The data structure representing a subsegment may be thought to be        */
00326 /*  abutting the edge of one or two triangle data structures:  either        */
00327 /*  sandwiched between two triangles, or resting against one triangle on an  */
00328 /*  exterior boundary or hole boundary.                                      */
00329 /*                                                                           */
00330 /*  A subsegment consists of a list of four vertices--the vertices of the    */
00331 /*  subsegment, and the vertices of the segment it is a part of--a list of   */
00332 /*  two adjoining subsegments, and a list of two adjoining triangles.  One   */
00333 /*  of the two adjoining triangles may not be present (though there should   */
00334 /*  always be one), and neighboring subsegments might not be present.        */
00335 /*  Subsegments also store a user-defined integer "boundary marker".         */
00336 /*  Typically, this integer is used to indicate what boundary conditions are */
00337 /*  to be applied at that location in a finite element simulation.           */
00338 /*                                                                           */
00339 /*  Like triangles, subsegments maintain information about the relative      */
00340 /*  orientation of neighboring objects.                                      */
00341 /*                                                                           */
00342 /*  Vertices are relatively simple.  A vertex is a list of floating-point    */
00343 /*  numbers, starting with the x, and y coordinates, followed by an          */
00344 /*  arbitrary number of optional user-defined floating-point attributes,     */
00345 /*  followed by an integer boundary marker.  During the segment insertion    */
00346 /*  phase, there is also a pointer from each vertex to a triangle that may   */
00347 /*  contain it.  Each pointer is not always correct, but when one is, it     */
00348 /*  speeds up segment insertion.  These pointers are assigned values once    */
00349 /*  at the beginning of the segment insertion phase, and are not used or     */
00350 /*  updated except during this phase.  Edge flipping during segment          */
00351 /*  insertion will render some of them incorrect.  Hence, don't rely upon    */
00352 /*  them for anything.                                                       */
00353 /*                                                                           */
00354 /*  Other than the exception mentioned above, vertices have no information   */
00355 /*  about what triangles, subfacets, or subsegments they are linked to.      */
00356 /*                                                                           */
00357 /*****************************************************************************/
00358 
00359 /*****************************************************************************/
00360 /*                                                                           */
00361 /*  Handles                                                                  */
00362 /*                                                                           */
00363 /*  The oriented triangle (`otri') and oriented subsegment (`osub') data     */
00364 /*  structures defined below do not themselves store any part of the mesh.   */
00365 /*  The mesh itself is made of `triangle's, `subseg's, and `vertex's.        */
00366 /*                                                                           */
00367 /*  Oriented triangles and oriented subsegments will usually be referred to  */
00368 /*  as "handles."  A handle is essentially a pointer into the mesh; it       */
00369 /*  allows you to "hold" one particular part of the mesh.  Handles are used  */
00370 /*  to specify the regions in which one is traversing and modifying the mesh.*/
00371 /*  A single `triangle' may be held by many handles, or none at all.  (The   */
00372 /*  latter case is not a memory leak, because the triangle is still          */
00373 /*  connected to other triangles in the mesh.)                               */
00374 /*                                                                           */
00375 /*  An `otri' is a handle that holds a triangle.  It holds a specific edge   */
00376 /*  of the triangle.  An `osub' is a handle that holds a subsegment.  It     */
00377 /*  holds either the left or right side of the subsegment.                   */
00378 /*                                                                           */
00379 /*  Navigation about the mesh is accomplished through a set of mesh          */
00380 /*  manipulation primitives, further below.  Many of these primitives take   */
00381 /*  a handle and produce a new handle that holds the mesh near the first     */
00382 /*  handle.  Other primitives take two handles and glue the corresponding    */
00383 /*  parts of the mesh together.  The orientation of the handles is           */
00384 /*  important.  For instance, when two triangles are glued together by the   */
00385 /*  bond() primitive, they are glued at the edges on which the handles lie.  */
00386 /*                                                                           */
00387 /*  Because vertices have no information about which triangles they are      */
00388 /*  attached to, I commonly represent a vertex by use of a handle whose      */
00389 /*  origin is the vertex.  A single handle can simultaneously represent a    */
00390 /*  triangle, an edge, and a vertex.                                         */
00391 /*                                                                           */
00392 /*****************************************************************************/
00393 
00394 /* The triangle data structure.  Each triangle contains three pointers to    */
00395 /*   adjoining triangles, plus three pointers to vertices, plus three        */
00396 /*   pointers to subsegments (declared below; these pointers are usually     */
00397 /*   `dummysub').  It may or may not also contain user-defined attributes    */
00398 /*   and/or a floating-point "area constraint."  It may also contain extra   */
00399 /*   pointers for nodes, when the user asks for high-order elements.         */
00400 /*   Because the size and structure of a `triangle' is not decided until     */
00401 /*   runtime, I haven't simply declared the type `triangle' as a struct.     */
00402 
00403 typedef float **triangle;            /* Really:  typedef triangle *triangle   */
00404 
00405 /* An oriented triangle:  includes a pointer to a triangle and orientation.  */
00406 /*   The orientation denotes an edge of the triangle.  Hence, there are      */
00407 /*   three possible orientations.  By convention, each edge always points    */
00408 /*   counterclockwise about the corresponding triangle.                      */
00409 
00410 struct otri {
00411   triangle *tri;
00412   int orient;                                         /* Ranges from 0 to 2. */
00413 };
00414 
00415 /* The subsegment data structure.  Each subsegment contains two pointers to  */
00416 /*   adjoining subsegments, plus four pointers to vertices, plus two         */
00417 /*   pointers to adjoining triangles, plus one boundary marker, plus one     */
00418 /*   segment number.                                                         */
00419 
00420 typedef float **subseg;                  /* Really:  typedef subseg *subseg   */
00421 
00422 /* An oriented subsegment:  includes a pointer to a subsegment and an        */
00423 /*   orientation.  The orientation denotes a side of the edge.  Hence, there */
00424 /*   are two possible orientations.  By convention, the edge is always       */
00425 /*   directed so that the "side" denoted is the right side of the edge.      */
00426 
00427 struct osub {
00428   subseg *ss;
00429   int ssorient;                                       /* Ranges from 0 to 1. */
00430 };
00431 
00432 /* The vertex data structure.  Each vertex is actually an array of floats.    */
00433 /*   The number of floats is unknown until runtime.  An integer boundary      */
00434 /*   marker, and sometimes a pointer to a triangle, is appended after the    */
00435 /*   floats.                                                                  */
00436 
00437 typedef float *vertex;
00438 
00439 /* A queue used to store encroached subsegments.  Each subsegment's vertices */
00440 /*   are stored so that we can check whether a subsegment is still the same. */
00441 
00442 struct badsubseg {
00443   subseg encsubseg;                             /* An encroached subsegment. */
00444   vertex subsegorg, subsegdest;                         /* Its two vertices. */
00445 };
00446 
00447 /* A queue used to store bad triangles.  The key is the square of the cosine */
00448 /*   of the smallest angle of the triangle.  Each triangle's vertices are    */
00449 /*   stored so that one can check whether a triangle is still the same.      */
00450 
00451 struct badtriang {
00452   triangle poortri;                       /* A skinny or too-large triangle. */
00453   float key;                             /* cos^2 of smallest (apical) angle. */
00454   vertex triangorg, triangdest, triangapex;           /* Its three vertices. */
00455   struct badtriang *nexttriang;             /* Pointer to next bad triangle. */
00456 };
00457 
00458 /* A stack of triangles flipped during the most recent vertex insertion.     */
00459 /*   The stack is used to undo the vertex insertion if the vertex encroaches */
00460 /*   upon a subsegment.                                                      */
00461 
00462 struct flipstacker {
00463   triangle flippedtri;                       /* A recently flipped triangle. */
00464   struct flipstacker *prevflip;               /* Previous flip in the stack. */
00465 };
00466 
00467 /* A node in a heap used to store events for the sweepline Delaunay          */
00468 /*   algorithm.  Nodes do not point directly to their parents or children in */
00469 /*   the heap.  Instead, each node knows its position in the heap, and can   */
00470 /*   look up its parent and children in a separate array.  The `eventptr'    */
00471 /*   points either to a `vertex' or to a triangle (in encoded format, so     */
00472 /*   that an orientation is included).  In the latter case, the origin of    */
00473 /*   the oriented triangle is the apex of a "circle event" of the sweepline  */
00474 /*   algorithm.  To distinguish site events from circle events, all circle   */
00475 /*   events are given an invalid (smaller than `xmin') x-coordinate `xkey'.  */
00476 
00477 struct event {
00478   float xkey, ykey;                              /* Coordinates of the event. */
00479   int *eventptr;      /* Can be a vertex or the location of a circle event. */
00480   int heapposition;              /* Marks this event's position in the heap. */
00481 };
00482 
00483 /* A node in the splay tree.  Each node holds an oriented ghost triangle     */
00484 /*   that represents a boundary edge of the growing triangulation.  When a   */
00485 /*   circle event covers two boundary edges with a triangle, so that they    */
00486 /*   are no longer boundary edges, those edges are not immediately deleted   */
00487 /*   from the tree; rather, they are lazily deleted when they are next       */
00488 /*   encountered.  (Since only a random sample of boundary edges are kept    */
00489 /*   in the tree, lazy deletion is faster.)  `keydest' is used to verify     */
00490 /*   that a triangle is still the same as when it entered the splay tree; if */
00491 /*   it has been rotated (due to a circle event), it no longer represents a  */
00492 /*   boundary edge and should be deleted.                                    */
00493 
00494 struct splaynode {
00495   struct otri keyedge;                     /* Lprev of an edge on the front. */
00496   vertex keydest;           /* Used to verify that splay node is still live. */
00497   struct splaynode *lchild, *rchild;              /* Children in splay tree. */
00498 };
00499 
00500 /* A type used to allocate memory.  firstblock is the first block of items.  */
00501 /*   nowblock is the block from which items are currently being allocated.   */
00502 /*   nextitem points to the next slab of free memory for an item.            */
00503 /*   deaditemstack is the head of a linked list (stack) of deallocated items */
00504 /*   that can be recycled.  unallocateditems is the number of items that     */
00505 /*   remain to be allocated from nowblock.                                   */
00506 /*                                                                           */
00507 /* Traversal is the process of walking through the entire list of items, and */
00508 /*   is separate from allocation.  Note that a traversal will visit items on */
00509 /*   the "deaditemstack" stack as well as live items.  pathblock points to   */
00510 /*   the block currently being traversed.  pathitem points to the next item  */
00511 /*   to be traversed.  pathitemsleft is the number of items that remain to   */
00512 /*   be traversed in pathblock.                                              */
00513 /*                                                                           */
00514 /* alignbytes determines how new records should be aligned in memory.        */
00515 /*   itembytes is the length of a record in bytes (after rounding up).       */
00516 /*   itemsperblock is the number of items allocated at once in a single      */
00517 /*   block.  itemsfirstblock is the number of items in the first block,      */
00518 /*   which can vary from the others.  items is the number of currently       */
00519 /*   allocated items.  maxitems is the maximum number of items that have     */
00520 /*   been allocated at once; it is the current number of items plus the      */
00521 /*   number of records kept on deaditemstack.                                */
00522 
00523 struct memorypool {
00524   int **firstblock, **nowblock;
00525   int *nextitem;
00526   int *deaditemstack;
00527   int **pathblock;
00528   int *pathitem;
00529   int alignbytes;
00530   int itembytes;
00531   int itemsperblock;
00532   int itemsfirstblock;
00533   long items, maxitems;
00534   int unallocateditems;
00535   int pathitemsleft;
00536 };
00537 
00538 
00539 /* Global constants.                                                         */
00540 
00541 float splitter;       /* Used to split float factors for exact multiplication. */
00542 float epsilon;                             /* Floating-point machine epsilon. */
00543 float resulterrbound;
00544 float ccwerrboundA, ccwerrboundB, ccwerrboundC;
00545 float iccerrboundA, iccerrboundB, iccerrboundC;
00546 float o3derrboundA, o3derrboundB, o3derrboundC;
00547 
00548 /* Random number seed is not constant, but I've made it global anyway.       */
00549 
00550 unsigned long long randomseed;                     /* Current random number seed. */
00551 
00552 
00553 /* Mesh data structure.  Triangle operates on only one mesh, but the mesh    */
00554 /*   structure is used (instead of global variables) to allow reentrancy.    */
00555 
00556 struct mesh {
00557 
00558 /* Variables used to allocate memory for triangles, subsegments, vertices,   */
00559 /*   viri (triangles being eaten), encroached segments, bad (skinny or too   */
00560 /*   large) triangles, and splay tree nodes.                                 */
00561 
00562   struct memorypool triangles;
00563   struct memorypool subsegs;
00564   struct memorypool vertices;
00565   struct memorypool viri;
00566   struct memorypool badsubsegs;
00567   struct memorypool badtriangles;
00568   struct memorypool flipstackers;
00569   struct memorypool splaynodes;
00570 
00571 /* Variables that maintain the bad triangle queues.  The queues are          */
00572 /*   ordered from 4095 (highest priority) to 0 (lowest priority).            */
00573 
00574   struct badtriang *queuefront[4096];
00575   struct badtriang *queuetail[4096];
00576   int nextnonemptyq[4096];
00577   int firstnonemptyq;
00578 
00579 /* Variable that maintains the stack of recently flipped triangles.          */
00580 
00581   struct flipstacker *lastflip;
00582 
00583 /* Other variables. */
00584 
00585   float xmin, xmax, ymin, ymax;                            /* x and y bounds. */
00586   float xminextreme;      /* Nonexistent x value used as a flag in sweepline. */
00587   int invertices;                               /* Number of input vertices. */
00588   int inelements;                              /* Number of input triangles. */
00589   int insegments;                               /* Number of input segments. */
00590   int holes;                                       /* Number of input holes. */
00591   int regions;                                   /* Number of input regions. */
00592   int undeads;    /* Number of input vertices that don't appear in the mesh. */
00593   long edges;                                     /* Number of output edges. */
00594   int mesh_dim;                                /* Dimension (ought to be 2). */
00595   int nextras;                           /* Number of attributes per vertex. */
00596   int eextras;                         /* Number of attributes per triangle. */
00597   long hullsize;                          /* Number of edges in convex hull. */
00598   int steinerleft;                 /* Number of Steiner points not yet used. */
00599   int vertexmarkindex;         /* Index to find boundary marker of a vertex. */
00600   int vertex2triindex;     /* Index to find a triangle adjacent to a vertex. */
00601   int highorderindex;  /* Index to find extra nodes for high-order elements. */
00602   int elemattribindex;            /* Index to find attributes of a triangle. */
00603   int areaboundindex;             /* Index to find area bound of a triangle. */
00604   int checksegments;         /* Are there segments in the triangulation yet? */
00605   int checkquality;                  /* Has quality triangulation begun yet? */
00606   int readnodefile;                           /* Has a .node file been read? */
00607   long samples;              /* Number of random samples for point location. */
00608 
00609   long incirclecount;                 /* Number of incircle tests performed. */
00610   long counterclockcount;     /* Number of counterclockwise tests performed. */
00611   long orient3dcount;           /* Number of 3D orientation tests performed. */
00612   long hyperbolacount;      /* Number of right-of-hyperbola tests performed. */
00613   long circumcentercount;  /* Number of circumcenter calculations performed. */
00614   long circletopcount;       /* Number of circle top calculations performed. */
00615 
00616 /* Triangular bounding box vertices.                                         */
00617 
00618   vertex infvertex1, infvertex2, infvertex3;
00619 
00620 /* Pointer to the `triangle' that occupies all of "outer space."             */
00621 
00622   triangle *dummytri;
00623   triangle *dummytribase;    /* Keep base address so we can free() it later. */
00624 
00625 /* Pointer to the omnipresent subsegment.  Referenced by any triangle or     */
00626 /*   subsegment that isn't really connected to a subsegment at that          */
00627 /*   location.                                                               */
00628 
00629   subseg *dummysub;
00630   subseg *dummysubbase;      /* Keep base address so we can free() it later. */
00631 
00632 /* Pointer to a recently visited triangle.  Improves point location if       */
00633 /*   proximate vertices are inserted sequentially.                           */
00634 
00635   struct otri recenttri;
00636 
00637 };                                                  /* End of `struct mesh'. */
00638 
00639 
00640 /* Data structure for command line switches and file names.  This structure  */
00641 /*   is used (instead of global variables) to allow reentrancy.              */
00642 
00643 struct behavior {
00644 
00645 /* Switches for the triangulator.                                            */
00646 /*   poly: -p switch.  refine: -r switch.                                    */
00647 /*   quality: -q switch.                                                     */
00648 /*     minangle: minimum angle bound, specified after -q switch.             */
00649 /*     goodangle: cosine squared of minangle.                                */
00650 /*     offconstant: constant used to place off-center Steiner points.        */
00651 /*   vararea: -a switch without number.                                      */
00652 /*   fixedarea: -a switch with number.                                       */
00653 /*     maxarea: maximum area bound, specified after -a switch.               */
00654 /*   usertest: -u switch.                                                    */
00655 /*   regionattrib: -A switch.  convex: -c switch.                            */
00656 /*   weighted: 1 for -w switch, 2 for -W switch.  jettison: -j switch        */
00657 /*   firstnumber: inverse of -z switch.  All items are numbered starting     */
00658 /*     from `firstnumber'.                                                   */
00659 /*   edgesout: -e switch.  voronoi: -v switch.                               */
00660 /*   neighbors: -n switch.  geomview: -g switch.                             */
00661 /*   nobound: -B switch.  nopolywritten: -P switch.                          */
00662 /*   nonodewritten: -N switch.  noelewritten: -E switch.                     */
00663 /*   noiterationnum: -I switch.  noholes: -O switch.                         */
00664 /*   noexact: -X switch.                                                     */
00665 /*   order: element order, specified after -o switch.                        */
00666 /*   nobisect: count of how often -Y switch is selected.                     */
00667 /*   steiner: maximum number of Steiner points, specified after -S switch.   */
00668 /*   incremental: -i switch.  sweepline: -F switch.                          */
00669 /*   dwyer: inverse of -l switch.                                            */
00670 /*   splitseg: -s switch.                                                    */
00671 /*   conformdel: -D switch.  docheck: -C switch.                             */
00672 /*   quiet: -Q switch.  verbose: count of how often -V switch is selected.   */
00673 /*   usesegments: -p, -r, -q, or -c switch; determines whether segments are  */
00674 /*     used at all.                                                          */
00675 /*                                                                           */
00676 /* Read the instructions to find out the meaning of these switches.          */
00677 
00678   int poly, refine, quality, vararea, fixedarea, usertest;
00679   int regionattrib, convex, weighted, jettison;
00680   int firstnumber;
00681   int edgesout, voronoi, neighbors, geomview;
00682   int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
00683   int noholes, noexact, conformdel;
00684   int incremental, sweepline, dwyer;
00685   int splitseg;
00686   int docheck;
00687   int quiet, verbose;
00688   int usesegments;
00689   int order;
00690   int nobisect;
00691   int steiner;
00692   float minangle, goodangle, offconstant;
00693   float maxarea;
00694 
00695 /* Variables for file names.                                                 */
00696 
00697 };                                              /* End of `struct behavior'. */
00698 
00699 
00700 /*****************************************************************************/
00701 /*                                                                           */
00702 /*  Mesh manipulation primitives.  Each triangle contains three pointers to  */
00703 /*  other triangles, with orientations.  Each pointer points not to the      */
00704 /*  first byte of a triangle, but to one of the first three bytes of a       */
00705 /*  triangle.  It is necessary to extract both the triangle itself and the   */
00706 /*  orientation.  To save memory, I keep both pieces of information in one   */
00707 /*  pointer.  To make this possible, I assume that all triangles are aligned */
00708 /*  to four-byte boundaries.  The decode() routine below decodes a pointer,  */
00709 /*  extracting an orientation (in the range 0 to 2) and a pointer to the     */
00710 /*  beginning of a triangle.  The encode() routine compresses a pointer to a */
00711 /*  triangle and an orientation into a single pointer.  My assumptions that  */
00712 /*  triangles are four-byte-aligned and that the `unsigned long' type is     */
00713 /*  long enough to hold a pointer are two of the few kludges in this program.*/
00714 /*                                                                           */
00715 /*  Subsegments are manipulated similarly.  A pointer to a subsegment        */
00716 /*  carries both an address and an orientation in the range 0 to 1.          */
00717 /*                                                                           */
00718 /*  The other primitives take an oriented triangle or oriented subsegment,   */
00719 /*  and return an oriented triangle or oriented subsegment or vertex; or     */
00720 /*  they change the connections in the data structure.                       */
00721 /*                                                                           */
00722 /*  Below, triangles and subsegments are denoted by their vertices.  The     */
00723 /*  triangle abc has origin (org) a, destination (dest) b, and apex (apex)   */
00724 /*  c.  These vertices occur in counterclockwise order about the triangle.   */
00725 /*  The handle abc may simultaneously denote vertex a, edge ab, and triangle */
00726 /*  abc.                                                                     */
00727 /*                                                                           */
00728 /*  Similarly, the subsegment ab has origin (sorg) a and destination (sdest) */
00729 /*  b.  If ab is thought to be directed upward (with b directly above a),    */
00730 /*  then the handle ab is thought to grasp the right side of ab, and may     */
00731 /*  simultaneously denote vertex a and edge ab.                              */
00732 /*                                                                           */
00733 /*  An asterisk (*) denotes a vertex whose identity is unknown.              */
00734 /*                                                                           */
00735 /*  Given this notation, a partial list of mesh manipulation primitives      */
00736 /*  follows.                                                                 */
00737 /*                                                                           */
00738 /*                                                                           */
00739 /*  For triangles:                                                           */
00740 /*                                                                           */
00741 /*  sym:  Find the abutting triangle; same edge.                             */
00742 /*  sym(abc) -> ba*                                                          */
00743 /*                                                                           */
00744 /*  lnext:  Find the next edge (counterclockwise) of a triangle.             */
00745 /*  lnext(abc) -> bca                                                        */
00746 /*                                                                           */
00747 /*  lprev:  Find the previous edge (clockwise) of a triangle.                */
00748 /*  lprev(abc) -> cab                                                        */
00749 /*                                                                           */
00750 /*  onext:  Find the next edge counterclockwise with the same origin.        */
00751 /*  onext(abc) -> ac*                                                        */
00752 /*                                                                           */
00753 /*  oprev:  Find the next edge clockwise with the same origin.               */
00754 /*  oprev(abc) -> a*b                                                        */
00755 /*                                                                           */
00756 /*  dnext:  Find the next edge counterclockwise with the same destination.   */
00757 /*  dnext(abc) -> *ba                                                        */
00758 /*                                                                           */
00759 /*  dprev:  Find the next edge clockwise with the same destination.          */
00760 /*  dprev(abc) -> cb*                                                        */
00761 /*                                                                           */
00762 /*  rnext:  Find the next edge (counterclockwise) of the adjacent triangle.  */
00763 /*  rnext(abc) -> *a*                                                        */
00764 /*                                                                           */
00765 /*  rprev:  Find the previous edge (clockwise) of the adjacent triangle.     */
00766 /*  rprev(abc) -> b**                                                        */
00767 /*                                                                           */
00768 /*  org:  Origin          dest:  Destination          apex:  Apex            */
00769 /*  org(abc) -> a         dest(abc) -> b              apex(abc) -> c         */
00770 /*                                                                           */
00771 /*  bond:  Bond two triangles together at the resepective handles.           */
00772 /*  bond(abc, bad)                                                           */
00773 /*                                                                           */
00774 /*                                                                           */
00775 /*  For subsegments:                                                         */
00776 /*                                                                           */
00777 /*  ssym:  Reverse the orientation of a subsegment.                          */
00778 /*  ssym(ab) -> ba                                                           */
00779 /*                                                                           */
00780 /*  spivot:  Find adjoining subsegment with the same origin.                 */
00781 /*  spivot(ab) -> a*                                                         */
00782 /*                                                                           */
00783 /*  snext:  Find next subsegment in sequence.                                */
00784 /*  snext(ab) -> b*                                                          */
00785 /*                                                                           */
00786 /*  sorg:  Origin                      sdest:  Destination                   */
00787 /*  sorg(ab) -> a                      sdest(ab) -> b                        */
00788 /*                                                                           */
00789 /*  sbond:  Bond two subsegments together at the respective origins.         */
00790 /*  sbond(ab, ac)                                                            */
00791 /*                                                                           */
00792 /*                                                                           */
00793 /*  For interacting tetrahedra and subfacets:                                */
00794 /*                                                                           */
00795 /*  tspivot:  Find a subsegment abutting a triangle.                         */
00796 /*  tspivot(abc) -> ba                                                       */
00797 /*                                                                           */
00798 /*  stpivot:  Find a triangle abutting a subsegment.                         */
00799 /*  stpivot(ab) -> ba*                                                       */
00800 /*                                                                           */
00801 /*  tsbond:  Bond a triangle to a subsegment.                                */
00802 /*  tsbond(abc, ba)                                                          */
00803 /*                                                                           */
00804 /*****************************************************************************/
00805 
00806 /********* Mesh manipulation primitives begin here                   *********/
00810 /* Fast lookup arrays to speed some of the mesh manipulation primitives.     */
00811 
00812 int plus1mod3[3] = {1, 2, 0};
00813 int minus1mod3[3] = {2, 0, 1};
00814 
00815 /********* Primitives for triangles                                  *********/
00816 /*                                                                           */
00817 /*                                                                           */
00818 
00819 /* decode() converts a pointer to an oriented triangle.  The orientation is  */
00820 /*   extracted from the two least significant bits of the pointer.           */
00821 
00822 #define decode(ptr, otri)                                                     \
00823   (otri).orient = (int) ((unsigned long long) (ptr) & (unsigned long long) 3l);         \
00824   (otri).tri = (triangle *)                                                   \
00825                   ((unsigned long long) (ptr) ^ (unsigned long long) (otri).orient)
00826 
00827 /* encode() compresses an oriented triangle into a single pointer.  It       */
00828 /*   relies on the assumption that all triangles are aligned to four-byte    */
00829 /*   boundaries, so the two least significant bits of (otri).tri are zero.   */
00830 
00831 #define encode(otri)                                                          \
00832   (triangle) ((unsigned long long) (otri).tri | (unsigned long long) (otri).orient)
00833 
00834 /* The following handle manipulation primitives are all described by Guibas  */
00835 /*   and Stolfi.  However, Guibas and Stolfi use an edge-based data          */
00836 /*   structure, whereas I use a triangle-based data structure.               */
00837 
00838 /* sym() finds the abutting triangle, on the same edge.  Note that the edge  */
00839 /*   direction is necessarily reversed, because the handle specified by an   */
00840 /*   oriented triangle is directed counterclockwise around the triangle.     */
00841 
00842 #define sym(otri1, otri2)                                                     \
00843   ptr = (otri1).tri[(otri1).orient];                                          \
00844   decode(ptr, otri2);
00845 
00846 #define symself(otri)                                                         \
00847   ptr = (otri).tri[(otri).orient];                                            \
00848   decode(ptr, otri);
00849 
00850 /* lnext() finds the next edge (counterclockwise) of a triangle.             */
00851 
00852 #define lnext(otri1, otri2)                                                   \
00853   (otri2).tri = (otri1).tri;                                                  \
00854   (otri2).orient = plus1mod3[(otri1).orient]
00855 
00856 #define lnextself(otri)                                                       \
00857   (otri).orient = plus1mod3[(otri).orient]
00858 
00859 /* lprev() finds the previous edge (clockwise) of a triangle.                */
00860 
00861 #define lprev(otri1, otri2)                                                   \
00862   (otri2).tri = (otri1).tri;                                                  \
00863   (otri2).orient = minus1mod3[(otri1).orient]
00864 
00865 #define lprevself(otri)                                                       \
00866   (otri).orient = minus1mod3[(otri).orient]
00867 
00868 /* onext() spins counterclockwise around a vertex; that is, it finds the     */
00869 /*   next edge with the same origin in the counterclockwise direction.  This */
00870 /*   edge is part of a different triangle.                                   */
00871 
00872 #define onext(otri1, otri2)                                                   \
00873   lprev(otri1, otri2);                                                        \
00874   symself(otri2);
00875 
00876 #define onextself(otri)                                                       \
00877   lprevself(otri);                                                            \
00878   symself(otri);
00879 
00880 /* oprev() spins clockwise around a vertex; that is, it finds the next edge  */
00881 /*   with the same origin in the clockwise direction.  This edge is part of  */
00882 /*   a different triangle.                                                   */
00883 
00884 #define oprev(otri1, otri2)                                                   \
00885   sym(otri1, otri2);                                                          \
00886   lnextself(otri2);
00887 
00888 #define oprevself(otri)                                                       \
00889   symself(otri);                                                              \
00890   lnextself(otri);
00891 
00892 /* dnext() spins counterclockwise around a vertex; that is, it finds the     */
00893 /*   next edge with the same destination in the counterclockwise direction.  */
00894 /*   This edge is part of a different triangle.                              */
00895 
00896 #define dnext(otri1, otri2)                                                   \
00897   sym(otri1, otri2);                                                          \
00898   lprevself(otri2);
00899 
00900 #define dnextself(otri)                                                       \
00901   symself(otri);                                                              \
00902   lprevself(otri);
00903 
00904 /* dprev() spins clockwise around a vertex; that is, it finds the next edge  */
00905 /*   with the same destination in the clockwise direction.  This edge is     */
00906 /*   part of a different triangle.                                           */
00907 
00908 #define dprev(otri1, otri2)                                                   \
00909   lnext(otri1, otri2);                                                        \
00910   symself(otri2);
00911 
00912 #define dprevself(otri)                                                       \
00913   lnextself(otri);                                                            \
00914   symself(otri);
00915 
00916 /* rnext() moves one edge counterclockwise about the adjacent triangle.      */
00917 /*   (It's best understood by reading Guibas and Stolfi.  It involves        */
00918 /*   changing triangles twice.)                                              */
00919 
00920 #define rnext(otri1, otri2)                                                   \
00921   sym(otri1, otri2);                                                          \
00922   lnextself(otri2);                                                           \
00923   symself(otri2);
00924 
00925 #define rnextself(otri)                                                       \
00926   symself(otri);                                                              \
00927   lnextself(otri);                                                            \
00928   symself(otri);
00929 
00930 /* rprev() moves one edge clockwise about the adjacent triangle.             */
00931 /*   (It's best understood by reading Guibas and Stolfi.  It involves        */
00932 /*   changing triangles twice.)                                              */
00933 
00934 #define rprev(otri1, otri2)                                                   \
00935   sym(otri1, otri2);                                                          \
00936   lprevself(otri2);                                                           \
00937   symself(otri2);
00938 
00939 #define rprevself(otri)                                                       \
00940   symself(otri);                                                              \
00941   lprevself(otri);                                                            \
00942   symself(otri);
00943 
00944 /* These primitives determine or set the origin, destination, or apex of a   */
00945 /* triangle.                                                                 */
00946 
00947 #define org(otri, vertexptr)                                                  \
00948   vertexptr = (vertex) (otri).tri[plus1mod3[(otri).orient] + 3]
00949 
00950 #define dest(otri, vertexptr)                                                 \
00951   vertexptr = (vertex) (otri).tri[minus1mod3[(otri).orient] + 3]
00952 
00953 #define apex(otri, vertexptr)                                                 \
00954   vertexptr = (vertex) (otri).tri[(otri).orient + 3]
00955 
00956 #define setorg(otri, vertexptr)                                               \
00957   (otri).tri[plus1mod3[(otri).orient] + 3] = (triangle) vertexptr
00958 
00959 #define setdest(otri, vertexptr)                                              \
00960   (otri).tri[minus1mod3[(otri).orient] + 3] = (triangle) vertexptr
00961 
00962 #define setapex(otri, vertexptr)                                              \
00963   (otri).tri[(otri).orient + 3] = (triangle) vertexptr
00964 
00965 /* Bond two triangles together.                                              */
00966 
00967 #define bond(otri1, otri2)                                                    \
00968   (otri1).tri[(otri1).orient] = encode(otri2);                                \
00969   (otri2).tri[(otri2).orient] = encode(otri1)
00970 
00971 /* Dissolve a bond (from one side).  Note that the other triangle will still */
00972 /*   think it's connected to this triangle.  Usually, however, the other     */
00973 /*   triangle is being deleted entirely, or bonded to another triangle, so   */
00974 /*   it doesn't matter.                                                      */
00975 
00976 #define dissolve(otri)                                                        \
00977   (otri).tri[(otri).orient] = (triangle) m->dummytri
00978 
00979 /* Copy an oriented triangle.                                                */
00980 
00981 #define otricopy(otri1, otri2)                                                \
00982   (otri2).tri = (otri1).tri;                                                  \
00983   (otri2).orient = (otri1).orient
00984 
00985 /* Test for equality of oriented triangles.                                  */
00986 
00987 #define otriequal(otri1, otri2)                                               \
00988   (((otri1).tri == (otri2).tri) &&                                            \
00989    ((otri1).orient == (otri2).orient))
00990 
00991 /* Primitives to infect or cure a triangle with the virus.  These rely on    */
00992 /*   the assumption that all subsegments are aligned to four-byte boundaries.*/
00993 
00994 #define infect(otri)                                                          \
00995   (otri).tri[6] = (triangle)                                                  \
00996                     ((unsigned long long) (otri).tri[6] | (unsigned long long) 2l)
00997 
00998 #define uninfect(otri)                                                        \
00999   (otri).tri[6] = (triangle)                                                  \
01000                     ((unsigned long long) (otri).tri[6] & ~ (unsigned long long) 2l)
01001 
01002 /* Test a triangle for viral infection.                                      */
01003 
01004 #define infected(otri)                                                        \
01005   (((unsigned long long) (otri).tri[6] & (unsigned long long) 2l) != 0l)
01006 
01007 /* Check or set a triangle's attributes.                                     */
01008 
01009 #define elemattribute(otri, attnum)                                           \
01010   ((float *) (otri).tri)[m->elemattribindex + (attnum)]
01011 
01012 #define setelemattribute(otri, attnum, value)                                 \
01013   ((float *) (otri).tri)[m->elemattribindex + (attnum)] = value
01014 
01015 /* Check or set a triangle's maximum area bound.                             */
01016 
01017 #define areabound(otri)  ((float *) (otri).tri)[m->areaboundindex]
01018 
01019 #define setareabound(otri, value)                                             \
01020   ((float *) (otri).tri)[m->areaboundindex] = value
01021 
01022 /* Check or set a triangle's deallocation.  Its second pointer is set to     */
01023 /*   NULL to indicate that it is not allocated.  (Its first pointer is used  */
01024 /*   for the stack of dead items.)  Its fourth pointer (its first vertex)    */
01025 /*   is set to NULL in case a `badtriang' structure points to it.            */
01026 
01027 #define deadtri(tria)  ((tria)[1] == (triangle) NULL)
01028 
01029 #define killtri(tria)                                                         \
01030   (tria)[1] = (triangle) NULL;                                                \
01031   (tria)[3] = (triangle) NULL
01032 
01033 /********* Primitives for subsegments                                *********/
01034 /*                                                                           */
01035 /*                                                                           */
01036 
01037 /* sdecode() converts a pointer to an oriented subsegment.  The orientation  */
01038 /*   is extracted from the least significant bit of the pointer.  The two    */
01039 /*   least significant bits (one for orientation, one for viral infection)   */
01040 /*   are masked out to produce the real pointer.                             */
01041 
01042 #define sdecode(sptr, osub)                                                   \
01043   (osub).ssorient = (int) ((unsigned long long) (sptr) & (unsigned long long) 1l);      \
01044   (osub).ss = (subseg *)                                                      \
01045               ((unsigned long long) (sptr) & ~ (unsigned long long) 3l)
01046 
01047 /* sencode() compresses an oriented subsegment into a single pointer.  It    */
01048 /*   relies on the assumption that all subsegments are aligned to two-byte   */
01049 /*   boundaries, so the least significant bit of (osub).ss is zero.          */
01050 
01051 #define sencode(osub)                                                         \
01052   (subseg) ((unsigned long long) (osub).ss | (unsigned long long) (osub).ssorient)
01053 
01054 /* ssym() toggles the orientation of a subsegment.                           */
01055 
01056 #define ssym(osub1, osub2)                                                    \
01057   (osub2).ss = (osub1).ss;                                                    \
01058   (osub2).ssorient = 1 - (osub1).ssorient
01059 
01060 #define ssymself(osub)                                                        \
01061   (osub).ssorient = 1 - (osub).ssorient
01062 
01063 /* spivot() finds the other subsegment (from the same segment) that shares   */
01064 /*   the same origin.                                                        */
01065 
01066 #define spivot(osub1, osub2)                                                  \
01067   sptr = (osub1).ss[(osub1).ssorient];                                        \
01068   sdecode(sptr, osub2)
01069 
01070 #define spivotself(osub)                                                      \
01071   sptr = (osub).ss[(osub).ssorient];                                          \
01072   sdecode(sptr, osub)
01073 
01074 /* snext() finds the next subsegment (from the same segment) in sequence;    */
01075 /*   one whose origin is the input subsegment's destination.                 */
01076 
01077 #define snext(osub1, osub2)                                                   \
01078   sptr = (osub1).ss[1 - (osub1).ssorient];                                    \
01079   sdecode(sptr, osub2)
01080 
01081 #define snextself(osub)                                                       \
01082   sptr = (osub).ss[1 - (osub).ssorient];                                      \
01083   sdecode(sptr, osub)
01084 
01085 /* These primitives determine or set the origin or destination of a          */
01086 /*   subsegment or the segment that includes it.                             */
01087 
01088 #define sorg(osub, vertexptr)                                                 \
01089   vertexptr = (vertex) (osub).ss[2 + (osub).ssorient]
01090 
01091 #define sdest(osub, vertexptr)                                                \
01092   vertexptr = (vertex) (osub).ss[3 - (osub).ssorient]
01093 
01094 #define setsorg(osub, vertexptr)                                              \
01095   (osub).ss[2 + (osub).ssorient] = (subseg) vertexptr
01096 
01097 #define setsdest(osub, vertexptr)                                             \
01098   (osub).ss[3 - (osub).ssorient] = (subseg) vertexptr
01099 
01100 #define segorg(osub, vertexptr)                                               \
01101   vertexptr = (vertex) (osub).ss[4 + (osub).ssorient]
01102 
01103 #define segdest(osub, vertexptr)                                              \
01104   vertexptr = (vertex) (osub).ss[5 - (osub).ssorient]
01105 
01106 #define setsegorg(osub, vertexptr)                                            \
01107   (osub).ss[4 + (osub).ssorient] = (subseg) vertexptr
01108 
01109 #define setsegdest(osub, vertexptr)                                           \
01110   (osub).ss[5 - (osub).ssorient] = (subseg) vertexptr
01111 
01112 /* These primitives read or set a boundary marker.  Boundary markers are     */
01113 /*   used to hold user-defined tags for setting boundary conditions in       */
01114 /*   finite element solvers.                                                 */
01115 
01116 #define mark(osub)  (* (int *) ((osub).ss + 8))
01117 
01118 #define setmark(osub, value)                                                  \
01119   * (int *) ((osub).ss + 8) = value
01120 
01121 /* Bond two subsegments together.                                            */
01122 
01123 #define sbond(osub1, osub2)                                                   \
01124   (osub1).ss[(osub1).ssorient] = sencode(osub2);                              \
01125   (osub2).ss[(osub2).ssorient] = sencode(osub1)
01126 
01127 /* Dissolve a subsegment bond (from one side).  Note that the other          */
01128 /*   subsegment will still think it's connected to this subsegment.          */
01129 
01130 #define sdissolve(osub)                                                       \
01131   (osub).ss[(osub).ssorient] = (subseg) m->dummysub
01132 
01133 /* Copy a subsegment.                                                        */
01134 
01135 #define subsegcopy(osub1, osub2)                                              \
01136   (osub2).ss = (osub1).ss;                                                    \
01137   (osub2).ssorient = (osub1).ssorient
01138 
01139 /* Test for equality of subsegments.                                         */
01140 
01141 #define subsegequal(osub1, osub2)                                             \
01142   (((osub1).ss == (osub2).ss) &&                                              \
01143    ((osub1).ssorient == (osub2).ssorient))
01144 
01145 /* Check or set a subsegment's deallocation.  Its second pointer is set to   */
01146 /*   NULL to indicate that it is not allocated.  (Its first pointer is used  */
01147 /*   for the stack of dead items.)  Its third pointer (its first vertex)     */
01148 /*   is set to NULL in case a `badsubseg' structure points to it.            */
01149 
01150 #define deadsubseg(sub)  ((sub)[1] == (subseg) NULL)
01151 
01152 #define killsubseg(sub)                                                       \
01153   (sub)[1] = (subseg) NULL;                                                   \
01154   (sub)[2] = (subseg) NULL
01155 
01156 /********* Primitives for interacting triangles and subsegments      *********/
01157 /*                                                                           */
01158 /*                                                                           */
01159 
01160 /* tspivot() finds a subsegment abutting a triangle.                         */
01161 
01162 #define tspivot(otri, osub)                                                   \
01163   sptr = (subseg) (otri).tri[6 + (otri).orient];                              \
01164   sdecode(sptr, osub)
01165 
01166 /* stpivot() finds a triangle abutting a subsegment.  It requires that the   */
01167 /*   variable `ptr' of type `triangle' be defined.                           */
01168 
01169 #define stpivot(osub, otri)                                                   \
01170   ptr = (triangle) (osub).ss[6 + (osub).ssorient];                            \
01171   decode(ptr, otri)
01172 
01173 /* Bond a triangle to a subsegment.                                          */
01174 
01175 #define tsbond(otri, osub)                                                    \
01176   (otri).tri[6 + (otri).orient] = (triangle) sencode(osub);                   \
01177   (osub).ss[6 + (osub).ssorient] = (subseg) encode(otri)
01178 
01179 /* Dissolve a bond (from the triangle side).                                 */
01180 
01181 #define tsdissolve(otri)                                                      \
01182   (otri).tri[6 + (otri).orient] = (triangle) m->dummysub
01183 
01184 /* Dissolve a bond (from the subsegment side).                               */
01185 
01186 #define stdissolve(osub)                                                      \
01187   (osub).ss[6 + (osub).ssorient] = (subseg) m->dummytri
01188 
01189 /********* Primitives for vertices                                   *********/
01190 /*                                                                           */
01191 /*                                                                           */
01192 
01193 #define vertexmark(vx)  ((int *) (vx))[m->vertexmarkindex]
01194 
01195 #define setvertexmark(vx, value)                                              \
01196   ((int *) (vx))[m->vertexmarkindex] = value
01197 
01198 #define vertextype(vx)  ((int *) (vx))[m->vertexmarkindex + 1]
01199 
01200 #define setvertextype(vx, value)                                              \
01201   ((int *) (vx))[m->vertexmarkindex + 1] = value
01202 
01203 #define vertex2tri(vx)  ((triangle *) (vx))[m->vertex2triindex]
01204 
01205 #define setvertex2tri(vx, value)                                              \
01206   ((triangle *) (vx))[m->vertex2triindex] = value
01207 
01210 /********* Mesh manipulation primitives end here                     *********/
01211 
01212 /********* Memory allocation and program exit wrappers begin here    *********/
01216 void triexit(int status)
01217 {
01218   exit(status);
01219 }
01220 
01221 int *trimalloc(int size)
01222 {
01223   int *memptr;
01224 
01225   memptr = (int *) malloc((unsigned int) size);
01226   if (memptr == (int *) NULL) {
01227     printf("Error:  Out of memory.\n");
01228     triexit(1);
01229   }
01230   return(memptr);
01231 }
01232 
01233 void trifree(int *memptr)
01234 {
01235   free(memptr);
01236 }
01237 
01240 /********* Memory allocation and program exit wrappers end here      *********/
01241 
01242 /*****************************************************************************/
01243 /*                                                                           */
01244 /*  internalerror()   Ask the user to send me the defective product.  Exit.  */
01245 /*                                                                           */
01246 /*****************************************************************************/
01247 
01248 void internalerror()
01249 {
01250   printf("  Please report this bug to jrs@cs.berkeley.edu\n");
01251   printf("  Include the message above, your input data set, and the exact\n");
01252   printf("    command line you used to run Triangle.\n");
01253   triexit(1);
01254 }
01255 
01256 /*****************************************************************************/
01257 /*                                                                           */
01258 /*  parsecommandline()   Read the command line, identify switches, and set   */
01259 /*                       up options and file names.                          */
01260 /*                                                                           */
01261 /*****************************************************************************/
01262 
01263 void parsecommandline(int argc, char **argv, struct behavior *b) {
01264   int i, j, k;
01265   char workstring[FILENAMESIZE];
01266 
01267   b->poly = b->refine = b->quality = 0;
01268   b->vararea = b->fixedarea = b->usertest = 0;
01269   b->regionattrib = b->convex = b->weighted = b->jettison = 0;
01270   b->firstnumber = 1;
01271   b->edgesout = b->voronoi = b->neighbors = b->geomview = 0;
01272   b->nobound = b->nopolywritten = b->nonodewritten = b->noelewritten = 0;
01273   b->noiterationnum = 0;
01274   b->noholes = b->noexact = 0;
01275   b->incremental = b->sweepline = 0;
01276   b->dwyer = 1;
01277   b->splitseg = 0;
01278   b->docheck = 0;
01279   b->nobisect = 0;
01280   b->conformdel = 0;
01281   b->steiner = -1;
01282   b->order = 1;
01283   b->minangle = 0.0;
01284   b->maxarea = -1.0;
01285   b->quiet = b->verbose = 0;
01286 
01287   for (i = 0; i < argc; i++) {
01288     for (j = 0; argv[i][j] != '\0'; j++) {
01289       if (argv[i][j] == 'p') {
01290         b->poly = 1;
01291       }
01292       if (argv[i][j] == 'A') {
01293         b->regionattrib = 1;
01294       }
01295       if (argv[i][j] == 'c') {
01296         b->convex = 1;
01297       }
01298       if (argv[i][j] == 'w') {
01299         b->weighted = 1;
01300       }
01301       if (argv[i][j] == 'W') {
01302         b->weighted = 2;
01303       }
01304       if (argv[i][j] == 'j') {
01305         b->jettison = 1;
01306       }
01307       if (argv[i][j] == 'z') {
01308         b->firstnumber = 0;
01309       }
01310       if (argv[i][j] == 'e') {
01311         b->edgesout = 1;
01312       }
01313       if (argv[i][j] == 'v') {
01314         b->voronoi = 1;
01315       }
01316       if (argv[i][j] == 'n') {
01317         b->neighbors = 1;
01318       }
01319       if (argv[i][j] == 'g') {
01320         b->geomview = 1;
01321       }
01322       if (argv[i][j] == 'B') {
01323         b->nobound = 1;
01324       }
01325       if (argv[i][j] == 'P') {
01326         b->nopolywritten = 1;
01327       }
01328       if (argv[i][j] == 'N') {
01329         b->nonodewritten = 1;
01330       }
01331       if (argv[i][j] == 'E') {
01332         b->noelewritten = 1;
01333       }
01334       if (argv[i][j] == 'O') {
01335         b->noholes = 1;
01336       }
01337       if (argv[i][j] == 'X') {
01338         b->noexact = 1;
01339       }
01340       if (argv[i][j] == 'o') {
01341         if (argv[i][j + 1] == '2') {
01342           j++;
01343           b->order = 2;
01344         }
01345       }
01346       if (argv[i][j] == 'l') {
01347         b->dwyer = 0;
01348       }
01349       if (argv[i][j] == 'Q') {
01350         b->quiet = 1;
01351       }
01352       if (argv[i][j] == 'V') {
01353         b->verbose++;
01354       }
01355     }
01356   }
01357   b->usesegments = b->poly || b->refine || b->quality || b->convex;
01358   b->goodangle = cos(b->minangle * PI / 180.0);
01359   if (b->goodangle == 1.0) {
01360     b->offconstant = 0.0;
01361   } else {
01362     b->offconstant = 0.475 * sqrt((1.0 + b->goodangle) / (1.0 - b->goodangle));
01363   }
01364   b->goodangle *= b->goodangle;
01365   if (b->refine && b->noiterationnum) {
01366     printf(
01367       "Error:  You cannot use the -I switch when refining a triangulation.\n");
01368     triexit(1);
01369   }
01370   /* Be careful not to allocate space for element area constraints that */
01371   /*   will never be assigned any value (other than the default -1.0).  */
01372   if (!b->refine && !b->poly) {
01373     b->vararea = 0;
01374   }
01375   /* Be careful not to add an extra attribute to each element unless the */
01376   /*   input supports it (PSLG in, but not refining a preexisting mesh). */
01377   if (b->refine || !b->poly) {
01378     b->regionattrib = 0;
01379   }
01380   /* Regular/weighted triangulations are incompatible with PSLGs */
01381   /*   and meshing.                                              */
01382   if (b->weighted && (b->poly || b->quality)) {
01383     b->weighted = 0;
01384     if (!b->quiet) {
01385       printf("Warning:  weighted triangulations (-w, -W) are incompatible\n");
01386       printf("  with PSLGs (-p) and meshing (-q, -a, -u).  Weights ignored.\n"
01387              );
01388     }
01389   }
01390   if (b->jettison && b->nonodewritten && !b->quiet) {
01391     printf("Warning:  -j and -N switches are somewhat incompatible.\n");
01392     printf("  If any vertices are jettisoned, you will need the output\n");
01393     printf("  .node file to reconstruct the new node indices.");
01394   }
01395 }
01396 
01399 /********* User interaction routines begin here                      *********/
01400 
01401 /********* Debugging routines begin here                             *********/
01405 /*****************************************************************************/
01406 /*                                                                           */
01407 /*  printtriangle()   Print out the details of an oriented triangle.         */
01408 /*                                                                           */
01409 /*  I originally wrote this procedure to simplify debugging; it can be       */
01410 /*  called directly from the debugger, and presents information about an     */
01411 /*  oriented triangle in digestible form.  It's also used when the           */
01412 /*  highest level of verbosity (`-VVV') is specified.                        */
01413 /*                                                                           */
01414 /*****************************************************************************/
01415 
01416 void printtriangle(struct mesh *m, struct behavior *b, struct otri *t)
01417 {
01418   struct otri printtri;
01419   struct osub printsh;
01420   vertex printvertex;
01421 
01422   printf("triangle x%lx with orientation %d:\n", (unsigned long long) t->tri,
01423          t->orient);
01424   decode(t->tri[0], printtri);
01425   if (printtri.tri == m->dummytri) {
01426     printf("    [0] = Outer space\n");
01427   } else {
01428     printf("    [0] = x%lx  %d\n", (unsigned long long) printtri.tri,
01429            printtri.orient);
01430   }
01431   decode(t->tri[1], printtri);
01432   if (printtri.tri == m->dummytri) {
01433     printf("    [1] = Outer space\n");
01434   } else {
01435     printf("    [1] = x%lx  %d\n", (unsigned long long) printtri.tri,
01436            printtri.orient);
01437   }
01438   decode(t->tri[2], printtri);
01439   if (printtri.tri == m->dummytri) {
01440     printf("    [2] = Outer space\n");
01441   } else {
01442     printf("    [2] = x%lx  %d\n", (unsigned long long) printtri.tri,
01443            printtri.orient);
01444   }
01445 
01446   org(*t, printvertex);
01447   if (printvertex == (vertex) NULL)
01448     printf("    Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
01449   else
01450     printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
01451            (t->orient + 1) % 3 + 3, (unsigned long long) printvertex,
01452            printvertex[0], printvertex[1]);
01453   dest(*t, printvertex);
01454   if (printvertex == (vertex) NULL)
01455     printf("    Dest  [%d] = NULL\n", (t->orient + 2) % 3 + 3);
01456   else
01457     printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
01458            (t->orient + 2) % 3 + 3, (unsigned long long) printvertex,
01459            printvertex[0], printvertex[1]);
01460   apex(*t, printvertex);
01461   if (printvertex == (vertex) NULL)
01462     printf("    Apex  [%d] = NULL\n", t->orient + 3);
01463   else
01464     printf("    Apex  [%d] = x%lx  (%.12g, %.12g)\n",
01465            t->orient + 3, (unsigned long long) printvertex,
01466            printvertex[0], printvertex[1]);
01467 
01468   if (b->usesegments) {
01469     sdecode(t->tri[6], printsh);
01470     if (printsh.ss != m->dummysub) {
01471       printf("    [6] = x%lx  %d\n", (unsigned long long) printsh.ss,
01472              printsh.ssorient);
01473     }
01474     sdecode(t->tri[7], printsh);
01475     if (printsh.ss != m->dummysub) {
01476       printf("    [7] = x%lx  %d\n", (unsigned long long) printsh.ss,
01477              printsh.ssorient);
01478     }
01479     sdecode(t->tri[8], printsh);
01480     if (printsh.ss != m->dummysub) {
01481       printf("    [8] = x%lx  %d\n", (unsigned long long) printsh.ss,
01482              printsh.ssorient);
01483     }
01484   }
01485 
01486   if (b->vararea) {
01487     printf("    Area constraint:  %.4g\n", areabound(*t));
01488   }
01489 }
01490 
01491 /*****************************************************************************/
01492 /*                                                                           */
01493 /*  printsubseg()   Print out the details of an oriented subsegment.         */
01494 /*                                                                           */
01495 /*  I originally wrote this procedure to simplify debugging; it can be       */
01496 /*  called directly from the debugger, and presents information about an     */
01497 /*  oriented subsegment in digestible form.  It's also used when the highest */
01498 /*  level of verbosity (`-VVV') is specified.                                */
01499 /*                                                                           */
01500 /*****************************************************************************/
01501 
01502 void printsubseg(struct mesh *m, struct behavior *b, struct osub *s)
01503 {
01504   struct osub printsh;
01505   struct otri printtri;
01506   vertex printvertex;
01507 
01508   printf("subsegment x%lx with orientation %d and mark %d:\n",
01509          (unsigned long long) s->ss, s->ssorient, mark(*s));
01510   sdecode(s->ss[0], printsh);
01511   if (printsh.ss == m->dummysub) {
01512     printf("    [0] = No subsegment\n");
01513   } else {
01514     printf("    [0] = x%lx  %d\n", (unsigned long long) printsh.ss,
01515            printsh.ssorient);
01516   }
01517   sdecode(s->ss[1], printsh);
01518   if (printsh.ss == m->dummysub) {
01519     printf("    [1] = No subsegment\n");
01520   } else {
01521     printf("    [1] = x%lx  %d\n", (unsigned long long) printsh.ss,
01522            printsh.ssorient);
01523   }
01524 
01525   sorg(*s, printvertex);
01526   if (printvertex == (vertex) NULL)
01527     printf("    Origin[%d] = NULL\n", 2 + s->ssorient);
01528   else
01529     printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
01530            2 + s->ssorient, (unsigned long long) printvertex,
01531            printvertex[0], printvertex[1]);
01532   sdest(*s, printvertex);
01533   if (printvertex == (vertex) NULL)
01534     printf("    Dest  [%d] = NULL\n", 3 - s->ssorient);
01535   else
01536     printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
01537            3 - s->ssorient, (unsigned long long) printvertex,
01538            printvertex[0], printvertex[1]);
01539 
01540   decode(s->ss[6], printtri);
01541   if (printtri.tri == m->dummytri) {
01542     printf("    [6] = Outer space\n");
01543   } else {
01544     printf("    [6] = x%lx  %d\n", (unsigned long long) printtri.tri,
01545            printtri.orient);
01546   }
01547   decode(s->ss[7], printtri);
01548   if (printtri.tri == m->dummytri) {
01549     printf("    [7] = Outer space\n");
01550   } else {
01551     printf("    [7] = x%lx  %d\n", (unsigned long long) printtri.tri,
01552            printtri.orient);
01553   }
01554 
01555   segorg(*s, printvertex);
01556   if (printvertex == (vertex) NULL)
01557     printf("    Segment origin[%d] = NULL\n", 4 + s->ssorient);
01558   else
01559     printf("    Segment origin[%d] = x%lx  (%.12g, %.12g)\n",
01560            4 + s->ssorient, (unsigned long long) printvertex,
01561            printvertex[0], printvertex[1]);
01562   segdest(*s, printvertex);
01563   if (printvertex == (vertex) NULL)
01564     printf("    Segment dest  [%d] = NULL\n", 5 - s->ssorient);
01565   else
01566     printf("    Segment dest  [%d] = x%lx  (%.12g, %.12g)\n",
01567            5 - s->ssorient, (unsigned long long) printvertex,
01568            printvertex[0], printvertex[1]);
01569 }
01570 
01573 /********* Debugging routines end here                               *********/
01574 
01575 /********* Memory management routines begin here                     *********/
01579 /*****************************************************************************/
01580 /*                                                                           */
01581 /*  poolzero()   Set all of a pool's fields to zero.                         */
01582 /*                                                                           */
01583 /*  This procedure should never be called on a pool that has any memory      */
01584 /*  allocated to it, as that memory would leak.                              */
01585 /*                                                                           */
01586 /*****************************************************************************/
01587 
01588 void poolzero(struct memorypool *pool)
01589 {
01590   pool->firstblock = (int **) NULL;
01591   pool->nowblock = (int **) NULL;
01592   pool->nextitem = (int *) NULL;
01593   pool->deaditemstack = (int *) NULL;
01594   pool->pathblock = (int **) NULL;
01595   pool->pathitem = (int *) NULL;
01596   pool->alignbytes = 0;
01597   pool->itembytes = 0;
01598   pool->itemsperblock = 0;
01599   pool->itemsfirstblock = 0;
01600   pool->items = 0;
01601   pool->maxitems = 0;
01602   pool->unallocateditems = 0;
01603   pool->pathitemsleft = 0;
01604 }
01605 
01606 /*****************************************************************************/
01607 /*                                                                           */
01608 /*  poolrestart()   Deallocate all items in a pool.                          */
01609 /*                                                                           */
01610 /*  The pool is returned to its starting state, except that no memory is     */
01611 /*  freed to the operating system.  Rather, the previously allocated blocks  */
01612 /*  are ready to be reused.                                                  */
01613 /*                                                                           */
01614 /*****************************************************************************/
01615 
01616 void poolrestart(struct memorypool *pool)
01617 {
01618   unsigned long long alignptr;
01619 
01620   pool->items = 0;
01621   pool->maxitems = 0;
01622 
01623   /* Set the currently active block. */
01624   pool->nowblock = pool->firstblock;
01625   /* Find the first item in the pool.  Increment by the size of (int *). */
01626   alignptr = (unsigned long long) (pool->nowblock + 1);
01627   /* Align the item on an `alignbytes'-byte boundary. */
01628   pool->nextitem = (int *)
01629     (alignptr + (unsigned long long) pool->alignbytes -
01630      (alignptr % (unsigned long long) pool->alignbytes));
01631   /* There are lots of unallocated items left in this block. */
01632   pool->unallocateditems = pool->itemsfirstblock;
01633   /* The stack of deallocated items is empty. */
01634   pool->deaditemstack = (int *) NULL;
01635 }
01636 
01637 /*****************************************************************************/
01638 /*                                                                           */
01639 /*  poolinit()   Initialize a pool of memory for allocation of items.        */
01640 /*                                                                           */
01641 /*  This routine initializes the machinery for allocating items.  A `pool'   */
01642 /*  is created whose records have size at least `bytecount'.  Items will be  */
01643 /*  allocated in `itemcount'-item blocks.  Each item is assumed to be a      */
01644 /*  collection of words, and either pointers or floating-point values are    */
01645 /*  assumed to be the "primary" word type.  (The "primary" word type is used */
01646 /*  to determine alignment of items.)  If `alignment' isn't zero, all items  */
01647 /*  will be `alignment'-byte aligned in memory.  `alignment' must be either  */
01648 /*  a multiple or a factor of the primary word size; powers of two are safe. */
01649 /*  `alignment' is normally used to create a few unused bits at the bottom   */
01650 /*  of each item's pointer, in which information may be stored.              */
01651 /*                                                                           */
01652 /*  Don't change this routine unless you understand it.                      */
01653 /*                                                                           */
01654 /*****************************************************************************/
01655 
01656 void poolinit(struct memorypool *pool, int bytecount, int itemcount,
01657               int firstitemcount, int alignment)
01658 {
01659   /* Find the proper alignment, which must be at least as large as:   */
01660   /*   - The parameter `alignment'.                                   */
01661   /*   - sizeof(int *), so the stack of dead items can be maintained */
01662   /*       without unaligned accesses.                                */
01663   if (alignment > sizeof(int *)) {
01664     pool->alignbytes = alignment;
01665   } else {
01666     pool->alignbytes = sizeof(int *);
01667   }
01668   pool->itembytes = ((bytecount - 1) / pool->alignbytes + 1) *
01669                     pool->alignbytes;
01670   pool->itemsperblock = itemcount;
01671   if (firstitemcount == 0) {
01672     pool->itemsfirstblock = itemcount;
01673   } else {
01674     pool->itemsfirstblock = firstitemcount;
01675   }
01676 
01677   /* Allocate a block of items.  Space for `itemsfirstblock' items and one  */
01678   /*   pointer (to point to the next block) are allocated, as well as space */
01679   /*   to ensure alignment of the items.                                    */
01680   pool->firstblock = (int **)
01681     trimalloc(pool->itemsfirstblock * pool->itembytes + (int) sizeof(int *) +
01682               pool->alignbytes);
01683   /* Set the next block pointer to NULL. */
01684   *(pool->firstblock) = (int *) NULL;
01685   poolrestart(pool);
01686 }
01687 
01688 /*****************************************************************************/
01689 /*                                                                           */
01690 /*  pooldeinit()   Free to the operating system all memory taken by a pool.  */
01691 /*                                                                           */
01692 /*****************************************************************************/
01693 
01694 void pooldeinit(struct memorypool *pool)
01695 {
01696   while (pool->firstblock != (int **) NULL) {
01697     pool->nowblock = (int **) *(pool->firstblock);
01698     trifree((int *) pool->firstblock);
01699     pool->firstblock = pool->nowblock;
01700   }
01701 }
01702 
01703 /*****************************************************************************/
01704 /*                                                                           */
01705 /*  poolalloc()   Allocate space for an item.                                */
01706 /*                                                                           */
01707 /*****************************************************************************/
01708 
01709 int *poolalloc(struct memorypool *pool)
01710 {
01711   int *newitem;
01712   int **newblock;
01713   unsigned long long alignptr;
01714 
01715   /* First check the linked list of dead items.  If the list is not   */
01716   /*   empty, allocate an item from the list rather than a fresh one. */
01717   if (pool->deaditemstack != (int *) NULL) {
01718     newitem = pool->deaditemstack;               /* Take first item in list. */
01719     pool->deaditemstack = * (int **) pool->deaditemstack;
01720   } else {
01721     /* Check if there are any free items left in the current block. */
01722     if (pool->unallocateditems == 0) {
01723       /* Check if another block must be allocated. */
01724       if (*(pool->nowblock) == (int *) NULL) {
01725         /* Allocate a new block of items, pointed to by the previous block. */
01726         newblock = (int **) trimalloc(pool->itemsperblock * pool->itembytes +
01727                                        (int) sizeof(int *) +
01728                                        pool->alignbytes);
01729         *(pool->nowblock) = (int *) newblock;
01730         /* The next block pointer is NULL. */
01731         *newblock = (int *) NULL;
01732       }
01733 
01734       /* Move to the new block. */
01735       pool->nowblock = (int **) *(pool->nowblock);
01736       /* Find the first item in the block.    */
01737       /*   Increment by the size of (int *). */
01738       alignptr = (unsigned long long) (pool->nowblock + 1);
01739       /* Align the item on an `alignbytes'-byte boundary. */
01740       pool->nextitem = (int *)
01741         (alignptr + (unsigned long long) pool->alignbytes -
01742          (alignptr % (unsigned long long) pool->alignbytes));
01743       /* There are lots of unallocated items left in this block. */
01744       pool->unallocateditems = pool->itemsperblock;
01745     }
01746 
01747     /* Allocate a new item. */
01748     newitem = pool->nextitem;
01749     /* Advance `nextitem' pointer to next free item in block. */
01750     pool->nextitem = (int *) ((char *) pool->nextitem + pool->itembytes);
01751     pool->unallocateditems--;
01752     pool->maxitems++;
01753   }
01754   pool->items++;
01755   return newitem;
01756 }
01757 
01758 /*****************************************************************************/
01759 /*                                                                           */
01760 /*  pooldealloc()   Deallocate space for an item.                            */
01761 /*                                                                           */
01762 /*  The deallocated space is stored in a queue for later reuse.              */
01763 /*                                                                           */
01764 /*****************************************************************************/
01765 
01766 void pooldealloc(struct memorypool *pool, int *dyingitem)
01767 {
01768   /* Push freshly killed item onto stack. */
01769   *((int **) dyingitem) = pool->deaditemstack;
01770   pool->deaditemstack = dyingitem;
01771   pool->items--;
01772 }
01773 
01774 /*****************************************************************************/
01775 /*                                                                           */
01776 /*  traversalinit()   Prepare to traverse the entire list of items.          */
01777 /*                                                                           */
01778 /*  This routine is used in conjunction with traverse().                     */
01779 /*                                                                           */
01780 /*****************************************************************************/
01781 
01782 void traversalinit(struct memorypool *pool)
01783 {
01784   unsigned long long alignptr;
01785 
01786   /* Begin the traversal in the first block. */
01787   pool->pathblock = pool->firstblock;
01788   /* Find the first item in the block.  Increment by the size of (int *). */
01789   alignptr = (unsigned long long) (pool->pathblock + 1);
01790   /* Align with item on an `alignbytes'-byte boundary. */
01791   pool->pathitem = (int *)
01792     (alignptr + (unsigned long long) pool->alignbytes -
01793      (alignptr % (unsigned long long) pool->alignbytes));
01794   /* Set the number of items left in the current block. */
01795   pool->pathitemsleft = pool->itemsfirstblock;
01796 }
01797 
01798 /*****************************************************************************/
01799 /*                                                                           */
01800 /*  traverse()   Find the next item in the list.                             */
01801 /*                                                                           */
01802 /*  This routine is used in conjunction with traversalinit().  Be forewarned */
01803 /*  that this routine successively returns all items in the list, including  */
01804 /*  deallocated ones on the deaditemqueue.  It's up to you to figure out     */
01805 /*  which ones are actually dead.  Why?  I don't want to allocate extra      */
01806 /*  space just to demarcate dead items.  It can usually be done more         */
01807 /*  space-efficiently by a routine that knows something about the structure  */
01808 /*  of the item.                                                             */
01809 /*                                                                           */
01810 /*****************************************************************************/
01811 
01812 int *traverse(struct memorypool *pool)
01813 {
01814   int *newitem;
01815   unsigned long long alignptr;
01816 
01817   /* Stop upon exhausting the list of items. */
01818   if (pool->pathitem == pool->nextitem) {
01819     return (int *) NULL;
01820   }
01821 
01822   /* Check whether any untraversed items remain in the current block. */
01823   if (pool->pathitemsleft == 0) {
01824     /* Find the next block. */
01825     pool->pathblock = (int **) *(pool->pathblock);
01826     /* Find the first item in the block.  Increment by the size of (int *). */
01827     alignptr = (unsigned long long) (pool->pathblock + 1);
01828     /* Align with item on an `alignbytes'-byte boundary. */
01829     pool->pathitem = (int *)
01830       (alignptr + (unsigned long long) pool->alignbytes -
01831        (alignptr % (unsigned long long) pool->alignbytes));
01832     /* Set the number of items left in the current block. */
01833     pool->pathitemsleft = pool->itemsperblock;
01834   }
01835 
01836   newitem = pool->pathitem;
01837   /* Find the next item in the block. */
01838   pool->pathitem = (int *) ((char *) pool->pathitem + pool->itembytes);
01839   pool->pathitemsleft--;
01840   return newitem;
01841 }
01842 
01843 /*****************************************************************************/
01844 /*                                                                           */
01845 /*  dummyinit()   Initialize the triangle that fills "outer space" and the   */
01846 /*                omnipresent subsegment.                                    */
01847 /*                                                                           */
01848 /*  The triangle that fills "outer space," called `dummytri', is pointed to  */
01849 /*  by every triangle and subsegment on a boundary (be it outer or inner) of */
01850 /*  the triangulation.  Also, `dummytri' points to one of the triangles on   */
01851 /*  the convex hull (until the holes and concavities are carved), making it  */
01852 /*  possible to find a starting triangle for point location.                 */
01853 /*                                                                           */
01854 /*  The omnipresent subsegment, `dummysub', is pointed to by every triangle  */
01855 /*  or subsegment that doesn't have a full complement of real subsegments    */
01856 /*  to point to.                                                             */
01857 /*                                                                           */
01858 /*  `dummytri' and `dummysub' are generally required to fulfill only a few   */
01859 /*  invariants:  their vertices must remain NULL and `dummytri' must always  */
01860 /*  be bonded (at offset zero) to some triangle on the convex hull of the    */
01861 /*  mesh, via a boundary edge.  Otherwise, the connections of `dummytri' and */
01862 /*  `dummysub' may change willy-nilly.  This makes it possible to avoid      */
01863 /*  writing a good deal of special-case code (in the edge flip, for example) */
01864 /*  for dealing with the boundary of the mesh, places where no subsegment is */
01865 /*  present, and so forth.  Other entities are frequently bonded to          */
01866 /*  `dummytri' and `dummysub' as if they were real mesh entities, with no    */
01867 /*  harm done.                                                               */
01868 /*                                                                           */
01869 /*****************************************************************************/
01870 
01871 void dummyinit(struct mesh *m, struct behavior *b, int trianglebytes,
01872                int subsegbytes)
01873 {
01874   unsigned long long alignptr;
01875 
01876   /* Set up `dummytri', the `triangle' that occupies "outer space." */
01877   m->dummytribase = (triangle *) trimalloc(trianglebytes +
01878                                            m->triangles.alignbytes);
01879   /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
01880   alignptr = (unsigned long long) m->dummytribase;
01881   m->dummytri = (triangle *)
01882     (alignptr + (unsigned long long) m->triangles.alignbytes -
01883      (alignptr % (unsigned long long) m->triangles.alignbytes));
01884   /* Initialize the three adjoining triangles to be "outer space."  These  */
01885   /*   will eventually be changed by various bonding operations, but their */
01886   /*   values don't really matter, as long as they can legally be          */
01887   /*   dereferenced.                                                       */
01888   m->dummytri[0] = (triangle) m->dummytri;
01889   m->dummytri[1] = (triangle) m->dummytri;
01890   m->dummytri[2] = (triangle) m->dummytri;
01891   /* Three NULL vertices. */
01892   m->dummytri[3] = (triangle) NULL;
01893   m->dummytri[4] = (triangle) NULL;
01894   m->dummytri[5] = (triangle) NULL;
01895 
01896   if (b->usesegments) {
01897     /* Set up `dummysub', the omnipresent subsegment pointed to by any */
01898     /*   triangle side or subsegment end that isn't attached to a real */
01899     /*   subsegment.                                                   */
01900     m->dummysubbase = (subseg *) trimalloc(subsegbytes +
01901                                            m->subsegs.alignbytes);
01902     /* Align `dummysub' on a `subsegs.alignbytes'-byte boundary. */
01903     alignptr = (unsigned long long) m->dummysubbase;
01904     m->dummysub = (subseg *)
01905       (alignptr + (unsigned long long) m->subsegs.alignbytes -
01906        (alignptr % (unsigned long long) m->subsegs.alignbytes));
01907     /* Initialize the two adjoining subsegments to be the omnipresent      */
01908     /*   subsegment.  These will eventually be changed by various bonding  */
01909     /*   operations, but their values don't really matter, as long as they */
01910     /*   can legally be dereferenced.                                      */
01911     m->dummysub[0] = (subseg) m->dummysub;
01912     m->dummysub[1] = (subseg) m->dummysub;
01913     /* Four NULL vertices. */
01914     m->dummysub[2] = (subseg) NULL;
01915     m->dummysub[3] = (subseg) NULL;
01916     m->dummysub[4] = (subseg) NULL;
01917     m->dummysub[5] = (subseg) NULL;
01918     /* Initialize the two adjoining triangles to be "outer space." */
01919     m->dummysub[6] = (subseg) m->dummytri;
01920     m->dummysub[7] = (subseg) m->dummytri;
01921     /* Set the boundary marker to zero. */
01922     * (int *) (m->dummysub + 8) = 0;
01923 
01924     /* Initialize the three adjoining subsegments of `dummytri' to be */
01925     /*   the omnipresent subsegment.                                  */
01926     m->dummytri[6] = (triangle) m->dummysub;
01927     m->dummytri[7] = (triangle) m->dummysub;
01928     m->dummytri[8] = (triangle) m->dummysub;
01929   }
01930 }
01931 
01932 /*****************************************************************************/
01933 /*                                                                           */
01934 /*  initializevertexpool()   Calculate the size of the vertex data structure */
01935 /*                           and initialize its memory pool.                 */
01936 /*                                                                           */
01937 /*  This routine also computes the `vertexmarkindex' and `vertex2triindex'   */
01938 /*  indices used to find values within each vertex.                          */
01939 /*                                                                           */
01940 /*****************************************************************************/
01941 
01942 void initializevertexpool(struct mesh *m, struct behavior *b)
01943 {
01944   int vertexsize;
01945 
01946   /* The index within each vertex at which the boundary marker is found,    */
01947   /*   followed by the vertex type.  Ensure the vertex marker is aligned to */
01948   /*   a sizeof(int)-byte address.                                          */
01949   m->vertexmarkindex = ((m->mesh_dim + m->nextras) * sizeof(float) +
01950                         sizeof(int) - 1) /
01951                        sizeof(int);
01952   vertexsize = (m->vertexmarkindex + 2) * sizeof(int);
01953   if (b->poly) {
01954     /* The index within each vertex at which a triangle pointer is found.  */
01955     /*   Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
01956     m->vertex2triindex = (vertexsize + sizeof(triangle) - 1) /
01957                          sizeof(triangle);
01958     vertexsize = (m->vertex2triindex + 1) * sizeof(triangle);
01959   }
01960 
01961   /* Initialize the pool of vertices. */
01962   poolinit(&m->vertices, vertexsize, VERTEXPERBLOCK,
01963            m->invertices > VERTEXPERBLOCK ? m->invertices : VERTEXPERBLOCK,
01964            sizeof(float));
01965 }
01966 
01967 /*****************************************************************************/
01968 /*                                                                           */
01969 /*  initializetrisubpools()   Calculate the sizes of the triangle and        */
01970 /*                            subsegment data structures and initialize      */
01971 /*                            their memory pools.                            */
01972 /*                                                                           */
01973 /*  This routine also computes the `highorderindex', `elemattribindex', and  */
01974 /*  `areaboundindex' indices used to find values within each triangle.       */
01975 /*                                                                           */
01976 /*****************************************************************************/
01977 
01978 void initializetrisubpools(struct mesh *m, struct behavior *b)
01979 {
01980   int trisize;
01981 
01982   /* The index within each triangle at which the extra nodes (above three)  */
01983   /*   associated with high order elements are found.  There are three      */
01984   /*   pointers to other triangles, three pointers to corners, and possibly */
01985   /*   three pointers to subsegments before the extra nodes.                */
01986   m->highorderindex = 6 + (b->usesegments * 3);
01987   /* The number of bytes occupied by a triangle. */
01988   trisize = ((b->order + 1) * (b->order + 2) / 2 + (m->highorderindex - 3)) *
01989             sizeof(triangle);
01990   /* The index within each triangle at which its attributes are found, */
01991   /*   where the index is measured in floats.                           */
01992   m->elemattribindex = (trisize + sizeof(float) - 1) / sizeof(float);
01993   /* The index within each triangle at which the maximum area constraint  */
01994   /*   is found, where the index is measured in floats.  Note that if the  */
01995   /*   `regionattrib' flag is set, an additional attribute will be added. */
01996   m->areaboundindex = m->elemattribindex + m->eextras + b->regionattrib;
01997   /* If triangle attributes or an area bound are needed, increase the number */
01998   /*   of bytes occupied by a triangle.                                      */
01999   if (b->vararea) {
02000     trisize = (m->areaboundindex + 1) * sizeof(float);
02001   } else if (m->eextras + b->regionattrib > 0) {
02002     trisize = m->areaboundindex * sizeof(float);
02003   }
02004   /* If a Voronoi diagram or triangle neighbor graph is requested, make    */
02005   /*   sure there's room to store an integer index in each triangle.  This */
02006   /*   integer index can occupy the same space as the subsegment pointers  */
02007   /*   or attributes or area constraint or extra nodes.                    */
02008   if ((b->voronoi || b->neighbors) &&
02009       (trisize < 6 * sizeof(triangle) + sizeof(int))) {
02010     trisize = 6 * sizeof(triangle) + sizeof(int);
02011   }
02012 
02013   /* Having determined the memory size of a triangle, initialize the pool. */
02014   poolinit(&m->triangles, trisize, TRIPERBLOCK,
02015            (2 * m->invertices - 2) > TRIPERBLOCK ? (2 * m->invertices - 2) :
02016            TRIPERBLOCK, 4);
02017 
02018   if (b->usesegments) {
02019     /* Initialize the pool of subsegments.  Take into account all eight */
02020     /*   pointers and one boundary marker.                              */
02021     poolinit(&m->subsegs, 8 * sizeof(triangle) + sizeof(int),
02022              SUBSEGPERBLOCK, SUBSEGPERBLOCK, 4);
02023 
02024     /* Initialize the "outer space" triangle and omnipresent subsegment. */
02025     dummyinit(m, b, m->triangles.itembytes, m->subsegs.itembytes);
02026   } else {
02027     /* Initialize the "outer space" triangle. */
02028     dummyinit(m, b, m->triangles.itembytes, 0);
02029   }
02030 }
02031 
02032 /*****************************************************************************/
02033 /*                                                                           */
02034 /*  triangledealloc()   Deallocate space for a triangle, marking it dead.    */
02035 /*                                                                           */
02036 /*****************************************************************************/
02037 
02038 void triangledealloc(struct mesh *m, triangle *dyingtriangle)
02039 {
02040   /* Mark the triangle as dead.  This makes it possible to detect dead */
02041   /*   triangles when traversing the list of all triangles.            */
02042   killtri(dyingtriangle);
02043   pooldealloc(&m->triangles, (int *) dyingtriangle);
02044 }
02045 
02046 /*****************************************************************************/
02047 /*                                                                           */
02048 /*  triangletraverse()   Traverse the triangles, skipping dead ones.         */
02049 /*                                                                           */
02050 /*****************************************************************************/
02051 
02052 triangle *triangletraverse(struct mesh *m)
02053 {
02054   triangle *newtriangle;
02055 
02056   do {
02057     newtriangle = (triangle *) traverse(&m->triangles);
02058     if (newtriangle == (triangle *) NULL) {
02059       return (triangle *) NULL;
02060     }
02061   } while (deadtri(newtriangle));                         /* Skip dead ones. */
02062   return newtriangle;
02063 }
02064 
02065 /*****************************************************************************/
02066 /*                                                                           */
02067 /*  subsegdealloc()   Deallocate space for a subsegment, marking it dead.    */
02068 /*                                                                           */
02069 /*****************************************************************************/
02070 
02071 void subsegdealloc(struct mesh *m, subseg *dyingsubseg)
02072 {
02073   /* Mark the subsegment as dead.  This makes it possible to detect dead */
02074   /*   subsegments when traversing the list of all subsegments.          */
02075   killsubseg(dyingsubseg);
02076   pooldealloc(&m->subsegs, (int *) dyingsubseg);
02077 }
02078 
02079 /*****************************************************************************/
02080 /*                                                                           */
02081 /*  subsegtraverse()   Traverse the subsegments, skipping dead ones.         */
02082 /*                                                                           */
02083 /*****************************************************************************/
02084 
02085 subseg *subsegtraverse(struct mesh *m)
02086 {
02087   subseg *newsubseg;
02088 
02089   do {
02090     newsubseg = (subseg *) traverse(&m->subsegs);
02091     if (newsubseg == (subseg *) NULL) {
02092       return (subseg *) NULL;
02093     }
02094   } while (deadsubseg(newsubseg));                        /* Skip dead ones. */
02095   return newsubseg;
02096 }
02097 
02098 /*****************************************************************************/
02099 /*                                                                           */
02100 /*  vertexdealloc()   Deallocate space for a vertex, marking it dead.        */
02101 /*                                                                           */
02102 /*****************************************************************************/
02103 
02104 void vertexdealloc(struct mesh *m, vertex dyingvertex)
02105 {
02106   /* Mark the vertex as dead.  This makes it possible to detect dead */
02107   /*   vertices when traversing the list of all vertices.            */
02108   setvertextype(dyingvertex, DEADVERTEX);
02109   pooldealloc(&m->vertices, (int *) dyingvertex);
02110 }
02111 
02112 /*****************************************************************************/
02113 /*                                                                           */
02114 /*  vertextraverse()   Traverse the vertices, skipping dead ones.            */
02115 /*                                                                           */
02116 /*****************************************************************************/
02117 
02118 vertex vertextraverse(struct mesh *m)
02119 {
02120   vertex newvertex;
02121 
02122   do {
02123     newvertex = (vertex) traverse(&m->vertices);
02124     if (newvertex == (vertex) NULL) {
02125       return (vertex) NULL;
02126     }
02127   } while (vertextype(newvertex) == DEADVERTEX);          /* Skip dead ones. */
02128   return newvertex;
02129 }
02130 
02131 /*****************************************************************************/
02132 /*                                                                           */
02133 /*  getvertex()   Get a specific vertex, by number, from the list.           */
02134 /*                                                                           */
02135 /*  The first vertex is number 'firstnumber'.                                */
02136 /*                                                                           */
02137 /*  Note that this takes O(n) time (with a small constant, if VERTEXPERBLOCK */
02138 /*  is large).  I don't care to take the trouble to make it work in constant */
02139 /*  time.                                                                    */
02140 /*                                                                           */
02141 /*****************************************************************************/
02142 
02143 vertex getvertex(struct mesh *m, struct behavior *b, int number)
02144 {
02145   int **getblock;
02146   char *foundvertex;
02147   unsigned long long alignptr;
02148   int current;
02149 
02150   getblock = m->vertices.firstblock;
02151   current = b->firstnumber;
02152 
02153   /* Find the right block. */
02154   if (current + m->vertices.itemsfirstblock <= number) {
02155     getblock = (int **) *getblock;
02156     current += m->vertices.itemsfirstblock;
02157     while (current + m->vertices.itemsperblock <= number) {
02158       getblock = (int **) *getblock;
02159       current += m->vertices.itemsperblock;
02160     }
02161   }
02162 
02163   /* Now find the right vertex. */
02164   alignptr = (unsigned long long) (getblock + 1);
02165   foundvertex = (char *) (alignptr + (unsigned long long) m->vertices.alignbytes -
02166                           (alignptr % (unsigned long long) m->vertices.alignbytes));
02167   return (vertex) (foundvertex + m->vertices.itembytes * (number - current));
02168 }
02169 
02170 /*****************************************************************************/
02171 /*                                                                           */
02172 /*  triangledeinit()   Free all remaining allocated memory.                  */
02173 /*                                                                           */
02174 /*****************************************************************************/
02175 
02176 void triangledeinit(struct mesh *m, struct behavior *b)
02177 {
02178   pooldeinit(&m->triangles);
02179   trifree((int *) m->dummytribase);
02180   if (b->usesegments) {
02181     pooldeinit(&m->subsegs);
02182     trifree((int *) m->dummysubbase);
02183   }
02184   pooldeinit(&m->vertices);
02185 }
02186 
02189 /********* Memory management routines end here                       *********/
02190 
02191 /********* Constructors begin here                                   *********/
02195 /*****************************************************************************/
02196 /*                                                                           */
02197 /*  maketriangle()   Create a new triangle with orientation zero.            */
02198 /*                                                                           */
02199 /*****************************************************************************/
02200 
02201 void maketriangle(struct mesh *m, struct behavior *b, struct otri *newotri)
02202 {
02203   int i;
02204 
02205   newotri->tri = (triangle *) poolalloc(&m->triangles);
02206   /* Initialize the three adjoining triangles to be "outer space". */
02207   newotri->tri[0] = (triangle) m->dummytri;
02208   newotri->tri[1] = (triangle) m->dummytri;
02209   newotri->tri[2] = (triangle) m->dummytri;
02210   /* Three NULL vertices. */
02211   newotri->tri[3] = (triangle) NULL;
02212   newotri->tri[4] = (triangle) NULL;
02213   newotri->tri[5] = (triangle) NULL;
02214   if (b->usesegments) {
02215     /* Initialize the three adjoining subsegments to be the omnipresent */
02216     /*   subsegment.                                                    */
02217     newotri->tri[6] = (triangle) m->dummysub;
02218     newotri->tri[7] = (triangle) m->dummysub;
02219     newotri->tri[8] = (triangle) m->dummysub;
02220   }
02221   for (i = 0; i < m->eextras; i++) {
02222     setelemattribute(*newotri, i, 0.0);
02223   }
02224   if (b->vararea) {
02225     setareabound(*newotri, -1.0);
02226   }
02227 
02228   newotri->orient = 0;
02229 }
02230 
02231 /*****************************************************************************/
02232 /*                                                                           */
02233 /*  makesubseg()   Create a new subsegment with orientation zero.            */
02234 /*                                                                           */
02235 /*****************************************************************************/
02236 
02237 void makesubseg(struct mesh *m, struct osub *newsubseg)
02238 {
02239   newsubseg->ss = (subseg *) poolalloc(&m->subsegs);
02240   /* Initialize the two adjoining subsegments to be the omnipresent */
02241   /*   subsegment.                                                  */
02242   newsubseg->ss[0] = (subseg) m->dummysub;
02243   newsubseg->ss[1] = (subseg) m->dummysub;
02244   /* Four NULL vertices. */
02245   newsubseg->ss[2] = (subseg) NULL;
02246   newsubseg->ss[3] = (subseg) NULL;
02247   newsubseg->ss[4] = (subseg) NULL;
02248   newsubseg->ss[5] = (subseg) NULL;
02249   /* Initialize the two adjoining triangles to be "outer space." */
02250   newsubseg->ss[6] = (subseg) m->dummytri;
02251   newsubseg->ss[7] = (subseg) m->dummytri;
02252   /* Set the boundary marker to zero. */
02253   setmark(*newsubseg, 0);
02254 
02255   newsubseg->ssorient = 0;
02256 }
02257 
02260 /********* Constructors end here                                     *********/
02261 
02262 /********* Geometric primitives begin here                           *********/
02266 /* The adaptive exact arithmetic geometric predicates implemented herein are */
02267 /*   described in detail in my paper, "Adaptive Precision Floating-Point     */
02268 /*   Arithmetic and Fast Robust Geometric Predicates."  See the header for a */
02269 /*   full citation.                                                          */
02270 
02271 /* Which of the following two methods of finding the absolute values is      */
02272 /*   fastest is compiler-dependent.  A few compilers can inline and optimize */
02273 /*   the fabs() call; but most will incur the overhead of a function call,   */
02274 /*   which is disastrously slow.  A faster way on IEEE machines might be to  */
02275 /*   mask the appropriate bit, but that's difficult to do in C without       */
02276 /*   forcing the value to be stored to memory (rather than be kept in the    */
02277 /*   register to which the optimizer assigned it).                           */
02278 
02279 #define Absolute(a)  ((a) >= 0.0 ? (a) : -(a))
02280 /* #define Absolute(a)  fabs(a) */
02281 
02282 /* Many of the operations are broken up into two pieces, a main part that    */
02283 /*   performs an approximate operation, and a "tail" that computes the       */
02284 /*   roundoff error of that operation.                                       */
02285 /*                                                                           */
02286 /* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),    */
02287 /*   Split(), and Two_Product() are all implemented as described in the      */
02288 /*   reference.  Each of these macros requires certain variables to be       */
02289 /*   defined in the calling routine.  The variables `bvirt', `c', `abig',    */
02290 /*   `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because   */
02291 /*   they store the result of an operation that may incur roundoff error.    */
02292 /*   The input parameter `x' (or the highest numbered `x_' parameter) must   */
02293 /*   also be declared `INEXACT'.                                             */
02294 
02295 #define Fast_Two_Sum_Tail(a, b, x, y) \
02296   bvirt = x - a; \
02297   y = b - bvirt
02298 
02299 #define Fast_Two_Sum(a, b, x, y) \
02300   x = (float) (a + b); \
02301   Fast_Two_Sum_Tail(a, b, x, y)
02302 
02303 #define Two_Sum_Tail(a, b, x, y) \
02304   bvirt = (float) (x - a); \
02305   avirt = x - bvirt; \
02306   bround = b - bvirt; \
02307   around = a - avirt; \
02308   y = around + bround
02309 
02310 #define Two_Sum(a, b, x, y) \
02311   x = (float) (a + b); \
02312   Two_Sum_Tail(a, b, x, y)
02313 
02314 #define Two_Diff_Tail(a, b, x, y) \
02315   bvirt = (float) (a - x); \
02316   avirt = x + bvirt; \
02317   bround = bvirt - b; \
02318   around = a - avirt; \
02319   y = around + bround
02320 
02321 #define Two_Diff(a, b, x, y) \
02322   x = (float) (a - b); \
02323   Two_Diff_Tail(a, b, x, y)
02324 
02325 #define Split(a, ahi, alo) \
02326   c = (float) (splitter * a); \
02327   abig = (float) (c - a); \
02328   ahi = c - abig; \
02329   alo = a - ahi
02330 
02331 #define Two_Product_Tail(a, b, x, y) \
02332   Split(a, ahi, alo); \
02333   Split(b, bhi, blo); \
02334   err1 = x - (ahi * bhi); \
02335   err2 = err1 - (alo * bhi); \
02336   err3 = err2 - (ahi * blo); \
02337   y = (alo * blo) - err3
02338 
02339 #define Two_Product(a, b, x, y) \
02340   x = (float) (a * b); \
02341   Two_Product_Tail(a, b, x, y)
02342 
02343 /* Two_Product_Presplit() is Two_Product() where one of the inputs has       */
02344 /*   already been split.  Avoids redundant splitting.                        */
02345 
02346 #define Two_Product_Presplit(a, b, bhi, blo, x, y) \
02347   x = (float) (a * b); \
02348   Split(a, ahi, alo); \
02349   err1 = x - (ahi * bhi); \
02350   err2 = err1 - (alo * bhi); \
02351   err3 = err2 - (ahi * blo); \
02352   y = (alo * blo) - err3
02353 
02354 /* Square() can be done more quickly than Two_Product().                     */
02355 
02356 #define Square_Tail(a, x, y) \
02357   Split(a, ahi, alo); \
02358   err1 = x - (ahi * ahi); \
02359   err3 = err1 - ((ahi + ahi) * alo); \
02360   y = (alo * alo) - err3
02361 
02362 #define Square(a, x, y) \
02363   x = (float) (a * a); \
02364   Square_Tail(a, x, y)
02365 
02366 /* Macros for summing expansions of various fixed lengths.  These are all    */
02367 /*   unrolled versions of Expansion_Sum().                                   */
02368 
02369 #define Two_One_Sum(a1, a0, b, x2, x1, x0) \
02370   Two_Sum(a0, b , _i, x0); \
02371   Two_Sum(a1, _i, x2, x1)
02372 
02373 #define Two_One_Diff(a1, a0, b, x2, x1, x0) \
02374   Two_Diff(a0, b , _i, x0); \
02375   Two_Sum( a1, _i, x2, x1)
02376 
02377 #define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
02378   Two_One_Sum(a1, a0, b0, _j, _0, x0); \
02379   Two_One_Sum(_j, _0, b1, x3, x2, x1)
02380 
02381 #define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
02382   Two_One_Diff(a1, a0, b0, _j, _0, x0); \
02383   Two_One_Diff(_j, _0, b1, x3, x2, x1)
02384 
02385 /* Macro for multiplying a two-component expansion by a single component.    */
02386 
02387 #define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
02388   Split(b, bhi, blo); \
02389   Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
02390   Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
02391   Two_Sum(_i, _0, _k, x1); \
02392   Fast_Two_Sum(_j, _k, x3, x2)
02393 
02394 /*****************************************************************************/
02395 /*                                                                           */
02396 /*  exactinit()   Initialize the variables used for exact arithmetic.        */
02397 /*                                                                           */
02398 /*  `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in   */
02399 /*  floating-point arithmetic.  `epsilon' bounds the relative roundoff       */
02400 /*  error.  It is used for floating-point error analysis.                    */
02401 /*                                                                           */
02402 /*  `splitter' is used to split floating-point numbers into two half-        */
02403 /*  length significands for exact multiplication.                            */
02404 /*                                                                           */
02405 /*  I imagine that a highly optimizing compiler might be too smart for its   */
02406 /*  own good, and somehow cause this routine to fail, if it pretends that    */
02407 /*  floating-point arithmetic is too much like real arithmetic.              */
02408 /*                                                                           */
02409 /*  Don't change this routine unless you fully understand it.                */
02410 /*                                                                           */
02411 /*****************************************************************************/
02412 
02413 void exactinit()
02414 {
02415   float half;
02416   float check, lastcheck;
02417   int every_other;
02418   every_other = 1;
02419   half = 0.5;
02420   epsilon = 1.0;
02421   splitter = 1.0;
02422   check = 1.0;
02423   /* Repeatedly divide `epsilon' by two until it is too small to add to      */
02424   /*   one without causing roundoff.  (Also check if the sum is equal to     */
02425   /*   the previous sum, for machines that round up instead of using exact   */
02426   /*   rounding.  Not that these routines will work on such machines.)       */
02427   do {
02428     lastcheck = check;
02429     epsilon *= half;
02430     if (every_other) {
02431       splitter *= 2.0;
02432     }
02433     every_other = !every_other;
02434     check = 1.0 + epsilon;
02435   } while ((check != 1.0) && (check != lastcheck));
02436   splitter += 1.0;
02437   /* Error bounds for orientation and incircle tests. */
02438   resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
02439   ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
02440   ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
02441   ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
02442   iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
02443   iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
02444   iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
02445   o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
02446   o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
02447   o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
02448 }
02449 
02450 /*****************************************************************************/
02451 /*                                                                           */
02452 /*  fast_expansion_sum_zeroelim()   Sum two expansions, eliminating zero     */
02453 /*                                  components from the output expansion.    */
02454 /*                                                                           */
02455 /*  Sets h = e + f.  See my Robust Predicates paper for details.             */
02456 /*                                                                           */
02457 /*  If round-to-even is used (as with IEEE 754), maintains the strongly      */
02458 /*  nonoverlapping property.  (That is, if e is strongly nonoverlapping, h   */
02459 /*  will be also.)  Does NOT maintain the nonoverlapping or nonadjacent      */
02460 /*  properties.                                                              */
02461 /*                                                                           */
02462 /*****************************************************************************/
02463 
02464 int fast_expansion_sum_zeroelim(int elen, float *e, int flen, float *f, float *h)
02465 {
02466   float Q;
02467   float Qnew;
02468   float hh;
02469   float bvirt;
02470   float avirt, bround, around;
02471   int eindex, findex, hindex;
02472   float enow, fnow;
02473 
02474   enow = e[0];
02475   fnow = f[0];
02476   eindex = findex = 0;
02477   if ((fnow > enow) == (fnow > -enow)) {
02478     Q = enow;
02479     enow = e[++eindex];
02480   } else {
02481     Q = fnow;
02482     fnow = f[++findex];
02483   }
02484   hindex = 0;
02485   if ((eindex < elen) && (findex < flen)) {
02486     if ((fnow > enow) == (fnow > -enow)) {
02487       Fast_Two_Sum(enow, Q, Qnew, hh);
02488       enow = e[++eindex];
02489     } else {
02490       Fast_Two_Sum(fnow, Q, Qnew, hh);
02491       fnow = f[++findex];
02492     }
02493     Q = Qnew;
02494     if (hh != 0.0) {
02495       h[hindex++] = hh;
02496     }
02497     while ((eindex < elen) && (findex < flen)) {
02498       if ((fnow > enow) == (fnow > -enow)) {
02499         Two_Sum(Q, enow, Qnew, hh);
02500         enow = e[++eindex];
02501       } else {
02502         Two_Sum(Q, fnow, Qnew, hh);
02503         fnow = f[++findex];
02504       }
02505       Q = Qnew;
02506       if (hh != 0.0) {
02507         h[hindex++] = hh;
02508       }
02509     }
02510   }
02511   while (eindex < elen) {
02512     Two_Sum(Q, enow, Qnew, hh);
02513     enow = e[++eindex];
02514     Q = Qnew;
02515     if (hh != 0.0) {
02516       h[hindex++] = hh;
02517     }
02518   }
02519   while (findex < flen) {
02520     Two_Sum(Q, fnow, Qnew, hh);
02521     fnow = f[++findex];
02522     Q = Qnew;
02523     if (hh != 0.0) {
02524       h[hindex++] = hh;
02525     }
02526   }
02527   if ((Q != 0.0) || (hindex == 0)) {
02528     h[hindex++] = Q;
02529   }
02530   return hindex;
02531 }
02532 
02533 /*****************************************************************************/
02534 /*                                                                           */
02535 /*  scale_expansion_zeroelim()   Multiply an expansion by a scalar,          */
02536 /*                               eliminating zero components from the        */
02537 /*                               output expansion.                           */
02538 /*                                                                           */
02539 /*  Sets h = be.  See my Robust Predicates paper for details.                */
02540 /*                                                                           */
02541 /*  Maintains the nonoverlapping property.  If round-to-even is used (as     */
02542 /*  with IEEE 754), maintains the strongly nonoverlapping and nonadjacent    */
02543 /*  properties as well.  (That is, if e has one of these properties, so      */
02544 /*  will h.)                                                                 */
02545 /*                                                                           */
02546 /*****************************************************************************/
02547 
02548 int scale_expansion_zeroelim(int elen, float *e, float b, float *h)
02549 {
02550   float Q, sum;
02551   float hh;
02552   float product1;
02553   float product0;
02554   int eindex, hindex;
02555   float enow;
02556   float bvirt;
02557   float avirt, bround, around;
02558   float c;
02559   float abig;
02560   float ahi, alo, bhi, blo;
02561   float err1, err2, err3;
02562 
02563   Split(b, bhi, blo);
02564   Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
02565   hindex = 0;
02566   if (hh != 0) {
02567     h[hindex++] = hh;
02568   }
02569   for (eindex = 1; eindex < elen; eindex++) {
02570     enow = e[eindex];
02571     Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
02572     Two_Sum(Q, product0, sum, hh);
02573     if (hh != 0) {
02574       h[hindex++] = hh;
02575     }
02576     Fast_Two_Sum(product1, sum, Q, hh);
02577     if (hh != 0) {
02578       h[hindex++] = hh;
02579     }
02580   }
02581   if ((Q != 0.0) || (hindex == 0)) {
02582     h[hindex++] = Q;
02583   }
02584   return hindex;
02585 }
02586 
02587 /*****************************************************************************/
02588 /*                                                                           */
02589 /*  estimate()   Produce a one-word estimate of an expansion's value.        */
02590 /*                                                                           */
02591 /*  See my Robust Predicates paper for details.                              */
02592 /*                                                                           */
02593 /*****************************************************************************/
02594 
02595 float estimate(int elen, float *e)
02596 {
02597   float Q;
02598   int eindex;
02599   Q = e[0];
02600   for (eindex = 1; eindex < elen; eindex++) {
02601     Q += e[eindex];
02602   }
02603   return Q;
02604 }
02605 
02606 /*****************************************************************************/
02607 /*                                                                           */
02608 /*  counterclockwise()   Return a positive value if the points pa, pb, and   */
02609 /*                       pc occur in counterclockwise order; a negative      */
02610 /*                       value if they occur in clockwise order; and zero    */
02611 /*                       if they are collinear.  The result is also a rough  */
02612 /*                       approximation of twice the signed area of the       */
02613 /*                       triangle defined by the three points.               */
02614 /*                                                                           */
02615 /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
02616 /*  result returned is the determinant of a matrix.  This determinant is     */
02617 /*  computed adaptively, in the sense that exact arithmetic is used only to  */
02618 /*  the degree it is needed to ensure that the returned value has the        */
02619 /*  correct sign.  Hence, this function is usually quite fast, but will run  */
02620 /*  more slowly when the input points are collinear or nearly so.            */
02621 /*                                                                           */
02622 /*  See my Robust Predicates paper for details.                              */
02623 /*                                                                           */
02624 /*****************************************************************************/
02625 
02626 float counterclockwiseadapt(vertex pa, vertex pb, vertex pc, float detsum)
02627 {
02628   float acx, acy, bcx, bcy;
02629   float acxtail, acytail, bcxtail, bcytail;
02630   float detleft, detright;
02631   float detlefttail, detrighttail;
02632   float det, errbound;
02633   float B[4], C1[8], C2[12], D[16];
02634   float B3;
02635   int C1length, C2length, Dlength;
02636   float u[4];
02637   float u3;
02638   float s1, t1;
02639   float s0, t0;
02640 
02641   float bvirt;
02642   float avirt, bround, around;
02643   float c;
02644   float abig;
02645   float ahi, alo, bhi, blo;
02646   float err1, err2, err3;
02647   float _i, _j;
02648   float _0;
02649 
02650   acx = (float) (pa[0] - pc[0]);
02651   bcx = (float) (pb[0] - pc[0]);
02652   acy = (float) (pa[1] - pc[1]);
02653   bcy = (float) (pb[1] - pc[1]);
02654 
02655   Two_Product(acx, bcy, detleft, detlefttail);
02656   Two_Product(acy, bcx, detright, detrighttail);
02657 
02658   Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
02659                B3, B[2], B[1], B[0]);
02660   B[3] = B3;
02661 
02662   det = estimate(4, B);
02663   errbound = ccwerrboundB * detsum;
02664   if ((det >= errbound) || (-det >= errbound)) {
02665     return det;
02666   }
02667 
02668   Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
02669   Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
02670   Two_Diff_Tail(pa[1], pc[1], acy, acytail);
02671   Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
02672 
02673   if ((acxtail == 0.0) && (acytail == 0.0)
02674       && (bcxtail == 0.0) && (bcytail == 0.0)) {
02675     return det;
02676   }
02677 
02678   errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
02679   det += (acx * bcytail + bcy * acxtail)
02680        - (acy * bcxtail + bcx * acytail);
02681   if ((det >= errbound) || (-det >= errbound)) {
02682     return det;
02683   }
02684 
02685   Two_Product(acxtail, bcy, s1, s0);
02686   Two_Product(acytail, bcx, t1, t0);
02687   Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
02688   u[3] = u3;
02689   C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
02690 
02691   Two_Product(acx, bcytail, s1, s0);
02692   Two_Product(acy, bcxtail, t1, t0);
02693   Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
02694   u[3] = u3;
02695   C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
02696 
02697   Two_Product(acxtail, bcytail, s1, s0);
02698   Two_Product(acytail, bcxtail, t1, t0);
02699   Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
02700   u[3] = u3;
02701   Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
02702 
02703   return(D[Dlength - 1]);
02704 }
02705 
02706 float counterclockwise(struct mesh *m, struct behavior *b,
02707                       vertex pa, vertex pb, vertex pc)
02708 {
02709   float detleft, detright, det;
02710   float detsum, errbound;
02711 
02712   m->counterclockcount++;
02713 
02714   detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
02715   detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
02716   det = detleft - detright;
02717 
02718   if (b->noexact) {
02719     return det;
02720   }
02721 
02722   if (detleft > 0.0) {
02723     if (detright <= 0.0) {
02724       return det;
02725     } else {
02726       detsum = detleft + detright;
02727     }
02728   } else if (detleft < 0.0) {
02729     if (detright >= 0.0) {
02730       return det;
02731     } else {
02732       detsum = -detleft - detright;
02733     }
02734   } else {
02735     return det;
02736   }
02737 
02738   errbound = ccwerrboundA * detsum;
02739   if ((det >= errbound) || (-det >= errbound)) {
02740     return det;
02741   }
02742 
02743   return counterclockwiseadapt(pa, pb, pc, detsum);
02744 }
02745 
02746 /*****************************************************************************/
02747 /*                                                                           */
02748 /*  incircle()   Return a positive value if the point pd lies inside the     */
02749 /*               circle passing through pa, pb, and pc; a negative value if  */
02750 /*               it lies outside; and zero if the four points are cocircular.*/
02751 /*               The points pa, pb, and pc must be in counterclockwise       */
02752 /*               order, or the sign of the result will be reversed.          */
02753 /*                                                                           */
02754 /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
02755 /*  result returned is the determinant of a matrix.  This determinant is     */
02756 /*  computed adaptively, in the sense that exact arithmetic is used only to  */
02757 /*  the degree it is needed to ensure that the returned value has the        */
02758 /*  correct sign.  Hence, this function is usually quite fast, but will run  */
02759 /*  more slowly when the input points are cocircular or nearly so.           */
02760 /*                                                                           */
02761 /*  See my Robust Predicates paper for details.                              */
02762 /*                                                                           */
02763 /*****************************************************************************/
02764 
02765 float incircleadapt(vertex pa, vertex pb, vertex pc, vertex pd, float permanent)
02766 {
02767   float adx, bdx, cdx, ady, bdy, cdy;
02768   float det, errbound;
02769 
02770   float bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
02771   float bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
02772   float bc[4], ca[4], ab[4];
02773   float bc3, ca3, ab3;
02774   float axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
02775   int axbclen, axxbclen, aybclen, ayybclen, alen;
02776   float bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
02777   int bxcalen, bxxcalen, bycalen, byycalen, blen;
02778   float cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
02779   int cxablen, cxxablen, cyablen, cyyablen, clen;
02780   float abdet[64];
02781   int ablen;
02782   float fin1[1152], fin2[1152];
02783   float *finnow, *finother, *finswap;
02784   int finlength;
02785 
02786   float adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
02787   float adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
02788   float adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
02789   float aa[4], bb[4], cc[4];
02790   float aa3, bb3, cc3;
02791   float ti1, tj1;
02792   float ti0, tj0;
02793   float u[4], v[4];
02794   float u3, v3;
02795   float temp8[8], temp16a[16], temp16b[16], temp16c[16];
02796   float temp32a[32], temp32b[32], temp48[48], temp64[64];
02797   int temp8len, temp16alen, temp16blen, temp16clen;
02798   int temp32alen, temp32blen, temp48len, temp64len;
02799   float axtbb[8], axtcc[8], aytbb[8], aytcc[8];
02800   int axtbblen, axtcclen, aytbblen, aytcclen;
02801   float bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
02802   int bxtaalen, bxtcclen, bytaalen, bytcclen;
02803   float cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
02804   int cxtaalen, cxtbblen, cytaalen, cytbblen;
02805   float axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
02806   int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
02807   float axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
02808   int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
02809   float axtbctt[8], aytbctt[8], bxtcatt[8];
02810   float bytcatt[8], cxtabtt[8], cytabtt[8];
02811   int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
02812   float abt[8], bct[8], cat[8];
02813   int abtlen, bctlen, catlen;
02814   float abtt[4], bctt[4], catt[4];
02815   int abttlen, bcttlen, cattlen;
02816   float abtt3, bctt3, catt3;
02817   float negate;
02818 
02819   float bvirt;
02820   float avirt, bround, around;
02821   float c;
02822   float abig;
02823   float ahi, alo, bhi, blo;
02824   float err1, err2, err3;
02825   float _i, _j;
02826   float _0;
02827 
02828   adx = (float) (pa[0] - pd[0]);
02829   bdx = (float) (pb[0] - pd[0]);
02830   cdx = (float) (pc[0] - pd[0]);
02831   ady = (float) (pa[1] - pd[1]);
02832   bdy = (float) (pb[1] - pd[1]);
02833   cdy = (float) (pc[1] - pd[1]);
02834 
02835   Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
02836   Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
02837   Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
02838   bc[3] = bc3;
02839   axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
02840   axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
02841   aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
02842   ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
02843   alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
02844 
02845   Two_Product(cdx, ady, cdxady1, cdxady0);
02846   Two_Product(adx, cdy, adxcdy1, adxcdy0);
02847   Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
02848   ca[3] = ca3;
02849   bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
02850   bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
02851   bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
02852   byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
02853   blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
02854 
02855   Two_Product(adx, bdy, adxbdy1, adxbdy0);
02856   Two_Product(bdx, ady, bdxady1, bdxady0);
02857   Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
02858   ab[3] = ab3;
02859   cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
02860   cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
02861   cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
02862   cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
02863   clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
02864 
02865   ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
02866   finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
02867 
02868   det = estimate(finlength, fin1);
02869   errbound = iccerrboundB * permanent;
02870   if ((det >= errbound) || (-det >= errbound)) {
02871     return det;
02872   }
02873 
02874   Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
02875   Two_Diff_Tail(pa[1], pd[1], ady, adytail);
02876   Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
02877   Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
02878   Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
02879   Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
02880   if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
02881       && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
02882     return det;
02883   }
02884 
02885   errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
02886   det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
02887                                      - (bdy * cdxtail + cdx * bdytail))
02888           + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
02889        + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
02890                                      - (cdy * adxtail + adx * cdytail))
02891           + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
02892        + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
02893                                      - (ady * bdxtail + bdx * adytail))
02894           + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
02895   if ((det >= errbound) || (-det >= errbound)) {
02896     return det;
02897   }
02898 
02899   finnow = fin1;
02900   finother = fin2;
02901 
02902   if ((bdxtail != 0.0) || (bdytail != 0.0)
02903       || (cdxtail != 0.0) || (cdytail != 0.0)) {
02904     Square(adx, adxadx1, adxadx0);
02905     Square(ady, adyady1, adyady0);
02906     Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
02907     aa[3] = aa3;
02908   }
02909   if ((cdxtail != 0.0) || (cdytail != 0.0)
02910       || (adxtail != 0.0) || (adytail != 0.0)) {
02911     Square(bdx, bdxbdx1, bdxbdx0);
02912     Square(bdy, bdybdy1, bdybdy0);
02913     Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
02914     bb[3] = bb3;
02915   }
02916   if ((adxtail != 0.0) || (adytail != 0.0)
02917       || (bdxtail != 0.0) || (bdytail != 0.0)) {
02918     Square(cdx, cdxcdx1, cdxcdx0);
02919     Square(cdy, cdycdy1, cdycdy0);
02920     Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
02921     cc[3] = cc3;
02922   }
02923 
02924   if (adxtail != 0.0) {
02925     axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
02926     temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,
02927                                           temp16a);
02928 
02929     axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
02930     temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
02931 
02932     axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
02933     temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
02934 
02935     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
02936                                             temp16blen, temp16b, temp32a);
02937     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
02938                                             temp32alen, temp32a, temp48);
02939     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
02940                                             temp48, finother);
02941     finswap = finnow; finnow = finother; finother = finswap;
02942   }
02943   if (adytail != 0.0) {
02944     aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
02945     temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,
02946                                           temp16a);
02947 
02948     aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
02949     temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
02950 
02951     aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
02952     temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
02953 
02954     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
02955                                             temp16blen, temp16b, temp32a);
02956     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
02957                                             temp32alen, temp32a, temp48);
02958     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
02959                                             temp48, finother);
02960     finswap = finnow; finnow = finother; finother = finswap;
02961   }
02962   if (bdxtail != 0.0) {
02963     bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
02964     temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,
02965                                           temp16a);
02966 
02967     bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
02968     temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
02969 
02970     bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
02971     temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
02972 
02973     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
02974                                             temp16blen, temp16b, temp32a);
02975     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
02976                                             temp32alen, temp32a, temp48);
02977     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
02978                                             temp48, finother);
02979     finswap = finnow; finnow = finother; finother = finswap;
02980   }
02981   if (bdytail != 0.0) {
02982     bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
02983     temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,
02984                                           temp16a);
02985 
02986     bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
02987     temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
02988 
02989     bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
02990     temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
02991 
02992     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
02993                                             temp16blen, temp16b, temp32a);
02994     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
02995                                             temp32alen, temp32a, temp48);
02996     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
02997                                             temp48, finother);
02998     finswap = finnow; finnow = finother; finother = finswap;
02999   }
03000   if (cdxtail != 0.0) {
03001     cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
03002     temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,
03003                                           temp16a);
03004 
03005     cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
03006     temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
03007 
03008     cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
03009     temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
03010 
03011     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03012                                             temp16blen, temp16b, temp32a);
03013     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
03014                                             temp32alen, temp32a, temp48);
03015     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
03016                                             temp48, finother);
03017     finswap = finnow; finnow = finother; finother = finswap;
03018   }
03019   if (cdytail != 0.0) {
03020     cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
03021     temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,
03022                                           temp16a);
03023 
03024     cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
03025     temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
03026 
03027     cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
03028     temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
03029 
03030     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03031                                             temp16blen, temp16b, temp32a);
03032     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
03033                                             temp32alen, temp32a, temp48);
03034     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
03035                                             temp48, finother);
03036     finswap = finnow; finnow = finother; finother = finswap;
03037   }
03038 
03039   if ((adxtail != 0.0) || (adytail != 0.0)) {
03040     if ((bdxtail != 0.0) || (bdytail != 0.0)
03041         || (cdxtail != 0.0) || (cdytail != 0.0)) {
03042       Two_Product(bdxtail, cdy, ti1, ti0);
03043       Two_Product(bdx, cdytail, tj1, tj0);
03044       Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
03045       u[3] = u3;
03046       negate = -bdy;
03047       Two_Product(cdxtail, negate, ti1, ti0);
03048       negate = -bdytail;
03049       Two_Product(cdx, negate, tj1, tj0);
03050       Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
03051       v[3] = v3;
03052       bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
03053 
03054       Two_Product(bdxtail, cdytail, ti1, ti0);
03055       Two_Product(cdxtail, bdytail, tj1, tj0);
03056       Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
03057       bctt[3] = bctt3;
03058       bcttlen = 4;
03059     } else {
03060       bct[0] = 0.0;
03061       bctlen = 1;
03062       bctt[0] = 0.0;
03063       bcttlen = 1;
03064     }
03065 
03066     if (adxtail != 0.0) {
03067       temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
03068       axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
03069       temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,
03070                                             temp32a);
03071       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03072                                               temp32alen, temp32a, temp48);
03073       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
03074                                               temp48, finother);
03075       finswap = finnow; finnow = finother; finother = finswap;
03076       if (bdytail != 0.0) {
03077         temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
03078         temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
03079                                               temp16a);
03080         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
03081                                                 temp16a, finother);
03082         finswap = finnow; finnow = finother; finother = finswap;
03083       }
03084       if (cdytail != 0.0) {
03085         temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
03086         temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
03087                                               temp16a);
03088         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
03089                                                 temp16a, finother);
03090         finswap = finnow; finnow = finother; finother = finswap;
03091       }
03092 
03093       temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,
03094                                             temp32a);
03095       axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
03096       temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,
03097                                             temp16a);
03098       temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,
03099                                             temp16b);
03100       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03101                                               temp16blen, temp16b, temp32b);
03102       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
03103                                               temp32blen, temp32b, temp64);
03104       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
03105                                               temp64, finother);
03106       finswap = finnow; finnow = finother; finother = finswap;
03107     }
03108     if (adytail != 0.0) {
03109       temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
03110       aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
03111       temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,
03112                                             temp32a);
03113       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03114                                               temp32alen, temp32a, temp48);
03115       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
03116                                               temp48, finother);
03117       finswap = finnow; finnow = finother; finother = finswap;
03118 
03119 
03120       temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,
03121                                             temp32a);
03122       aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
03123       temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,
03124                                             temp16a);
03125       temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,
03126                                             temp16b);
03127       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03128                                               temp16blen, temp16b, temp32b);
03129       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
03130                                               temp32blen, temp32b, temp64);
03131       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
03132                                               temp64, finother);
03133       finswap = finnow; finnow = finother; finother = finswap;
03134     }
03135   }
03136   if ((bdxtail != 0.0) || (bdytail != 0.0)) {
03137     if ((cdxtail != 0.0) || (cdytail != 0.0)
03138         || (adxtail != 0.0) || (adytail != 0.0)) {
03139       Two_Product(cdxtail, ady, ti1, ti0);
03140       Two_Product(cdx, adytail, tj1, tj0);
03141       Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
03142       u[3] = u3;
03143       negate = -cdy;
03144       Two_Product(adxtail, negate, ti1, ti0);
03145       negate = -cdytail;
03146       Two_Product(adx, negate, tj1, tj0);
03147       Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
03148       v[3] = v3;
03149       catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
03150 
03151       Two_Product(cdxtail, adytail, ti1, ti0);
03152       Two_Product(adxtail, cdytail, tj1, tj0);
03153       Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
03154       catt[3] = catt3;
03155       cattlen = 4;
03156     } else {
03157       cat[0] = 0.0;
03158       catlen = 1;
03159       catt[0] = 0.0;
03160       cattlen = 1;
03161     }
03162 
03163     if (bdxtail != 0.0) {
03164       temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
03165       bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
03166       temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,
03167                                             temp32a);
03168       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03169                                               temp32alen, temp32a, temp48);
03170       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
03171                                               temp48, finother);
03172       finswap = finnow; finnow = finother; finother = finswap;
03173       if (cdytail != 0.0) {
03174         temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
03175         temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
03176                                               temp16a);
03177         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
03178                                                 temp16a, finother);
03179         finswap = finnow; finnow = finother; finother = finswap;
03180       }
03181       if (adytail != 0.0) {
03182         temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
03183         temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
03184                                               temp16a);
03185         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
03186                                                 temp16a, finother);
03187         finswap = finnow; finnow = finother; finother = finswap;
03188       }
03189 
03190       temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,
03191                                             temp32a);
03192       bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
03193       temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,
03194                                             temp16a);
03195       temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,
03196                                             temp16b);
03197       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03198                                               temp16blen, temp16b, temp32b);
03199       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
03200                                               temp32blen, temp32b, temp64);
03201       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
03202                                               temp64, finother);
03203       finswap = finnow; finnow = finother; finother = finswap;
03204     }
03205     if (bdytail != 0.0) {
03206       temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
03207       bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
03208       temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,
03209                                             temp32a);
03210       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03211                                               temp32alen, temp32a, temp48);
03212       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
03213                                               temp48, finother);
03214       finswap = finnow; finnow = finother; finother = finswap;
03215 
03216 
03217       temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,
03218                                             temp32a);
03219       bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
03220       temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,
03221                                             temp16a);
03222       temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,
03223                                             temp16b);
03224       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03225                                               temp16blen, temp16b, temp32b);
03226       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
03227                                               temp32blen, temp32b, temp64);
03228       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
03229                                               temp64, finother);
03230       finswap = finnow; finnow = finother; finother = finswap;
03231     }
03232   }
03233   if ((cdxtail != 0.0) || (cdytail != 0.0)) {
03234     if ((adxtail != 0.0) || (adytail != 0.0)
03235         || (bdxtail != 0.0) || (bdytail != 0.0)) {
03236       Two_Product(adxtail, bdy, ti1, ti0);
03237       Two_Product(adx, bdytail, tj1, tj0);
03238       Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
03239       u[3] = u3;
03240       negate = -ady;
03241       Two_Product(bdxtail, negate, ti1, ti0);
03242       negate = -adytail;
03243       Two_Product(bdx, negate, tj1, tj0);
03244       Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
03245       v[3] = v3;
03246       abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
03247 
03248       Two_Product(adxtail, bdytail, ti1, ti0);
03249       Two_Product(bdxtail, adytail, tj1, tj0);
03250       Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
03251       abtt[3] = abtt3;
03252       abttlen = 4;
03253     } else {
03254       abt[0] = 0.0;
03255       abtlen = 1;
03256       abtt[0] = 0.0;
03257       abttlen = 1;
03258     }
03259 
03260     if (cdxtail != 0.0) {
03261       temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
03262       cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
03263       temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,
03264                                             temp32a);
03265       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03266                                               temp32alen, temp32a, temp48);
03267       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
03268                                               temp48, finother);
03269       finswap = finnow; finnow = finother; finother = finswap;
03270       if (adytail != 0.0) {
03271         temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
03272         temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
03273                                               temp16a);
03274         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
03275                                                 temp16a, finother);
03276         finswap = finnow; finnow = finother; finother = finswap;
03277       }
03278       if (bdytail != 0.0) {
03279         temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
03280         temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
03281                                               temp16a);
03282         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
03283                                                 temp16a, finother);
03284         finswap = finnow; finnow = finother; finother = finswap;
03285       }
03286 
03287       temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,
03288                                             temp32a);
03289       cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
03290       temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,
03291                                             temp16a);
03292       temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,
03293                                             temp16b);
03294       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03295                                               temp16blen, temp16b, temp32b);
03296       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
03297                                               temp32blen, temp32b, temp64);
03298       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
03299                                               temp64, finother);
03300       finswap = finnow; finnow = finother; finother = finswap;
03301     }
03302     if (cdytail != 0.0) {
03303       temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
03304       cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
03305       temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,
03306                                             temp32a);
03307       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03308                                               temp32alen, temp32a, temp48);
03309       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
03310                                               temp48, finother);
03311       finswap = finnow; finnow = finother; finother = finswap;
03312 
03313 
03314       temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,
03315                                             temp32a);
03316       cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
03317       temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,
03318                                             temp16a);
03319       temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,
03320                                             temp16b);
03321       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
03322                                               temp16blen, temp16b, temp32b);
03323       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
03324                                               temp32blen, temp32b, temp64);
03325       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
03326                                               temp64, finother);
03327       finswap = finnow; finnow = finother; finother = finswap;
03328     }
03329   }
03330 
03331   return finnow[finlength - 1];
03332 }
03333 
03334 float incircle(struct mesh *m, struct behavior *b,
03335               vertex pa, vertex pb, vertex pc, vertex pd)
03336 {
03337   float adx, bdx, cdx, ady, bdy, cdy;
03338   float bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
03339   float alift, blift, clift;
03340   float det;
03341   float permanent, errbound;
03342 
03343   m->incirclecount++;
03344 
03345   adx = pa[0] - pd[0];
03346   bdx = pb[0] - pd[0];
03347   cdx = pc[0] - pd[0];
03348   ady = pa[1] - pd[1];
03349   bdy = pb[1] - pd[1];
03350   cdy = pc[1] - pd[1];
03351 
03352   bdxcdy = bdx * cdy;
03353   cdxbdy = cdx * bdy;
03354   alift = adx * adx + ady * ady;
03355 
03356   cdxady = cdx * ady;
03357   adxcdy = adx * cdy;
03358   blift = bdx * bdx + bdy * bdy;
03359 
03360   adxbdy = adx * bdy;
03361   bdxady = bdx * ady;
03362   clift = cdx * cdx + cdy * cdy;
03363 
03364   det = alift * (bdxcdy - cdxbdy)
03365       + blift * (cdxady - adxcdy)
03366       + clift * (adxbdy - bdxady);
03367 
03368   if (b->noexact) {
03369     return det;
03370   }
03371 
03372   permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
03373             + (Absolute(cdxady) + Absolute(adxcdy)) * blift
03374             + (Absolute(adxbdy) + Absolute(bdxady)) * clift;
03375   errbound = iccerrboundA * permanent;
03376   if ((det > errbound) || (-det > errbound)) {
03377     return det;
03378   }
03379 
03380   return incircleadapt(pa, pb, pc, pd, permanent);
03381 }
03382 
03383 /*****************************************************************************/
03384 /*                                                                           */
03385 /*  orient3d()   Return a positive value if the point pd lies below the      */
03386 /*               plane passing through pa, pb, and pc; "below" is defined so */
03387 /*               that pa, pb, and pc appear in counterclockwise order when   */
03388 /*               viewed from above the plane.  Returns a negative value if   */
03389 /*               pd lies above the plane.  Returns zero if the points are    */
03390 /*               coplanar.  The result is also a rough approximation of six  */
03391 /*               times the signed volume of the tetrahedron defined by the   */
03392 /*               four points.                                                */
03393 /*                                                                           */
03394 /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
03395 /*  result returned is the determinant of a matrix.  This determinant is     */
03396 /*  computed adaptively, in the sense that exact arithmetic is used only to  */
03397 /*  the degree it is needed to ensure that the returned value has the        */
03398 /*  correct sign.  Hence, this function is usually quite fast, but will run  */
03399 /*  more slowly when the input points are coplanar or nearly so.             */
03400 /*                                                                           */
03401 /*  See my Robust Predicates paper for details.                              */
03402 /*                                                                           */
03403 /*****************************************************************************/
03404 
03405 float orient3dadapt(vertex pa, vertex pb, vertex pc, vertex pd,
03406                    float aheight, float bheight, float cheight, float dheight,
03407                    float permanent)
03408 {
03409   float adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
03410   float det, errbound;
03411 
03412   float bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
03413   float bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
03414   float bc[4], ca[4], ab[4];
03415   float bc3, ca3, ab3;
03416   float adet[8], bdet[8], cdet[8];
03417   int alen, blen, clen;
03418   float abdet[16];
03419   int ablen;
03420   float *finnow, *finother, *finswap;
03421   float fin1[192], fin2[192];
03422   int finlength;
03423 
03424   float adxtail, bdxtail, cdxtail;
03425   float adytail, bdytail, cdytail;
03426   float adheighttail, bdheighttail, cdheighttail;
03427   float at_blarge, at_clarge;
03428   float bt_clarge, bt_alarge;
03429   float ct_alarge, ct_blarge;
03430   float at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];
03431   int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;
03432   float bdxt_cdy1, cdxt_bdy1, cdxt_ady1;
03433   float adxt_cdy1, adxt_bdy1, bdxt_ady1;
03434   float bdxt_cdy0, cdxt_bdy0, cdxt_ady0;
03435   float adxt_cdy0, adxt_bdy0, bdxt_ady0;
03436   float bdyt_cdx1, cdyt_bdx1, cdyt_adx1;
03437   float adyt_cdx1, adyt_bdx1, bdyt_adx1;
03438   float bdyt_cdx0, cdyt_bdx0, cdyt_adx0;
03439   float adyt_cdx0, adyt_bdx0, bdyt_adx0;
03440   float bct[8], cat[8], abt[8];
03441   int bctlen, catlen, abtlen;
03442   float bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;
03443   float adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;
03444   float bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;
03445   float adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;
03446   float u[4], v[12], w[16];
03447   float u3;
03448   int vlength, wlength;
03449   float negate;
03450 
03451   float bvirt;
03452   float avirt, bround, around;
03453   float c;
03454   float abig;
03455   float ahi, alo, bhi, blo;
03456   float err1, err2, err3;
03457   float _i, _j, _k;
03458   float _0;
03459 
03460   adx = (float) (pa[0] - pd[0]);
03461   bdx = (float) (pb[0] - pd[0]);
03462   cdx = (float) (pc[0] - pd[0]);
03463   ady = (float) (pa[1] - pd[1]);
03464   bdy = (float) (pb[1] - pd[1]);
03465   cdy = (float) (pc[1] - pd[1]);
03466   adheight = (float) (aheight - dheight);
03467   bdheight = (float) (bheight - dheight);
03468   cdheight = (float) (cheight - dheight);
03469 
03470   Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
03471   Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
03472   Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
03473   bc[3] = bc3;
03474   alen = scale_expansion_zeroelim(4, bc, adheight, adet);
03475 
03476   Two_Product(cdx, ady, cdxady1, cdxady0);
03477   Two_Product(adx, cdy, adxcdy1, adxcdy0);
03478   Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
03479   ca[3] = ca3;
03480   blen = scale_expansion_zeroelim(4, ca, bdheight, bdet);
03481 
03482   Two_Product(adx, bdy, adxbdy1, adxbdy0);
03483   Two_Product(bdx, ady, bdxady1, bdxady0);
03484   Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
03485   ab[3] = ab3;
03486   clen = scale_expansion_zeroelim(4, ab, cdheight, cdet);
03487 
03488   ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
03489   finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
03490 
03491   det = estimate(finlength, fin1);
03492   errbound = o3derrboundB * permanent;
03493   if ((det >= errbound) || (-det >= errbound)) {
03494     return det;
03495   }
03496 
03497   Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
03498   Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
03499   Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
03500   Two_Diff_Tail(pa[1], pd[1], ady, adytail);
03501   Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
03502   Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
03503   Two_Diff_Tail(aheight, dheight, adheight, adheighttail);
03504   Two_Diff_Tail(bheight, dheight, bdheight, bdheighttail);
03505   Two_Diff_Tail(cheight, dheight, cdheight, cdheighttail);
03506 
03507   if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) &&
03508       (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) &&
03509       (adheighttail == 0.0) &&
03510       (bdheighttail == 0.0) &&
03511       (cdheighttail == 0.0)) {
03512     return det;
03513   }
03514 
03515   errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);
03516   det += (adheight * ((bdx * cdytail + cdy * bdxtail) -
03517                       (bdy * cdxtail + cdx * bdytail)) +
03518           adheighttail * (bdx * cdy - bdy * cdx)) +
03519          (bdheight * ((cdx * adytail + ady * cdxtail) -
03520                       (cdy * adxtail + adx * cdytail)) +
03521           bdheighttail * (cdx * ady - cdy * adx)) +
03522          (cdheight * ((adx * bdytail + bdy * adxtail) -
03523                       (ady * bdxtail + bdx * adytail)) +
03524           cdheighttail * (adx * bdy - ady * bdx));
03525   if ((det >= errbound) || (-det >= errbound)) {
03526     return det;
03527   }
03528 
03529   finnow = fin1;
03530   finother = fin2;
03531 
03532   if (adxtail == 0.0) {
03533     if (adytail == 0.0) {
03534       at_b[0] = 0.0;
03535       at_blen = 1;
03536       at_c[0] = 0.0;
03537       at_clen = 1;
03538     } else {
03539       negate = -adytail;
03540       Two_Product(negate, bdx, at_blarge, at_b[0]);
03541       at_b[1] = at_blarge;
03542       at_blen = 2;
03543       Two_Product(adytail, cdx, at_clarge, at_c[0]);
03544       at_c[1] = at_clarge;
03545       at_clen = 2;
03546     }
03547   } else {
03548     if (adytail == 0.0) {
03549       Two_Product(adxtail, bdy, at_blarge, at_b[0]);
03550       at_b[1] = at_blarge;
03551       at_blen = 2;
03552       negate = -adxtail;
03553       Two_Product(negate, cdy, at_clarge, at_c[0]);
03554       at_c[1] = at_clarge;
03555       at_clen = 2;
03556     } else {
03557       Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);
03558       Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);
03559       Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0,
03560                    at_blarge, at_b[2], at_b[1], at_b[0]);
03561       at_b[3] = at_blarge;
03562       at_blen = 4;
03563       Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);
03564       Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);
03565       Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0,
03566                    at_clarge, at_c[2], at_c[1], at_c[0]);
03567       at_c[3] = at_clarge;
03568       at_clen = 4;
03569     }
03570   }
03571   if (bdxtail == 0.0) {
03572     if (bdytail == 0.0) {
03573       bt_c[0] = 0.0;
03574       bt_clen = 1;
03575       bt_a[0] = 0.0;
03576       bt_alen = 1;
03577     } else {
03578       negate = -bdytail;
03579       Two_Product(negate, cdx, bt_clarge, bt_c[0]);
03580       bt_c[1] = bt_clarge;
03581       bt_clen = 2;
03582       Two_Product(bdytail, adx, bt_alarge, bt_a[0]);
03583       bt_a[1] = bt_alarge;
03584       bt_alen = 2;
03585     }
03586   } else {
03587     if (bdytail == 0.0) {
03588       Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);
03589       bt_c[1] = bt_clarge;
03590       bt_clen = 2;
03591       negate = -bdxtail;
03592       Two_Product(negate, ady, bt_alarge, bt_a[0]);
03593       bt_a[1] = bt_alarge;
03594       bt_alen = 2;
03595     } else {
03596       Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);
03597       Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);
03598       Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0,
03599                    bt_clarge, bt_c[2], bt_c[1], bt_c[0]);
03600       bt_c[3] = bt_clarge;
03601       bt_clen = 4;
03602       Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);
03603       Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);
03604       Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0,
03605                   bt_alarge, bt_a[2], bt_a[1], bt_a[0]);
03606       bt_a[3] = bt_alarge;
03607       bt_alen = 4;
03608     }
03609   }
03610   if (cdxtail == 0.0) {
03611     if (cdytail == 0.0) {
03612       ct_a[0] = 0.0;
03613       ct_alen = 1;
03614       ct_b[0] = 0.0;
03615       ct_blen = 1;
03616     } else {
03617       negate = -cdytail;
03618       Two_Product(negate, adx, ct_alarge, ct_a[0]);
03619       ct_a[1] = ct_alarge;
03620       ct_alen = 2;
03621       Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);
03622       ct_b[1] = ct_blarge;
03623       ct_blen = 2;
03624     }
03625   } else {
03626     if (cdytail == 0.0) {
03627       Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);
03628       ct_a[1] = ct_alarge;
03629       ct_alen = 2;
03630       negate = -cdxtail;
03631       Two_Product(negate, bdy, ct_blarge, ct_b[0]);
03632       ct_b[1] = ct_blarge;
03633       ct_blen = 2;
03634     } else {
03635       Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);
03636       Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);
03637       Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0,
03638                    ct_alarge, ct_a[2], ct_a[1], ct_a[0]);
03639       ct_a[3] = ct_alarge;
03640       ct_alen = 4;
03641       Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);
03642       Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);
03643       Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0,
03644                    ct_blarge, ct_b[2], ct_b[1], ct_b[0]);
03645       ct_b[3] = ct_blarge;
03646       ct_blen = 4;
03647     }
03648   }
03649 
03650   bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);
03651   wlength = scale_expansion_zeroelim(bctlen, bct, adheight, w);
03652   finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
03653                                           finother);
03654   finswap = finnow; finnow = finother; finother = finswap;
03655 
03656   catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);
03657   wlength = scale_expansion_zeroelim(catlen, cat, bdheight, w);
03658   finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
03659                                           finother);
03660   finswap = finnow; finnow = finother; finother = finswap;
03661 
03662   abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);
03663   wlength = scale_expansion_zeroelim(abtlen, abt, cdheight, w);
03664   finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
03665                                           finother);
03666   finswap = finnow; finnow = finother; finother = finswap;
03667 
03668   if (adheighttail != 0.0) {
03669     vlength = scale_expansion_zeroelim(4, bc, adheighttail, v);
03670     finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
03671                                             finother);
03672     finswap = finnow; finnow = finother; finother = finswap;
03673   }
03674   if (bdheighttail != 0.0) {
03675     vlength = scale_expansion_zeroelim(4, ca, bdheighttail, v);
03676     finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
03677                                             finother);
03678     finswap = finnow; finnow = finother; finother = finswap;
03679   }
03680   if (cdheighttail != 0.0) {
03681     vlength = scale_expansion_zeroelim(4, ab, cdheighttail, v);
03682     finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
03683                                             finother);
03684     finswap = finnow; finnow = finother; finother = finswap;
03685   }
03686 
03687   if (adxtail != 0.0) {
03688     if (bdytail != 0.0) {
03689       Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);
03690       Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheight, u3, u[2], u[1], u[0]);
03691       u[3] = u3;
03692       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03693                                               finother);
03694       finswap = finnow; finnow = finother; finother = finswap;
03695       if (cdheighttail != 0.0) {
03696         Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheighttail,
03697                         u3, u[2], u[1], u[0]);
03698         u[3] = u3;
03699         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03700                                                 finother);
03701         finswap = finnow; finnow = finother; finother = finswap;
03702       }
03703     }
03704     if (cdytail != 0.0) {
03705       negate = -adxtail;
03706       Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);
03707       Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheight, u3, u[2], u[1], u[0]);
03708       u[3] = u3;
03709       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03710                                               finother);
03711       finswap = finnow; finnow = finother; finother = finswap;
03712       if (bdheighttail != 0.0) {
03713         Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheighttail,
03714                         u3, u[2], u[1], u[0]);
03715         u[3] = u3;
03716         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03717                                                 finother);
03718         finswap = finnow; finnow = finother; finother = finswap;
03719       }
03720     }
03721   }
03722   if (bdxtail != 0.0) {
03723     if (cdytail != 0.0) {
03724       Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);
03725       Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheight, u3, u[2], u[1], u[0]);
03726       u[3] = u3;
03727       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03728                                               finother);
03729       finswap = finnow; finnow = finother; finother = finswap;
03730       if (adheighttail != 0.0) {
03731         Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheighttail,
03732                         u3, u[2], u[1], u[0]);
03733         u[3] = u3;
03734         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03735                                                 finother);
03736         finswap = finnow; finnow = finother; finother = finswap;
03737       }
03738     }
03739     if (adytail != 0.0) {
03740       negate = -bdxtail;
03741       Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);
03742       Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheight, u3, u[2], u[1], u[0]);
03743       u[3] = u3;
03744       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03745                                               finother);
03746       finswap = finnow; finnow = finother; finother = finswap;
03747       if (cdheighttail != 0.0) {
03748         Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheighttail,
03749                         u3, u[2], u[1], u[0]);
03750         u[3] = u3;
03751         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03752                                                 finother);
03753         finswap = finnow; finnow = finother; finother = finswap;
03754       }
03755     }
03756   }
03757   if (cdxtail != 0.0) {
03758     if (adytail != 0.0) {
03759       Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);
03760       Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheight, u3, u[2], u[1], u[0]);
03761       u[3] = u3;
03762       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03763                                               finother);
03764       finswap = finnow; finnow = finother; finother = finswap;
03765       if (bdheighttail != 0.0) {
03766         Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheighttail,
03767                         u3, u[2], u[1], u[0]);
03768         u[3] = u3;
03769         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03770                                                 finother);
03771         finswap = finnow; finnow = finother; finother = finswap;
03772       }
03773     }
03774     if (bdytail != 0.0) {
03775       negate = -cdxtail;
03776       Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);
03777       Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheight, u3, u[2], u[1], u[0]);
03778       u[3] = u3;
03779       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03780                                               finother);
03781       finswap = finnow; finnow = finother; finother = finswap;
03782       if (adheighttail != 0.0) {
03783         Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheighttail,
03784                         u3, u[2], u[1], u[0]);
03785         u[3] = u3;
03786         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
03787                                                 finother);
03788         finswap = finnow; finnow = finother; finother = finswap;
03789       }
03790     }
03791   }
03792 
03793   if (adheighttail != 0.0) {
03794     wlength = scale_expansion_zeroelim(bctlen, bct, adheighttail, w);
03795     finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
03796                                             finother);
03797     finswap = finnow; finnow = finother; finother = finswap;
03798   }
03799   if (bdheighttail != 0.0) {
03800     wlength = scale_expansion_zeroelim(catlen, cat, bdheighttail, w);
03801     finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
03802                                             finother);
03803     finswap = finnow; finnow = finother; finother = finswap;
03804   }
03805   if (cdheighttail != 0.0) {
03806     wlength = scale_expansion_zeroelim(abtlen, abt, cdheighttail, w);
03807     finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
03808                                             finother);
03809     finswap = finnow; finnow = finother; finother = finswap;
03810   }
03811 
03812   return finnow[finlength - 1];
03813 }
03814 
03815 float orient3d(struct mesh *m, struct behavior *b,
03816               vertex pa, vertex pb, vertex pc, vertex pd,
03817               float aheight, float bheight, float cheight, float dheight)
03818 {
03819   float adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
03820   float bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
03821   float det;
03822   float permanent, errbound;
03823 
03824   m->orient3dcount++;
03825 
03826   adx = pa[0] - pd[0];
03827   bdx = pb[0] - pd[0];
03828   cdx = pc[0] - pd[0];
03829   ady = pa[1] - pd[1];
03830   bdy = pb[1] - pd[1];
03831   cdy = pc[1] - pd[1];
03832   adheight = aheight - dheight;
03833   bdheight = bheight - dheight;
03834   cdheight = cheight - dheight;
03835 
03836   bdxcdy = bdx * cdy;
03837   cdxbdy = cdx * bdy;
03838 
03839   cdxady = cdx * ady;
03840   adxcdy = adx * cdy;
03841 
03842   adxbdy = adx * bdy;
03843   bdxady = bdx * ady;
03844 
03845   det = adheight * (bdxcdy - cdxbdy) 
03846       + bdheight * (cdxady - adxcdy)
03847       + cdheight * (adxbdy - bdxady);
03848 
03849   if (b->noexact) {
03850     return det;
03851   }
03852 
03853   permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adheight)
03854             + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdheight)
03855             + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdheight);
03856   errbound = o3derrboundA * permanent;
03857   if ((det > errbound) || (-det > errbound)) {
03858     return det;
03859   }
03860 
03861   return orient3dadapt(pa, pb, pc, pd, aheight, bheight, cheight, dheight,
03862                        permanent);
03863 }
03864 
03865 /*****************************************************************************/
03866 /*                                                                           */
03867 /*  nonregular()   Return a positive value if the point pd is incompatible   */
03868 /*                 with the circle or plane passing through pa, pb, and pc   */
03869 /*                 (meaning that pd is inside the circle or below the        */
03870 /*                 plane); a negative value if it is compatible; and zero if */
03871 /*                 the four points are cocircular/coplanar.  The points pa,  */
03872 /*                 pb, and pc must be in counterclockwise order, or the sign */
03873 /*                 of the result will be reversed.                           */
03874 /*                                                                           */
03875 /*  If the -w switch is used, the points are lifted onto the parabolic       */
03876 /*  lifting map, then they are dropped according to their weights, then the  */
03877 /*  3D orientation test is applied.  If the -W switch is used, the points'   */
03878 /*  heights are already provided, so the 3D orientation test is applied      */
03879 /*  directly.  If neither switch is used, the incircle test is applied.      */
03880 /*                                                                           */
03881 /*****************************************************************************/
03882 
03883 float nonregular(struct mesh *m, struct behavior *b,
03884                 vertex pa, vertex pb, vertex pc, vertex pd)
03885 {
03886   if (b->weighted == 0) {
03887     return incircle(m, b, pa, pb, pc, pd);
03888   } else if (b->weighted == 1) {
03889     return orient3d(m, b, pa, pb, pc, pd,
03890                     pa[0] * pa[0] + pa[1] * pa[1] - pa[2],
03891                     pb[0] * pb[0] + pb[1] * pb[1] - pb[2],
03892                     pc[0] * pc[0] + pc[1] * pc[1] - pc[2],
03893                     pd[0] * pd[0] + pd[1] * pd[1] - pd[2]);
03894   } else {
03895     return orient3d(m, b, pa, pb, pc, pd, pa[2], pb[2], pc[2], pd[2]);
03896   }
03897 }
03898 
03899 /*****************************************************************************/
03900 /*                                                                           */
03901 /*  findcircumcenter()   Find the circumcenter of a triangle.                */
03902 /*                                                                           */
03903 /*  The result is returned both in terms of x-y coordinates and xi-eta       */
03904 /*  (barycentric) coordinates.  The xi-eta coordinate system is defined in   */
03905 /*  terms of the triangle:  the origin of the triangle is the origin of the  */
03906 /*  coordinate system; the destination of the triangle is one unit along the */
03907 /*  xi axis; and the apex of the triangle is one unit along the eta axis.    */
03908 /*  This procedure also returns the square of the length of the triangle's   */
03909 /*  shortest edge.                                                           */
03910 /*                                                                           */
03911 /*****************************************************************************/
03912 
03913 void findcircumcenter(struct mesh *m, struct behavior *b,
03914                       vertex torg, vertex tdest, vertex tapex,
03915                       vertex circumcenter, float *xi, float *eta, int offcenter)
03916 {
03917   float xdo, ydo, xao, yao;
03918   float dodist, aodist, dadist;
03919   float denominator;
03920   float dx, dy, dxoff, dyoff;
03921 
03922   m->circumcentercount++;
03923 
03924   /* Compute the circumcenter of the triangle. */
03925   xdo = tdest[0] - torg[0];
03926   ydo = tdest[1] - torg[1];
03927   xao = tapex[0] - torg[0];
03928   yao = tapex[1] - torg[1];
03929   dodist = xdo * xdo + ydo * ydo;
03930   aodist = xao * xao + yao * yao;
03931   dadist = (tdest[0] - tapex[0]) * (tdest[0] - tapex[0]) +
03932            (tdest[1] - tapex[1]) * (tdest[1] - tapex[1]);
03933   if (b->noexact) {
03934     denominator = 0.5 / (xdo * yao - xao * ydo);
03935   } else {
03936     /* Use the counterclockwise() routine to ensure a positive (and */
03937     /*   reasonably accurate) result, avoiding any possibility of   */
03938     /*   division by zero.                                          */
03939     denominator = 0.5 / counterclockwise(m, b, tdest, tapex, torg);
03940     /* Don't count the above as an orientation test. */
03941     m->counterclockcount--;
03942   }
03943   dx = (yao * dodist - ydo * aodist) * denominator;
03944   dy = (xdo * aodist - xao * dodist) * denominator;
03945 
03946   /* Find the (squared) length of the triangle's shortest edge.  This   */
03947   /*   serves as a conservative estimate of the insertion radius of the */
03948   /*   circumcenter's parent.  The estimate is used to ensure that      */
03949   /*   the algorithm terminates even if very small angles appear in     */
03950   /*   the input PSLG.                                                  */
03951   if ((dodist < aodist) && (dodist < dadist)) {
03952     if (offcenter && (b->offconstant > 0.0)) {
03953       /* Find the position of the off-center, as described by Alper Ungor. */
03954       dxoff = 0.5 * xdo - b->offconstant * ydo;
03955       dyoff = 0.5 * ydo + b->offconstant * xdo;
03956       /* If the off-center is closer to the origin than the */
03957       /*   circumcenter, use the off-center instead.        */
03958       if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
03959         dx = dxoff;
03960         dy = dyoff;
03961       }
03962     }
03963   } else if (aodist < dadist) {
03964     if (offcenter && (b->offconstant > 0.0)) {
03965       dxoff = 0.5 * xao + b->offconstant * yao;
03966       dyoff = 0.5 * yao - b->offconstant * xao;
03967       /* If the off-center is closer to the origin than the */
03968       /*   circumcenter, use the off-center instead.        */
03969       if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
03970         dx = dxoff;
03971         dy = dyoff;
03972       }
03973     }
03974   } else {
03975     if (offcenter && (b->offconstant > 0.0)) {
03976       dxoff = 0.5 * (tapex[0] - tdest[0]) -
03977               b->offconstant * (tapex[1] - tdest[1]);
03978       dyoff = 0.5 * (tapex[1] - tdest[1]) +
03979               b->offconstant * (tapex[0] - tdest[0]);
03980       /* If the off-center is closer to the destination than the */
03981       /*   circumcenter, use the off-center instead.             */
03982       if (dxoff * dxoff + dyoff * dyoff <
03983           (dx - xdo) * (dx - xdo) + (dy - ydo) * (dy - ydo)) {
03984         dx = xdo + dxoff;
03985         dy = ydo + dyoff;
03986       }
03987     }
03988   }
03989 
03990   circumcenter[0] = torg[0] + dx;
03991   circumcenter[1] = torg[1] + dy;
03992 
03993   /* To interpolate vertex attributes for the new vertex inserted at */
03994   /*   the circumcenter, define a coordinate system with a xi-axis,  */
03995   /*   directed from the triangle's origin to its destination, and   */
03996   /*   an eta-axis, directed from its origin to its apex.            */
03997   /*   Calculate the xi and eta coordinates of the circumcenter.     */
03998   *xi = (yao * dx - xao * dy) * (2.0 * denominator);
03999   *eta = (xdo * dy - ydo * dx) * (2.0 * denominator);
04000 }
04001 
04004 /********* Geometric primitives end here                             *********/
04005 
04006 /*****************************************************************************/
04007 /*                                                                           */
04008 /*  triangleinit()   Initialize some variables.                              */
04009 /*                                                                           */
04010 /*****************************************************************************/
04011 
04012 void triangleinit(struct mesh *m)
04013 {
04014   poolzero(&m->vertices);
04015   poolzero(&m->triangles);
04016   poolzero(&m->subsegs);
04017   poolzero(&m->viri);
04018   poolzero(&m->badsubsegs);
04019   poolzero(&m->badtriangles);
04020   poolzero(&m->flipstackers);
04021   poolzero(&m->splaynodes);
04022 
04023   m->recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */
04024   m->undeads = 0;                       /* No eliminated input vertices yet. */
04025   m->samples = 1;         /* Point location should take at least one sample. */
04026   m->checksegments = 0;   /* There are no segments in the triangulation yet. */
04027   m->checkquality = 0;     /* The quality triangulation stage has not begun. */
04028   m->incirclecount = m->counterclockcount = m->orient3dcount = 0;
04029   m->hyperbolacount = m->circletopcount = m->circumcentercount = 0;
04030   randomseed = 1;
04031 
04032   exactinit();                     /* Initialize exact arithmetic constants. */
04033 }
04034 
04035 /*****************************************************************************/
04036 /*                                                                           */
04037 /*  randomnation()   Generate a random number between 0 and `choices' - 1.   */
04038 /*                                                                           */
04039 /*  This is a simple linear congruential random number generator.  Hence, it */
04040 /*  is a bad random number generator, but good enough for most randomized    */
04041 /*  geometric algorithms.                                                    */
04042 /*                                                                           */
04043 /*****************************************************************************/
04044 
04045 unsigned long long randomnation(unsigned int choices)
04046 {
04047   randomseed = (randomseed * 1366l + 150889l) % 714025l;
04048   return randomseed / (714025l / choices + 1);
04049 }
04050 
04051 /********* Point location routines begin here                        *********/
04055 /*****************************************************************************/
04056 /*                                                                           */
04057 /*  makevertexmap()   Construct a mapping from vertices to triangles to      */
04058 /*                    improve the speed of point location for segment        */
04059 /*                    insertion.                                             */
04060 /*                                                                           */
04061 /*  Traverses all the triangles, and provides each corner of each triangle   */
04062 /*  with a pointer to that triangle.  Of course, pointers will be            */
04063 /*  overwritten by other pointers because (almost) each vertex is a corner   */
04064 /*  of several triangles, but in the end every vertex will point to some     */
04065 /*  triangle that contains it.                                               */
04066 /*                                                                           */
04067 /*****************************************************************************/
04068 
04069 void makevertexmap(struct mesh *m, struct behavior *b)
04070 {
04071   struct otri triangleloop;
04072   vertex triorg;
04073 
04074   if (b->verbose) {
04075     printf("    Constructing mapping from vertices to triangles.\n");
04076   }
04077   traversalinit(&m->triangles);
04078   triangleloop.tri = triangletraverse(m);
04079   while (triangleloop.tri != (triangle *) NULL) {
04080     /* Check all three vertices of the triangle. */
04081     for (triangleloop.orient = 0; triangleloop.orient < 3;
04082          triangleloop.orient++) {
04083       org(triangleloop, triorg);
04084       setvertex2tri(triorg, encode(triangleloop));
04085     }
04086     triangleloop.tri = triangletraverse(m);
04087   }
04088 }
04089 
04090 /*****************************************************************************/
04091 /*                                                                           */
04092 /*  preciselocate()   Find a triangle or edge containing a given point.      */
04093 /*                                                                           */
04094 /*  Begins its search from `searchtri'.  It is important that `searchtri'    */
04095 /*  be a handle with the property that `searchpoint' is strictly to the left */
04096 /*  of the edge denoted by `searchtri', or is collinear with that edge and   */
04097 /*  does not intersect that edge.  (In particular, `searchpoint' should not  */
04098 /*  be the origin or destination of that edge.)                              */
04099 /*                                                                           */
04100 /*  These conditions are imposed because preciselocate() is normally used in */
04101 /*  one of two situations:                                                   */
04102 /*                                                                           */
04103 /*  (1)  To try to find the location to insert a new point.  Normally, we    */
04104 /*       know an edge that the point is strictly to the left of.  In the     */
04105 /*       incremental Delaunay algorithm, that edge is a bounding box edge.   */
04106 /*       In Ruppert's Delaunay refinement algorithm for quality meshing,     */
04107 /*       that edge is the shortest edge of the triangle whose circumcenter   */
04108 /*       is being inserted.                                                  */
04109 /*                                                                           */
04110 /*  (2)  To try to find an existing point.  In this case, any edge on the    */
04111 /*       convex hull is a good starting edge.  You must screen out the       */
04112 /*       possibility that the vertex sought is an endpoint of the starting   */
04113 /*       edge before you call preciselocate().                               */
04114 /*                                                                           */
04115 /*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
04116 /*                                                                           */
04117 /*  This implementation differs from that given by Guibas and Stolfi.  It    */
04118 /*  walks from triangle to triangle, crossing an edge only if `searchpoint'  */
04119 /*  is on the other side of the line containing that edge.  After entering   */
04120 /*  a triangle, there are two edges by which one can leave that triangle.    */
04121 /*  If both edges are valid (`searchpoint' is on the other side of both      */
04122 /*  edges), one of the two is chosen by drawing a line perpendicular to      */
04123 /*  the entry edge (whose endpoints are `forg' and `fdest') passing through  */
04124 /*  `fapex'.  Depending on which side of this perpendicular `searchpoint'    */
04125 /*  falls on, an exit edge is chosen.                                        */
04126 /*                                                                           */
04127 /*  This implementation is empirically faster than the Guibas and Stolfi     */
04128 /*  point location routine (which I originally used), which tends to spiral  */
04129 /*  in toward its target.                                                    */
04130 /*                                                                           */
04131 /*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
04132 /*  is a handle whose origin is the existing vertex.                         */
04133 /*                                                                           */
04134 /*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
04135 /*  handle whose primary edge is the edge on which the point lies.           */
04136 /*                                                                           */
04137 /*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
04138 /*  `searchtri' is a handle on the triangle that contains the point.         */
04139 /*                                                                           */
04140 /*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
04141 /*  handle whose primary edge the point is to the right of.  This might      */
04142 /*  occur when the circumcenter of a triangle falls just slightly outside    */
04143 /*  the mesh due to floating-point roundoff error.  It also occurs when      */
04144 /*  seeking a hole or region point that a foolish user has placed outside    */
04145 /*  the mesh.                                                                */
04146 /*                                                                           */
04147 /*  If `stopatsubsegment' is nonzero, the search will stop if it tries to    */
04148 /*  walk through a subsegment, and will return OUTSIDE.                      */
04149 /*                                                                           */
04150 /*  WARNING:  This routine is designed for convex triangulations, and will   */
04151 /*  not generally work after the holes and concavities have been carved.     */
04152 /*  However, it can still be used to find the circumcenter of a triangle, as */
04153 /*  long as the search is begun from the triangle in question.               */
04154 /*                                                                           */
04155 /*****************************************************************************/
04156 
04157 enum locateresult preciselocate(struct mesh *m, struct behavior *b,
04158                                 vertex searchpoint, struct otri *searchtri,
04159                                 int stopatsubsegment)
04160 {
04161   struct otri backtracktri;
04162   struct osub checkedge;
04163   vertex forg, fdest, fapex;
04164   float orgorient, destorient;
04165   int moveleft;
04166   triangle ptr;                         /* Temporary variable used by sym(). */
04167   subseg sptr;                      /* Temporary variable used by tspivot(). */
04168 
04169   if (b->verbose > 2) {
04170     printf("  Searching for point (%.12g, %.12g).\n",
04171            searchpoint[0], searchpoint[1]);
04172   }
04173   /* Where are we? */
04174   org(*searchtri, forg);
04175   dest(*searchtri, fdest);
04176   apex(*searchtri, fapex);
04177   while (1) {
04178     if (b->verbose > 2) {
04179       printf("    At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
04180              forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
04181     }
04182     /* Check whether the apex is the point we seek. */
04183     if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
04184       lprevself(*searchtri);
04185       return ONVERTEX;
04186     }
04187     /* Does the point lie on the other side of the line defined by the */
04188     /*   triangle edge opposite the triangle's destination?            */
04189     destorient = counterclockwise(m, b, forg, fapex, searchpoint);
04190     /* Does the point lie on the other side of the line defined by the */
04191     /*   triangle edge opposite the triangle's origin?                 */
04192     orgorient = counterclockwise(m, b, fapex, fdest, searchpoint);
04193     if (destorient > 0.0) {
04194       if (orgorient > 0.0) {
04195         /* Move left if the inner product of (fapex - searchpoint) and  */
04196         /*   (fdest - forg) is positive.  This is equivalent to drawing */
04197         /*   a line perpendicular to the line (forg, fdest) and passing */
04198         /*   through `fapex', and determining which side of this line   */
04199         /*   `searchpoint' falls on.                                    */
04200         moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
04201                    (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
04202       } else {
04203         moveleft = 1;
04204       }
04205     } else {
04206       if (orgorient > 0.0) {
04207         moveleft = 0;
04208       } else {
04209         /* The point we seek must be on the boundary of or inside this */
04210         /*   triangle.                                                 */
04211         if (destorient == 0.0) {
04212           lprevself(*searchtri);
04213           return ONEDGE;
04214         }
04215         if (orgorient == 0.0) {
04216           lnextself(*searchtri);
04217           return ONEDGE;
04218         }
04219         return INTRIANGLE;
04220       }
04221     }
04222 
04223     /* Move to another triangle.  Leave a trace `backtracktri' in case */
04224     /*   floating-point roundoff or some such bogey causes us to walk  */
04225     /*   off a boundary of the triangulation.                          */
04226     if (moveleft) {
04227       lprev(*searchtri, backtracktri);
04228       fdest = fapex;
04229     } else {
04230       lnext(*searchtri, backtracktri);
04231       forg = fapex;
04232     }
04233     sym(backtracktri, *searchtri);
04234 
04235     if (m->checksegments && stopatsubsegment) {
04236       /* Check for walking through a subsegment. */
04237       tspivot(backtracktri, checkedge);
04238       if (checkedge.ss != m->dummysub) {
04239         /* Go back to the last triangle. */
04240         otricopy(backtracktri, *searchtri);
04241         return OUTSIDE;
04242       }
04243     }
04244     /* Check for walking right out of the triangulation. */
04245     if (searchtri->tri == m->dummytri) {
04246       /* Go back to the last triangle. */
04247       otricopy(backtracktri, *searchtri);
04248       return OUTSIDE;
04249     }
04250 
04251     apex(*searchtri, fapex);
04252   }
04253 }
04254 
04255 /*****************************************************************************/
04256 /*                                                                           */
04257 /*  locate()   Find a triangle or edge containing a given point.             */
04258 /*                                                                           */
04259 /*  Searching begins from one of:  the input `searchtri', a recently         */
04260 /*  encountered triangle `recenttri', or from a triangle chosen from a       */
04261 /*  random sample.  The choice is made by determining which triangle's       */
04262 /*  origin is closest to the point we are searching for.  Normally,          */
04263 /*  `searchtri' should be a handle on the convex hull of the triangulation.  */
04264 /*                                                                           */
04265 /*  Details on the random sampling method can be found in the Mucke, Saias,  */
04266 /*  and Zhu paper cited in the header of this code.                          */
04267 /*                                                                           */
04268 /*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
04269 /*                                                                           */
04270 /*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
04271 /*  is a handle whose origin is the existing vertex.                         */
04272 /*                                                                           */
04273 /*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
04274 /*  handle whose primary edge is the edge on which the point lies.           */
04275 /*                                                                           */
04276 /*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
04277 /*  `searchtri' is a handle on the triangle that contains the point.         */
04278 /*                                                                           */
04279 /*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
04280 /*  handle whose primary edge the point is to the right of.  This might      */
04281 /*  occur when the circumcenter of a triangle falls just slightly outside    */
04282 /*  the mesh due to floating-point roundoff error.  It also occurs when      */
04283 /*  seeking a hole or region point that a foolish user has placed outside    */
04284 /*  the mesh.                                                                */
04285 /*                                                                           */
04286 /*  WARNING:  This routine is designed for convex triangulations, and will   */
04287 /*  not generally work after the holes and concavities have been carved.     */
04288 /*                                                                           */
04289 /*****************************************************************************/
04290 
04291 enum locateresult locate(struct mesh *m, struct behavior *b,
04292                          vertex searchpoint, struct otri *searchtri)
04293 {
04294   int **sampleblock;
04295   char *firsttri;
04296   struct otri sampletri;
04297   vertex torg, tdest;
04298   unsigned long long alignptr;
04299   float searchdist, dist;
04300   float ahead;
04301   long samplesperblock, totalsamplesleft, samplesleft;
04302   long population, totalpopulation;
04303   triangle ptr;                         /* Temporary variable used by sym(). */
04304 
04305   if (b->verbose > 2) {
04306     printf("  Randomly sampling for a triangle near point (%.12g, %.12g).\n",
04307            searchpoint[0], searchpoint[1]);
04308   }
04309   /* Record the distance from the suggested starting triangle to the */
04310   /*   point we seek.                                                */
04311   org(*searchtri, torg);
04312   searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
04313                (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
04314   if (b->verbose > 2) {
04315     printf("    Boundary triangle has origin (%.12g, %.12g).\n",
04316            torg[0], torg[1]);
04317   }
04318 
04319   /* If a recently encountered triangle has been recorded and has not been */
04320   /*   deallocated, test it as a good starting point.                      */
04321   if (m->recenttri.tri != (triangle *) NULL) {
04322     if (!deadtri(m->recenttri.tri)) {
04323       org(m->recenttri, torg);
04324       if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
04325         otricopy(m->recenttri, *searchtri);
04326         return ONVERTEX;
04327       }
04328       dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
04329              (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
04330       if (dist < searchdist) {
04331         otricopy(m->recenttri, *searchtri);
04332         searchdist = dist;
04333         if (b->verbose > 2) {
04334           printf("    Choosing recent triangle with origin (%.12g, %.12g).\n",
04335                  torg[0], torg[1]);
04336         }
04337       }
04338     }
04339   }
04340 
04341   /* The number of random samples taken is proportional to the cube root of */
04342   /*   the number of triangles in the mesh.  The next bit of code assumes   */
04343   /*   that the number of triangles increases monotonically (or at least    */
04344   /*   doesn't decrease enough to matter).                                  */
04345   while (SAMPLEFACTOR * m->samples * m->samples * m->samples <
04346          m->triangles.items) {
04347     m->samples++;
04348   }
04349 
04350   /* We'll draw ceiling(samples * TRIPERBLOCK / maxitems) random samples  */
04351   /*   from each block of triangles (except the first)--until we meet the */
04352   /*   sample quota.  The ceiling means that blocks at the end might be   */
04353   /*   neglected, but I don't care.                                       */
04354   samplesperblock = (m->samples * TRIPERBLOCK - 1) / m->triangles.maxitems + 1;
04355   /* We'll draw ceiling(samples * itemsfirstblock / maxitems) random samples */
04356   /*   from the first block of triangles.                                    */
04357   samplesleft = (m->samples * m->triangles.itemsfirstblock - 1) /
04358                 m->triangles.maxitems + 1;
04359   totalsamplesleft = m->samples;
04360   population = m->triangles.itemsfirstblock;
04361   totalpopulation = m->triangles.maxitems;
04362   sampleblock = m->triangles.firstblock;
04363   sampletri.orient = 0;
04364   while (totalsamplesleft > 0) {
04365     /* If we're in the last block, `population' needs to be corrected. */
04366     if (population > totalpopulation) {
04367       population = totalpopulation;
04368     }
04369     /* Find a pointer to the first triangle in the block. */
04370     alignptr = (unsigned long long) (sampleblock + 1);
04371     firsttri = (char *) (alignptr +
04372                          (unsigned long long) m->triangles.alignbytes -
04373                          (alignptr %
04374                           (unsigned long long) m->triangles.alignbytes));
04375 
04376     /* Choose `samplesleft' randomly sampled triangles in this block. */
04377     do {
04378       sampletri.tri = (triangle *) (firsttri +
04379                                     (randomnation((unsigned int) population) *
04380                                      m->triangles.itembytes));
04381       if (!deadtri(sampletri.tri)) {
04382         org(sampletri, torg);
04383         dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
04384                (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
04385         if (dist < searchdist) {
04386           otricopy(sampletri, *searchtri);
04387           searchdist = dist;
04388           if (b->verbose > 2) {
04389             printf("    Choosing triangle with origin (%.12g, %.12g).\n",
04390                    torg[0], torg[1]);
04391           }
04392         }
04393       }
04394 
04395       samplesleft--;
04396       totalsamplesleft--;
04397     } while ((samplesleft > 0) && (totalsamplesleft > 0));
04398 
04399     if (totalsamplesleft > 0) {
04400       sampleblock = (int **) *sampleblock;
04401       samplesleft = samplesperblock;
04402       totalpopulation -= population;
04403       population = TRIPERBLOCK;
04404     }
04405   }
04406 
04407   /* Where are we? */
04408   org(*searchtri, torg);
04409   dest(*searchtri, tdest);
04410   /* Check the starting triangle's vertices. */
04411   if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
04412     return ONVERTEX;
04413   }
04414   if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
04415     lnextself(*searchtri);
04416     return ONVERTEX;
04417   }
04418   /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
04419   ahead = counterclockwise(m, b, torg, tdest, searchpoint);
04420   if (ahead < 0.0) {
04421     /* Turn around so that `searchpoint' is to the left of the */
04422     /*   edge specified by `searchtri'.                        */
04423     symself(*searchtri);
04424   } else if (ahead == 0.0) {
04425     /* Check if `searchpoint' is between `torg' and `tdest'. */
04426     if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0])) &&
04427         ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
04428       return ONEDGE;
04429     }
04430   }
04431   return preciselocate(m, b, searchpoint, searchtri, 0);
04432 }
04433 
04436 /********* Point location routines end here                          *********/
04437 
04438 /********* Mesh transformation routines begin here                   *********/
04442 /*****************************************************************************/
04443 /*                                                                           */
04444 /*  insertsubseg()   Create a new subsegment and insert it between two       */
04445 /*                   triangles.                                              */
04446 /*                                                                           */
04447 /*  The new subsegment is inserted at the edge described by the handle       */
04448 /*  `tri'.  Its vertices are properly initialized.  The marker `subsegmark'  */
04449 /*  is applied to the subsegment and, if appropriate, its vertices.          */
04450 /*                                                                           */
04451 /*****************************************************************************/
04452 
04453 void insertsubseg(struct mesh *m, struct behavior *b, struct otri *tri,
04454                   int subsegmark)
04455 {
04456   struct otri oppotri;
04457   struct osub newsubseg;
04458   vertex triorg, tridest;
04459   triangle ptr;                         /* Temporary variable used by sym(). */
04460   subseg sptr;                      /* Temporary variable used by tspivot(). */
04461 
04462   org(*tri, triorg);
04463   dest(*tri, tridest);
04464   /* Mark vertices if possible. */
04465   if (vertexmark(triorg) == 0) {
04466     setvertexmark(triorg, subsegmark);
04467   }
04468   if (vertexmark(tridest) == 0) {
04469     setvertexmark(tridest, subsegmark);
04470   }
04471   /* Check if there's already a subsegment here. */
04472   tspivot(*tri, newsubseg);
04473   if (newsubseg.ss == m->dummysub) {
04474     /* Make new subsegment and initialize its vertices. */
04475     makesubseg(m, &newsubseg);
04476     setsorg(newsubseg, tridest);
04477     setsdest(newsubseg, triorg);
04478     setsegorg(newsubseg, tridest);
04479     setsegdest(newsubseg, triorg);
04480     /* Bond new subsegment to the two triangles it is sandwiched between. */
04481     /*   Note that the facing triangle `oppotri' might be equal to        */
04482     /*   `dummytri' (outer space), but the new subsegment is bonded to it */
04483     /*   all the same.                                                    */
04484     tsbond(*tri, newsubseg);
04485     sym(*tri, oppotri);
04486     ssymself(newsubseg);
04487     tsbond(oppotri, newsubseg);
04488     setmark(newsubseg, subsegmark);
04489     if (b->verbose > 2) {
04490       printf("  Inserting new ");
04491       printsubseg(m, b, &newsubseg);
04492     }
04493   } else {
04494     if (mark(newsubseg) == 0) {
04495       setmark(newsubseg, subsegmark);
04496     }
04497   }
04498 }
04499 
04500 /*****************************************************************************/
04501 /*                                                                           */
04502 /*  Terminology                                                              */
04503 /*                                                                           */
04504 /*  A "local transformation" replaces a small set of triangles with another  */
04505 /*  set of triangles.  This may or may not involve inserting or deleting a   */
04506 /*  vertex.                                                                  */
04507 /*                                                                           */
04508 /*  The term "casing" is used to describe the set of triangles that are      */
04509 /*  attached to the triangles being transformed, but are not transformed     */
04510 /*  themselves.  Think of the casing as a fixed hollow structure inside      */
04511 /*  which all the action happens.  A "casing" is only defined relative to    */
04512 /*  a single transformation; each occurrence of a transformation will        */
04513 /*  involve a different casing.                                              */
04514 /*                                                                           */
04515 /*****************************************************************************/
04516 
04517 /*****************************************************************************/
04518 /*                                                                           */
04519 /*  flip()   Transform two triangles to two different triangles by flipping  */
04520 /*           an edge counterclockwise within a quadrilateral.                */
04521 /*                                                                           */
04522 /*  Imagine the original triangles, abc and bad, oriented so that the        */
04523 /*  shared edge ab lies in a horizontal plane, with the vertex b on the left */
04524 /*  and the vertex a on the right.  The vertex c lies below the edge, and    */
04525 /*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  */
04526 /*  ab of triangle abc, and is directed left, from vertex a to vertex b.     */
04527 /*                                                                           */
04528 /*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
04529 /*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
04530 /*  they are reused for dca and cdb, respectively.  Hence, any handles that  */
04531 /*  may have held the original triangles are still valid, although not       */
04532 /*  directed as they were before.                                            */
04533 /*                                                                           */
04534 /*  Upon completion of this routine, the `flipedge' handle holds the edge    */
04535 /*  dc of triangle dca, and is directed down, from vertex d to vertex c.     */
04536 /*  (Hence, the two triangles have rotated counterclockwise.)                */
04537 /*                                                                           */
04538 /*  WARNING:  This transformation is geometrically valid only if the         */
04539 /*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
04540 /*  valid only if there is not a subsegment between the triangles abc and    */
04541 /*  bad.  This routine does not check either of these preconditions, and     */
04542 /*  it is the responsibility of the calling routine to ensure that they are  */
04543 /*  met.  If they are not, the streets shall be filled with wailing and      */
04544 /*  gnashing of teeth.                                                       */
04545 /*                                                                           */
04546 /*****************************************************************************/
04547 
04548 void flip(struct mesh *m, struct behavior *b, struct otri *flipedge)
04549 {
04550   struct otri botleft, botright;
04551   struct otri topleft, topright;
04552   struct otri top;
04553   struct otri botlcasing, botrcasing;
04554   struct otri toplcasing, toprcasing;
04555   struct osub botlsubseg, botrsubseg;
04556   struct osub toplsubseg, toprsubseg;
04557   vertex leftvertex, rightvertex, botvertex;
04558   vertex farvertex;
04559   triangle ptr;                         /* Temporary variable used by sym(). */
04560   subseg sptr;                      /* Temporary variable used by tspivot(). */
04561 
04562   /* Identify the vertices of the quadrilateral. */
04563   org(*flipedge, rightvertex);
04564   dest(*flipedge, leftvertex);
04565   apex(*flipedge, botvertex);
04566   sym(*flipedge, top);
04567   apex(top, farvertex);
04568 
04569   /* Identify the casing of the quadrilateral. */
04570   lprev(top, topleft);
04571   sym(topleft, toplcasing);
04572   lnext(top, topright);
04573   sym(topright, toprcasing);
04574   lnext(*flipedge, botleft);
04575   sym(botleft, botlcasing);
04576   lprev(*flipedge, botright);
04577   sym(botright, botrcasing);
04578   /* Rotate the quadrilateral one-quarter turn counterclockwise. */
04579   bond(topleft, botlcasing);
04580   bond(botleft, botrcasing);
04581   bond(botright, toprcasing);
04582   bond(topright, toplcasing);
04583 
04584   if (m->checksegments) {
04585     /* Check for subsegments and rebond them to the quadrilateral. */
04586     tspivot(topleft, toplsubseg);
04587     tspivot(botleft, botlsubseg);
04588     tspivot(botright, botrsubseg);
04589     tspivot(topright, toprsubseg);
04590     if (toplsubseg.ss == m->dummysub) {
04591       tsdissolve(topright);
04592     } else {
04593       tsbond(topright, toplsubseg);
04594     }
04595     if (botlsubseg.ss == m->dummysub) {
04596       tsdissolve(topleft);
04597     } else {
04598       tsbond(topleft, botlsubseg);
04599     }
04600     if (botrsubseg.ss == m->dummysub) {
04601       tsdissolve(botleft);
04602     } else {
04603       tsbond(botleft, botrsubseg);
04604     }
04605     if (toprsubseg.ss == m->dummysub) {
04606       tsdissolve(botright);
04607     } else {
04608       tsbond(botright, toprsubseg);
04609     }
04610   }
04611 
04612   /* New vertex assignments for the rotated quadrilateral. */
04613   setorg(*flipedge, farvertex);
04614   setdest(*flipedge, botvertex);
04615   setapex(*flipedge, rightvertex);
04616   setorg(top, botvertex);
04617   setdest(top, farvertex);
04618   setapex(top, leftvertex);
04619   if (b->verbose > 2) {
04620     printf("  Edge flip results in left ");
04621     printtriangle(m, b, &top);
04622     printf("  and right ");
04623     printtriangle(m, b, flipedge);
04624   }
04625 }
04626 
04627 /*****************************************************************************/
04628 /*                                                                           */
04629 /*  unflip()   Transform two triangles to two different triangles by         */
04630 /*             flipping an edge clockwise within a quadrilateral.  Reverses  */
04631 /*             the flip() operation so that the data structures representing */
04632 /*             the triangles are back where they were before the flip().     */
04633 /*                                                                           */
04634 /*  Imagine the original triangles, abc and bad, oriented so that the        */
04635 /*  shared edge ab lies in a horizontal plane, with the vertex b on the left */
04636 /*  and the vertex a on the right.  The vertex c lies below the edge, and    */
04637 /*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  */
04638 /*  ab of triangle abc, and is directed left, from vertex a to vertex b.     */
04639 /*                                                                           */
04640 /*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
04641 /*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
04642 /*  they are reused for cdb and dca, respectively.  Hence, any handles that  */
04643 /*  may have held the original triangles are still valid, although not       */
04644 /*  directed as they were before.                                            */
04645 /*                                                                           */
04646 /*  Upon completion of this routine, the `flipedge' handle holds the edge    */
04647 /*  cd of triangle cdb, and is directed up, from vertex c to vertex d.       */
04648 /*  (Hence, the two triangles have rotated clockwise.)                       */
04649 /*                                                                           */
04650 /*  WARNING:  This transformation is geometrically valid only if the         */
04651 /*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
04652 /*  valid only if there is not a subsegment between the triangles abc and    */
04653 /*  bad.  This routine does not check either of these preconditions, and     */
04654 /*  it is the responsibility of the calling routine to ensure that they are  */
04655 /*  met.  If they are not, the streets shall be filled with wailing and      */
04656 /*  gnashing of teeth.                                                       */
04657 /*                                                                           */
04658 /*****************************************************************************/
04659 
04660 void unflip(struct mesh *m, struct behavior *b, struct otri *flipedge)
04661 {
04662   struct otri botleft, botright;
04663   struct otri topleft, topright;
04664   struct otri top;
04665   struct otri botlcasing, botrcasing;
04666   struct otri toplcasing, toprcasing;
04667   struct osub botlsubseg, botrsubseg;
04668   struct osub toplsubseg, toprsubseg;
04669   vertex leftvertex, rightvertex, botvertex;
04670   vertex farvertex;
04671   triangle ptr;                         /* Temporary variable used by sym(). */
04672   subseg sptr;                      /* Temporary variable used by tspivot(). */
04673 
04674   /* Identify the vertices of the quadrilateral. */
04675   org(*flipedge, rightvertex);
04676   dest(*flipedge, leftvertex);
04677   apex(*flipedge, botvertex);
04678   sym(*flipedge, top);
04679   apex(top, farvertex);
04680 
04681   /* Identify the casing of the quadrilateral. */
04682   lprev(top, topleft);
04683   sym(topleft, toplcasing);
04684   lnext(top, topright);
04685   sym(topright, toprcasing);
04686   lnext(*flipedge, botleft);
04687   sym(botleft, botlcasing);
04688   lprev(*flipedge, botright);
04689   sym(botright, botrcasing);
04690   /* Rotate the quadrilateral one-quarter turn clockwise. */
04691   bond(topleft, toprcasing);
04692   bond(botleft, toplcasing);
04693   bond(botright, botlcasing);
04694   bond(topright, botrcasing);
04695 
04696   if (m->checksegments) {
04697     /* Check for subsegments and rebond them to the quadrilateral. */
04698     tspivot(topleft, toplsubseg);
04699     tspivot(botleft, botlsubseg);
04700     tspivot(botright, botrsubseg);
04701     tspivot(topright, toprsubseg);
04702     if (toplsubseg.ss == m->dummysub) {
04703       tsdissolve(botleft);
04704     } else {
04705       tsbond(botleft, toplsubseg);
04706     }
04707     if (botlsubseg.ss == m->dummysub) {
04708       tsdissolve(botright);
04709     } else {
04710       tsbond(botright, botlsubseg);
04711     }
04712     if (botrsubseg.ss == m->dummysub) {
04713       tsdissolve(topright);
04714     } else {
04715       tsbond(topright, botrsubseg);
04716     }
04717     if (toprsubseg.ss == m->dummysub) {
04718       tsdissolve(topleft);
04719     } else {
04720       tsbond(topleft, toprsubseg);
04721     }
04722   }
04723 
04724   /* New vertex assignments for the rotated quadrilateral. */
04725   setorg(*flipedge, botvertex);
04726   setdest(*flipedge, farvertex);
04727   setapex(*flipedge, leftvertex);
04728   setorg(top, farvertex);
04729   setdest(top, botvertex);
04730   setapex(top, rightvertex);
04731   if (b->verbose > 2) {
04732     printf("  Edge unflip results in left ");
04733     printtriangle(m, b, flipedge);
04734     printf("  and right ");
04735     printtriangle(m, b, &top);
04736   }
04737 }
04738 
04739 /*****************************************************************************/
04740 /*                                                                           */
04741 /*  insertvertex()   Insert a vertex into a Delaunay triangulation,          */
04742 /*                   performing flips as necessary to maintain the Delaunay  */
04743 /*                   property.                                               */
04744 /*                                                                           */
04745 /*  The point `insertvertex' is located.  If `searchtri.tri' is not NULL,    */
04746 /*  the search for the containing triangle begins from `searchtri'.  If      */
04747 /*  `searchtri.tri' is NULL, a full point location procedure is called.      */
04748 /*  If `insertvertex' is found inside a triangle, the triangle is split into */
04749 /*  three; if `insertvertex' lies on an edge, the edge is split in two,      */
04750 /*  thereby splitting the two adjacent triangles into four.  Edge flips are  */
04751 /*  used to restore the Delaunay property.  If `insertvertex' lies on an     */
04752 /*  existing vertex, no action is taken, and the value DUPLICATEVERTEX is    */
04753 /*  returned.  On return, `searchtri' is set to a handle whose origin is the */
04754 /*  existing vertex.                                                         */
04755 /*                                                                           */
04756 /*  Normally, the parameter `splitseg' is set to NULL, implying that no      */
04757 /*  subsegment should be split.  In this case, if `insertvertex' is found to */
04758 /*  lie on a segment, no action is taken, and the value VIOLATINGVERTEX is   */
04759 /*  returned.  On return, `searchtri' is set to a handle whose primary edge  */
04760 /*  is the violated subsegment.                                              */
04761 /*                                                                           */
04762 /*  If the calling routine wishes to split a subsegment by inserting a       */
04763 /*  vertex in it, the parameter `splitseg' should be that subsegment.  In    */
04764 /*  this case, `searchtri' MUST be the triangle handle reached by pivoting   */
04765 /*  from that subsegment; no point location is done.                         */
04766 /*                                                                           */
04767 /*  `segmentflaws' and `triflaws' are flags that indicate whether or not     */
04768 /*  there should be checks for the creation of encroached subsegments or bad */
04769 /*  quality triangles.  If a newly inserted vertex encroaches upon           */
04770 /*  subsegments, these subsegments are added to the list of subsegments to   */
04771 /*  be split if `segmentflaws' is set.  If bad triangles are created, these  */
04772 /*  are added to the queue if `triflaws' is set.                             */
04773 /*                                                                           */
04774 /*  If a duplicate vertex or violated segment does not prevent the vertex    */
04775 /*  from being inserted, the return value will be ENCROACHINGVERTEX if the   */
04776 /*  vertex encroaches upon a subsegment (and checking is enabled), or        */
04777 /*  SUCCESSFULVERTEX otherwise.  In either case, `searchtri' is set to a     */
04778 /*  handle whose origin is the newly inserted vertex.                        */
04779 /*                                                                           */
04780 /*  insertvertex() does not use flip() for reasons of speed; some            */
04781 /*  information can be reused from edge flip to edge flip, like the          */
04782 /*  locations of subsegments.                                                */
04783 /*                                                                           */
04784 /*****************************************************************************/
04785 
04786 enum insertvertexresult insertvertex(struct mesh *m, struct behavior *b,
04787                                      vertex newvertex, struct otri *searchtri,
04788                                      struct osub *splitseg,
04789                                      int segmentflaws, int triflaws)
04790 {
04791   struct otri horiz;
04792   struct otri top;
04793   struct otri botleft, botright;
04794   struct otri topleft, topright;
04795   struct otri newbotleft, newbotright;
04796   struct otri newtopright;
04797   struct otri botlcasing, botrcasing;
04798   struct otri toplcasing, toprcasing;
04799   struct otri testtri;
04800   struct osub botlsubseg, botrsubseg;
04801   struct osub toplsubseg, toprsubseg;
04802   struct osub brokensubseg;
04803   struct osub checksubseg;
04804   struct osub rightsubseg;
04805   struct osub newsubseg;
04806   struct badsubseg *encroached;
04807   struct flipstacker *newflip;
04808   vertex first;
04809   vertex leftvertex, rightvertex, botvertex, topvertex, farvertex;
04810   vertex segmentorg, segmentdest;
04811   float attrib;
04812   float area;
04813   enum insertvertexresult success;
04814   enum locateresult intersect;
04815   int doflip;
04816   int mirrorflag;
04817   int enq;
04818   int i;
04819   triangle ptr;                         /* Temporary variable used by sym(). */
04820   subseg sptr;         /* Temporary variable used by spivot() and tspivot(). */
04821 
04822   if (b->verbose > 1) {
04823     printf("  Inserting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
04824   }
04825 
04826   if (splitseg == (struct osub *) NULL) {
04827     /* Find the location of the vertex to be inserted.  Check if a good */
04828     /*   starting triangle has already been provided by the caller.     */
04829     if (searchtri->tri == m->dummytri) {
04830       /* Find a boundary triangle. */
04831       horiz.tri = m->dummytri;
04832       horiz.orient = 0;
04833       symself(horiz);
04834       /* Search for a triangle containing `newvertex'. */
04835       intersect = locate(m, b, newvertex, &horiz);
04836     } else {
04837       /* Start searching from the triangle provided by the caller. */
04838       otricopy(*searchtri, horiz);
04839       intersect = preciselocate(m, b, newvertex, &horiz, 1);
04840     }
04841   } else {
04842     /* The calling routine provides the subsegment in which */
04843     /*   the vertex is inserted.                             */
04844     otricopy(*searchtri, horiz);
04845     intersect = ONEDGE;
04846   }
04847 
04848   if (intersect == ONVERTEX) {
04849     /* There's already a vertex there.  Return in `searchtri' a triangle */
04850     /*   whose origin is the existing vertex.                            */
04851     otricopy(horiz, *searchtri);
04852     otricopy(horiz, m->recenttri);
04853     return DUPLICATEVERTEX;
04854   }
04855   if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
04856     /* The vertex falls on an edge or boundary. */
04857     if (m->checksegments && (splitseg == (struct osub *) NULL)) {
04858       /* Check whether the vertex falls on a subsegment. */
04859       tspivot(horiz, brokensubseg);
04860       if (brokensubseg.ss != m->dummysub) {
04861         /* The vertex falls on a subsegment, and hence will not be inserted. */
04862         if (segmentflaws) {
04863           enq = b->nobisect != 2;
04864           if (enq && (b->nobisect == 1)) {
04865             /* This subsegment may be split only if it is an */
04866             /*   internal boundary.                          */
04867             sym(horiz, testtri);
04868             enq = testtri.tri != m->dummytri;
04869           }
04870           if (enq) {
04871             /* Add the subsegment to the list of encroached subsegments. */
04872             encroached = (struct badsubseg *) poolalloc(&m->badsubsegs);
04873             encroached->encsubseg = sencode(brokensubseg);
04874             sorg(brokensubseg, encroached->subsegorg);
04875             sdest(brokensubseg, encroached->subsegdest);
04876             if (b->verbose > 2) {
04877               printf(
04878           "  Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
04879                      encroached->subsegorg[0], encroached->subsegorg[1],
04880                      encroached->subsegdest[0], encroached->subsegdest[1]);
04881             }
04882           }
04883         }
04884         /* Return a handle whose primary edge contains the vertex, */
04885         /*   which has not been inserted.                          */
04886         otricopy(horiz, *searchtri);
04887         otricopy(horiz, m->recenttri);
04888         return VIOLATINGVERTEX;
04889       }
04890     }
04891 
04892     /* Insert the vertex on an edge, dividing one triangle into two (if */
04893     /*   the edge lies on a boundary) or two triangles into four.       */
04894     lprev(horiz, botright);
04895     sym(botright, botrcasing);
04896     sym(horiz, topright);
04897     /* Is there a second triangle?  (Or does this edge lie on a boundary?) */
04898     mirrorflag = topright.tri != m->dummytri;
04899     if (mirrorflag) {
04900       lnextself(topright);
04901       sym(topright, toprcasing);
04902       maketriangle(m, b, &newtopright);
04903     } else {
04904       /* Splitting a boundary edge increases the number of boundary edges. */
04905       m->hullsize++;
04906     }
04907     maketriangle(m, b, &newbotright);
04908 
04909     /* Set the vertices of changed and new triangles. */
04910     org(horiz, rightvertex);
04911     dest(horiz, leftvertex);
04912     apex(horiz, botvertex);
04913     setorg(newbotright, botvertex);
04914     setdest(newbotright, rightvertex);
04915     setapex(newbotright, newvertex);
04916     setorg(horiz, newvertex);
04917     for (i = 0; i < m->eextras; i++) {
04918       /* Set the element attributes of a new triangle. */
04919       setelemattribute(newbotright, i, elemattribute(botright, i));
04920     }
04921     if (b->vararea) {
04922       /* Set the area constraint of a new triangle. */
04923       setareabound(newbotright, areabound(botright));
04924     }
04925     if (mirrorflag) {
04926       dest(topright, topvertex);
04927       setorg(newtopright, rightvertex);
04928       setdest(newtopright, topvertex);
04929       setapex(newtopright, newvertex);
04930       setorg(topright, newvertex);
04931       for (i = 0; i < m->eextras; i++) {
04932         /* Set the element attributes of another new triangle. */
04933         setelemattribute(newtopright, i, elemattribute(topright, i));
04934       }
04935       if (b->vararea) {
04936         /* Set the area constraint of another new triangle. */
04937         setareabound(newtopright, areabound(topright));
04938       }
04939     }
04940 
04941     /* There may be subsegments that need to be bonded */
04942     /*   to the new triangle(s).                       */
04943     if (m->checksegments) {
04944       tspivot(botright, botrsubseg);
04945       if (botrsubseg.ss != m->dummysub) {
04946         tsdissolve(botright);
04947         tsbond(newbotright, botrsubseg);
04948       }
04949       if (mirrorflag) {
04950         tspivot(topright, toprsubseg);
04951         if (toprsubseg.ss != m->dummysub) {
04952           tsdissolve(topright);
04953           tsbond(newtopright, toprsubseg);
04954         }
04955       }
04956     }
04957 
04958     /* Bond the new triangle(s) to the surrounding triangles. */
04959     bond(newbotright, botrcasing);
04960     lprevself(newbotright);
04961     bond(newbotright, botright);
04962     lprevself(newbotright);
04963     if (mirrorflag) {
04964       bond(newtopright, toprcasing);
04965       lnextself(newtopright);
04966       bond(newtopright, topright);
04967       lnextself(newtopright);
04968       bond(newtopright, newbotright);
04969     }
04970 
04971     if (splitseg != (struct osub *) NULL) {
04972       /* Split the subsegment into two. */
04973       setsdest(*splitseg, newvertex);
04974       segorg(*splitseg, segmentorg);
04975       segdest(*splitseg, segmentdest);
04976       ssymself(*splitseg);
04977       spivot(*splitseg, rightsubseg);
04978       insertsubseg(m, b, &newbotright, mark(*splitseg));
04979       tspivot(newbotright, newsubseg);
04980       setsegorg(newsubseg, segmentorg);
04981       setsegdest(newsubseg, segmentdest);
04982       sbond(*splitseg, newsubseg);
04983       ssymself(newsubseg);
04984       sbond(newsubseg, rightsubseg);
04985       ssymself(*splitseg);
04986       /* Transfer the subsegment's boundary marker to the vertex */
04987       /*   if required.                                          */
04988       if (vertexmark(newvertex) == 0) {
04989         setvertexmark(newvertex, mark(*splitseg));
04990       }
04991     }
04992 
04993     if (m->checkquality) {
04994       poolrestart(&m->flipstackers);
04995       m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
04996       m->lastflip->flippedtri = encode(horiz);
04997       m->lastflip->prevflip = (struct flipstacker *) &insertvertex;
04998     }
04999     if (b->verbose > 2) {
05000       printf("  Updating bottom left ");
05001       printtriangle(m, b, &botright);
05002       if (mirrorflag) {
05003         printf("  Updating top left ");
05004         printtriangle(m, b, &topright);
05005         printf("  Creating top right ");
05006         printtriangle(m, b, &newtopright);
05007       }
05008       printf("  Creating bottom right ");
05009       printtriangle(m, b, &newbotright);
05010     }
05011 
05012     /* Position `horiz' on the first edge to check for */
05013     /*   the Delaunay property.                        */
05014     lnextself(horiz);
05015   } else {
05016     /* Insert the vertex in a triangle, splitting it into three. */
05017     lnext(horiz, botleft);
05018     lprev(horiz, botright);
05019     sym(botleft, botlcasing);
05020     sym(botright, botrcasing);
05021     maketriangle(m, b, &newbotleft);
05022     maketriangle(m, b, &newbotright);
05023 
05024     /* Set the vertices of changed and new triangles. */
05025     org(horiz, rightvertex);
05026     dest(horiz, leftvertex);
05027     apex(horiz, botvertex);
05028     setorg(newbotleft, leftvertex);
05029     setdest(newbotleft, botvertex);
05030     setapex(newbotleft, newvertex);
05031     setorg(newbotright, botvertex);
05032     setdest(newbotright, rightvertex);
05033     setapex(newbotright, newvertex);
05034     setapex(horiz, newvertex);
05035     for (i = 0; i < m->eextras; i++) {
05036       /* Set the element attributes of the new triangles. */
05037       attrib = elemattribute(horiz, i);
05038       setelemattribute(newbotleft, i, attrib);
05039       setelemattribute(newbotright, i, attrib);
05040     }
05041     if (b->vararea) {
05042       /* Set the area constraint of the new triangles. */
05043       area = areabound(horiz);
05044       setareabound(newbotleft, area);
05045       setareabound(newbotright, area);
05046     }
05047 
05048     /* There may be subsegments that need to be bonded */
05049     /*   to the new triangles.                         */
05050     if (m->checksegments) {
05051       tspivot(botleft, botlsubseg);
05052       if (botlsubseg.ss != m->dummysub) {
05053         tsdissolve(botleft);
05054         tsbond(newbotleft, botlsubseg);
05055       }
05056       tspivot(botright, botrsubseg);
05057       if (botrsubseg.ss != m->dummysub) {
05058         tsdissolve(botright);
05059         tsbond(newbotright, botrsubseg);
05060       }
05061     }
05062 
05063     /* Bond the new triangles to the surrounding triangles. */
05064     bond(newbotleft, botlcasing);
05065     bond(newbotright, botrcasing);
05066     lnextself(newbotleft);
05067     lprevself(newbotright);
05068     bond(newbotleft, newbotright);
05069     lnextself(newbotleft);
05070     bond(botleft, newbotleft);
05071     lprevself(newbotright);
05072     bond(botright, newbotright);
05073 
05074     if (m->checkquality) {
05075       poolrestart(&m->flipstackers);
05076       m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
05077       m->lastflip->flippedtri = encode(horiz);
05078       m->lastflip->prevflip = (struct flipstacker *) NULL;
05079     }
05080     if (b->verbose > 2) {
05081       printf("  Updating top ");
05082       printtriangle(m, b, &horiz);
05083       printf("  Creating left ");
05084       printtriangle(m, b, &newbotleft);
05085       printf("  Creating right ");
05086       printtriangle(m, b, &newbotright);
05087     }
05088   }
05089 
05090   /* The insertion is successful by default, unless an encroached */
05091   /*   subsegment is found.                                       */
05092   success = SUCCESSFULVERTEX;
05093   /* Circle around the newly inserted vertex, checking each edge opposite */
05094   /*   it for the Delaunay property.  Non-Delaunay edges are flipped.     */
05095   /*   `horiz' is always the edge being checked.  `first' marks where to  */
05096   /*   stop circling.                                                     */
05097   org(horiz, first);
05098   rightvertex = first;
05099   dest(horiz, leftvertex);
05100   /* Circle until finished. */
05101   while (1) {
05102     /* By default, the edge will be flipped. */
05103     doflip = 1;
05104 
05105     if (m->checksegments) {
05106       /* Check for a subsegment, which cannot be flipped. */
05107       tspivot(horiz, checksubseg);
05108       if (checksubseg.ss != m->dummysub) {
05109         /* The edge is a subsegment and cannot be flipped. */
05110         doflip = 0;
05111       }
05112     }
05113 
05114     if (doflip) {
05115       /* Check if the edge is a boundary edge. */
05116       sym(horiz, top);
05117       if (top.tri == m->dummytri) {
05118         /* The edge is a boundary edge and cannot be flipped. */
05119         doflip = 0;
05120       } else {
05121         /* Find the vertex on the other side of the edge. */
05122         apex(top, farvertex);
05123         /* In the incremental Delaunay triangulation algorithm, any of      */
05124         /*   `leftvertex', `rightvertex', and `farvertex' could be vertices */
05125         /*   of the triangular bounding box.  These vertices must be        */
05126         /*   treated as if they are infinitely distant, even though their   */
05127         /*   "coordinates" are not.                                         */
05128         if ((leftvertex == m->infvertex1) || (leftvertex == m->infvertex2) ||
05129             (leftvertex == m->infvertex3)) {
05130           /* `leftvertex' is infinitely distant.  Check the convexity of  */
05131           /*   the boundary of the triangulation.  'farvertex' might be   */
05132           /*   infinite as well, but trust me, this same condition should */
05133           /*   be applied.                                                */
05134           doflip = counterclockwise(m, b, newvertex, rightvertex, farvertex)
05135                    > 0.0;
05136         } else if ((rightvertex == m->infvertex1) ||
05137                    (rightvertex == m->infvertex2) ||
05138                    (rightvertex == m->infvertex3)) {
05139           /* `rightvertex' is infinitely distant.  Check the convexity of */
05140           /*   the boundary of the triangulation.  'farvertex' might be   */
05141           /*   infinite as well, but trust me, this same condition should */
05142           /*   be applied.                                                */
05143           doflip = counterclockwise(m, b, farvertex, leftvertex, newvertex)
05144                    > 0.0;
05145         } else if ((farvertex == m->infvertex1) ||
05146                    (farvertex == m->infvertex2) ||
05147                    (farvertex == m->infvertex3)) {
05148           /* `farvertex' is infinitely distant and cannot be inside */
05149           /*   the circumcircle of the triangle `horiz'.            */
05150           doflip = 0;
05151         } else {
05152           /* Test whether the edge is locally Delaunay. */
05153           doflip = incircle(m, b, leftvertex, newvertex, rightvertex,
05154                             farvertex) > 0.0;
05155         }
05156         if (doflip) {
05157           /* We made it!  Flip the edge `horiz' by rotating its containing */
05158           /*   quadrilateral (the two triangles adjacent to `horiz').      */
05159           /* Identify the casing of the quadrilateral. */
05160           lprev(top, topleft);
05161           sym(topleft, toplcasing);
05162           lnext(top, topright);
05163           sym(topright, toprcasing);
05164           lnext(horiz, botleft);
05165           sym(botleft, botlcasing);
05166           lprev(horiz, botright);
05167           sym(botright, botrcasing);
05168           /* Rotate the quadrilateral one-quarter turn counterclockwise. */
05169           bond(topleft, botlcasing);
05170           bond(botleft, botrcasing);
05171           bond(botright, toprcasing);
05172           bond(topright, toplcasing);
05173           if (m->checksegments) {
05174             /* Check for subsegments and rebond them to the quadrilateral. */
05175             tspivot(topleft, toplsubseg);
05176             tspivot(botleft, botlsubseg);
05177             tspivot(botright, botrsubseg);
05178             tspivot(topright, toprsubseg);
05179             if (toplsubseg.ss == m->dummysub) {
05180               tsdissolve(topright);
05181             } else {
05182               tsbond(topright, toplsubseg);
05183             }
05184             if (botlsubseg.ss == m->dummysub) {
05185               tsdissolve(topleft);
05186             } else {
05187               tsbond(topleft, botlsubseg);
05188             }
05189             if (botrsubseg.ss == m->dummysub) {
05190               tsdissolve(botleft);
05191             } else {
05192               tsbond(botleft, botrsubseg);
05193             }
05194             if (toprsubseg.ss == m->dummysub) {
05195               tsdissolve(botright);
05196             } else {
05197               tsbond(botright, toprsubseg);
05198             }
05199           }
05200           /* New vertex assignments for the rotated quadrilateral. */
05201           setorg(horiz, farvertex);
05202           setdest(horiz, newvertex);
05203           setapex(horiz, rightvertex);
05204           setorg(top, newvertex);
05205           setdest(top, farvertex);
05206           setapex(top, leftvertex);
05207           for (i = 0; i < m->eextras; i++) {
05208             /* Take the average of the two triangles' attributes. */
05209             attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
05210             setelemattribute(top, i, attrib);
05211             setelemattribute(horiz, i, attrib);
05212           }
05213           if (b->vararea) {
05214             if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
05215               area = -1.0;
05216             } else {
05217               /* Take the average of the two triangles' area constraints.    */
05218               /*   This prevents small area constraints from migrating a     */
05219               /*   long, long way from their original location due to flips. */
05220               area = 0.5 * (areabound(top) + areabound(horiz));
05221             }
05222             setareabound(top, area);
05223             setareabound(horiz, area);
05224           }
05225 
05226           if (m->checkquality) {
05227             newflip = (struct flipstacker *) poolalloc(&m->flipstackers);
05228             newflip->flippedtri = encode(horiz);
05229             newflip->prevflip = m->lastflip;
05230             m->lastflip = newflip;
05231           }
05232           if (b->verbose > 2) {
05233             printf("  Edge flip results in left ");
05234             lnextself(topleft);
05235             printtriangle(m, b, &topleft);
05236             printf("  and right ");
05237             printtriangle(m, b, &horiz);
05238           }
05239           /* On the next iterations, consider the two edges that were  */
05240           /*   exposed (this is, are now visible to the newly inserted */
05241           /*   vertex) by the edge flip.                               */
05242           lprevself(horiz);
05243           leftvertex = farvertex;
05244         }
05245       }
05246     }
05247     if (!doflip) {
05248       /* The handle `horiz' is accepted as locally Delaunay. */
05249       /* Look for the next edge around the newly inserted vertex. */
05250       lnextself(horiz);
05251       sym(horiz, testtri);
05252       /* Check for finishing a complete revolution about the new vertex, or */
05253       /*   falling outside  of the triangulation.  The latter will happen   */
05254       /*   when a vertex is inserted at a boundary.                         */
05255       if ((leftvertex == first) || (testtri.tri == m->dummytri)) {
05256         /* We're done.  Return a triangle whose origin is the new vertex. */
05257         lnext(horiz, *searchtri);
05258         lnext(horiz, m->recenttri);
05259         return success;
05260       }
05261       /* Finish finding the next edge around the newly inserted vertex. */
05262       lnext(testtri, horiz);
05263       rightvertex = leftvertex;
05264       dest(horiz, leftvertex);
05265     }
05266   }
05267 }
05268 
05269 /*****************************************************************************/
05270 /*                                                                           */
05271 /*  triangulatepolygon()   Find the Delaunay triangulation of a polygon that */
05272 /*                         has a certain "nice" shape.  This includes the    */
05273 /*                         polygons that result from deletion of a vertex or */
05274 /*                         insertion of a segment.                           */
05275 /*                                                                           */
05276 /*  This is a conceptually difficult routine.  The starting assumption is    */
05277 /*  that we have a polygon with n sides.  n - 1 of these sides are currently */
05278 /*  represented as edges in the mesh.  One side, called the "base", need not */
05279 /*  be.                                                                      */
05280 /*                                                                           */
05281 /*  Inside the polygon is a structure I call a "fan", consisting of n - 1    */
05282 /*  triangles that share a common origin.  For each of these triangles, the  */
05283 /*  edge opposite the origin is one of the sides of the polygon.  The        */
05284 /*  primary edge of each triangle is the edge directed from the origin to    */
05285 /*  the destination; note that this is not the same edge that is a side of   */
05286 /*  the polygon.  `firstedge' is the primary edge of the first triangle.     */
05287 /*  From there, the triangles follow in counterclockwise order about the     */
05288 /*  polygon, until `lastedge', the primary edge of the last triangle.        */
05289 /*  `firstedge' and `lastedge' are probably connected to other triangles     */
05290 /*  beyond the extremes of the fan, but their identity is not important, as  */
05291 /*  long as the fan remains connected to them.                               */
05292 /*                                                                           */
05293 /*  Imagine the polygon oriented so that its base is at the bottom.  This    */
05294 /*  puts `firstedge' on the far right, and `lastedge' on the far left.       */
05295 /*  The right vertex of the base is the destination of `firstedge', and the  */
05296 /*  left vertex of the base is the apex of `lastedge'.                       */
05297 /*                                                                           */
05298 /*  The challenge now is to find the right sequence of edge flips to         */
05299 /*  transform the fan into a Delaunay triangulation of the polygon.  Each    */
05300 /*  edge flip effectively removes one triangle from the fan, committing it   */
05301 /*  to the polygon.  The resulting polygon has one fewer edge.  If `doflip'  */
05302 /*  is set, the final flip will be performed, resulting in a fan of one      */
05303 /*  (useless?) triangle.  If `doflip' is not set, the final flip is not      */
05304 /*  performed, resulting in a fan of two triangles, and an unfinished        */
05305 /*  triangular polygon that is not yet filled out with a single triangle.    */
05306 /*  On completion of the routine, `lastedge' is the last remaining triangle, */
05307 /*  or the leftmost of the last two.                                         */
05308 /*                                                                           */
05309 /*  Although the flips are performed in the order described above, the       */
05310 /*  decisions about what flips to perform are made in precisely the reverse  */
05311 /*  order.  The recursive triangulatepolygon() procedure makes a decision,   */
05312 /*  uses up to two recursive calls to triangulate the "subproblems"          */
05313 /*  (polygons with fewer edges), and then performs an edge flip.             */
05314 /*                                                                           */
05315 /*  The "decision" it makes is which vertex of the polygon should be         */
05316 /*  connected to the base.  This decision is made by testing every possible  */
05317 /*  vertex.  Once the best vertex is found, the two edges that connect this  */
05318 /*  vertex to the base become the bases for two smaller polygons.  These     */
05319 /*  are triangulated recursively.  Unfortunately, this approach can take     */
05320 /*  O(n^2) time not only in the worst case, but in many common cases.  It's  */
05321 /*  rarely a big deal for vertex deletion, where n is rarely larger than     */
05322 /*  ten, but it could be a big deal for segment insertion, especially if     */
05323 /*  there's a lot of long segments that each cut many triangles.  I ought to */
05324 /*  code a faster algorithm some day.                                        */
05325 /*                                                                           */
05326 /*  The `edgecount' parameter is the number of sides of the polygon,         */
05327 /*  including its base.  `triflaws' is a flag that determines whether the    */
05328 /*  new triangles should be tested for quality, and enqueued if they are     */
05329 /*  bad.                                                                     */
05330 /*                                                                           */
05331 /*****************************************************************************/
05332 
05333 void triangulatepolygon(struct mesh *m, struct behavior *b,
05334                         struct otri *firstedge, struct otri *lastedge,
05335                         int edgecount, int doflip, int triflaws)
05336 {
05337   struct otri testtri;
05338   struct otri besttri;
05339   struct otri tempedge;
05340   vertex leftbasevertex, rightbasevertex;
05341   vertex testvertex;
05342   vertex bestvertex;
05343   int bestnumber;
05344   int i;
05345   triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
05346 
05347   /* Identify the base vertices. */
05348   apex(*lastedge, leftbasevertex);
05349   dest(*firstedge, rightbasevertex);
05350   if (b->verbose > 2) {
05351     printf("  Triangulating interior polygon at edge\n");
05352     printf("    (%.12g, %.12g) (%.12g, %.12g)\n", leftbasevertex[0],
05353            leftbasevertex[1], rightbasevertex[0], rightbasevertex[1]);
05354   }
05355   /* Find the best vertex to connect the base to. */
05356   onext(*firstedge, besttri);
05357   dest(besttri, bestvertex);
05358   otricopy(besttri, testtri);
05359   bestnumber = 1;
05360   for (i = 2; i <= edgecount - 2; i++) {
05361     onextself(testtri);
05362     dest(testtri, testvertex);
05363     /* Is this a better vertex? */
05364     if (incircle(m, b, leftbasevertex, rightbasevertex, bestvertex,
05365                  testvertex) > 0.0) {
05366       otricopy(testtri, besttri);
05367       bestvertex = testvertex;
05368       bestnumber = i;
05369     }
05370   }
05371   if (b->verbose > 2) {
05372     printf("    Connecting edge to (%.12g, %.12g)\n", bestvertex[0],
05373            bestvertex[1]);
05374   }
05375   if (bestnumber > 1) {
05376     /* Recursively triangulate the smaller polygon on the right. */
05377     oprev(besttri, tempedge);
05378     triangulatepolygon(m, b, firstedge, &tempedge, bestnumber + 1, 1,
05379                        triflaws);
05380   }
05381   if (bestnumber < edgecount - 2) {
05382     /* Recursively triangulate the smaller polygon on the left. */
05383     sym(besttri, tempedge);
05384     triangulatepolygon(m, b, &besttri, lastedge, edgecount - bestnumber, 1,
05385                        triflaws);
05386     /* Find `besttri' again; it may have been lost to edge flips. */
05387     sym(tempedge, besttri);
05388   }
05389   if (doflip) {
05390     /* Do one final edge flip. */
05391     flip(m, b, &besttri);
05392   }
05393   /* Return the base triangle. */
05394   otricopy(besttri, *lastedge);
05395 }
05396 
05399 /********* Mesh transformation routines end here                     *********/
05400 
05401 /********* Divide-and-conquer Delaunay triangulation begins here     *********/
05405 /*****************************************************************************/
05406 /*                                                                           */
05407 /*  The divide-and-conquer bounding box                                      */
05408 /*                                                                           */
05409 /*  I originally implemented the divide-and-conquer and incremental Delaunay */
05410 /*  triangulations using the edge-based data structure presented by Guibas   */
05411 /*  and Stolfi.  Switching to a triangle-based data structure doubled the    */
05412 /*  speed.  However, I had to think of a few extra tricks to maintain the    */
05413 /*  elegance of the original algorithms.                                     */
05414 /*                                                                           */
05415 /*  The "bounding box" used by my variant of the divide-and-conquer          */
05416 /*  algorithm uses one triangle for each edge of the convex hull of the      */
05417 /*  triangulation.  These bounding triangles all share a common apical       */
05418 /*  vertex, which is represented by NULL and which represents nothing.       */
05419 /*  The bounding triangles are linked in a circular fan about this NULL      */
05420 /*  vertex, and the edges on the convex hull of the triangulation appear     */
05421 /*  opposite the NULL vertex.  You might find it easiest to imagine that     */
05422 /*  the NULL vertex is a point in 3D space behind the center of the          */
05423 /*  triangulation, and that the bounding triangles form a sort of cone.      */
05424 /*                                                                           */
05425 /*  This bounding box makes it easy to represent degenerate cases.  For      */
05426 /*  instance, the triangulation of two vertices is a single edge.  This edge */
05427 /*  is represented by two bounding box triangles, one on each "side" of the  */
05428 /*  edge.  These triangles are also linked together in a fan about the NULL  */
05429 /*  vertex.                                                                  */
05430 /*                                                                           */
05431 /*  The bounding box also makes it easy to traverse the convex hull, as the  */
05432 /*  divide-and-conquer algorithm needs to do.                                */
05433 /*                                                                           */
05434 /*****************************************************************************/
05435 
05436 /*****************************************************************************/
05437 /*                                                                           */
05438 /*  vertexsort()   Sort an array of vertices by x-coordinate, using the      */
05439 /*                 y-coordinate as a secondary key.                          */
05440 /*                                                                           */
05441 /*  Uses quicksort.  Randomized O(n log n) time.  No, I did not make any of  */
05442 /*  the usual quicksort mistakes.                                            */
05443 /*                                                                           */
05444 /*****************************************************************************/
05445 
05446 void vertexsort(vertex *sortarray, int arraysize)
05447 {
05448   int left, right;
05449   int pivot;
05450   float pivotx, pivoty;
05451   vertex temp;
05452 
05453   if (arraysize == 2) {
05454     /* Recursive base case. */
05455     if ((sortarray[0][0] > sortarray[1][0]) ||
05456         ((sortarray[0][0] == sortarray[1][0]) &&
05457          (sortarray[0][1] > sortarray[1][1]))) {
05458       temp = sortarray[1];
05459       sortarray[1] = sortarray[0];
05460       sortarray[0] = temp;
05461     }
05462     return;
05463   }
05464   /* Choose a random pivot to split the array. */
05465   pivot = (int) randomnation((unsigned int) arraysize);
05466   pivotx = sortarray[pivot][0];
05467   pivoty = sortarray[pivot][1];
05468   /* Split the array. */
05469   left = -1;
05470   right = arraysize;
05471   while (left < right) {
05472     /* Search for a vertex whose x-coordinate is too large for the left. */
05473     do {
05474       left++;
05475     } while ((left <= right) && ((sortarray[left][0] < pivotx) ||
05476                                  ((sortarray[left][0] == pivotx) &&
05477                                   (sortarray[left][1] < pivoty))));
05478     /* Search for a vertex whose x-coordinate is too small for the right. */
05479     do {
05480       right--;
05481     } while ((left <= right) && ((sortarray[right][0] > pivotx) ||
05482                                  ((sortarray[right][0] == pivotx) &&
05483                                   (sortarray[right][1] > pivoty))));
05484     if (left < right) {
05485       /* Swap the left and right vertices. */
05486       temp = sortarray[left];
05487       sortarray[left] = sortarray[right];
05488       sortarray[right] = temp;
05489     }
05490   }
05491   if (left > 1) {
05492     /* Recursively sort the left subset. */
05493     vertexsort(sortarray, left);
05494   }
05495   if (right < arraysize - 2) {
05496     /* Recursively sort the right subset. */
05497     vertexsort(&sortarray[right + 1], arraysize - right - 1);
05498   }
05499 }
05500 
05501 /*****************************************************************************/
05502 /*                                                                           */
05503 /*  vertexmedian()   An order statistic algorithm, almost.  Shuffles an      */
05504 /*                   array of vertices so that the first `median' vertices   */
05505 /*                   occur lexicographically before the remaining vertices.  */
05506 /*                                                                           */
05507 /*  Uses the x-coordinate as the primary key if axis == 0; the y-coordinate  */
05508 /*  if axis == 1.  Very similar to the vertexsort() procedure, but runs in   */
05509 /*  randomized linear time.                                                  */
05510 /*                                                                           */
05511 /*****************************************************************************/
05512 
05513 void vertexmedian(vertex *sortarray, int arraysize, int median, int axis)
05514 {
05515   int left, right;
05516   int pivot;
05517   float pivot1, pivot2;
05518   vertex temp;
05519 
05520   if (arraysize == 2) {
05521     /* Recursive base case. */
05522     if ((sortarray[0][axis] > sortarray[1][axis]) ||
05523         ((sortarray[0][axis] == sortarray[1][axis]) &&
05524          (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
05525       temp = sortarray[1];
05526       sortarray[1] = sortarray[0];
05527       sortarray[0] = temp;
05528     }
05529     return;
05530   }
05531   /* Choose a random pivot to split the array. */
05532   pivot = (int) randomnation((unsigned int) arraysize);
05533   pivot1 = sortarray[pivot][axis];
05534   pivot2 = sortarray[pivot][1 - axis];
05535   /* Split the array. */
05536   left = -1;
05537   right = arraysize;
05538   while (left < right) {
05539     /* Search for a vertex whose x-coordinate is too large for the left. */
05540     do {
05541       left++;
05542     } while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
05543                                  ((sortarray[left][axis] == pivot1) &&
05544                                   (sortarray[left][1 - axis] < pivot2))));
05545     /* Search for a vertex whose x-coordinate is too small for the right. */
05546     do {
05547       right--;
05548     } while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
05549                                  ((sortarray[right][axis] == pivot1) &&
05550                                   (sortarray[right][1 - axis] > pivot2))));
05551     if (left < right) {
05552       /* Swap the left and right vertices. */
05553       temp = sortarray[left];
05554       sortarray[left] = sortarray[right];
05555       sortarray[right] = temp;
05556     }
05557   }
05558   /* Unlike in vertexsort(), at most one of the following */
05559   /*   conditionals is true.                             */
05560   if (left > median) {
05561     /* Recursively shuffle the left subset. */
05562     vertexmedian(sortarray, left, median, axis);
05563   }
05564   if (right < median - 1) {
05565     /* Recursively shuffle the right subset. */
05566     vertexmedian(&sortarray[right + 1], arraysize - right - 1,
05567                  median - right - 1, axis);
05568   }
05569 }
05570 
05571 /*****************************************************************************/
05572 /*                                                                           */
05573 /*  alternateaxes()   Sorts the vertices as appropriate for the divide-and-  */
05574 /*                    conquer algorithm with alternating cuts.               */
05575 /*                                                                           */
05576 /*  Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1.   */
05577 /*  For the base case, subsets containing only two or three vertices are     */
05578 /*  always sorted by x-coordinate.                                           */
05579 /*                                                                           */
05580 /*****************************************************************************/
05581 
05582 void alternateaxes(vertex *sortarray, int arraysize, int axis)
05583 {
05584   int divider;
05585 
05586   divider = arraysize >> 1;
05587   if (arraysize <= 3) {
05588     /* Recursive base case:  subsets of two or three vertices will be    */
05589     /*   handled specially, and should always be sorted by x-coordinate. */
05590     axis = 0;
05591   }
05592   /* Partition with a horizontal or vertical cut. */
05593   vertexmedian(sortarray, arraysize, divider, axis);
05594   /* Recursively partition the subsets with a cross cut. */
05595   if (arraysize - divider >= 2) {
05596     if (divider >= 2) {
05597       alternateaxes(sortarray, divider, 1 - axis);
05598     }
05599     alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
05600   }
05601 }
05602 
05603 /*****************************************************************************/
05604 /*                                                                           */
05605 /*  mergehulls()   Merge two adjacent Delaunay triangulations into a         */
05606 /*                 single Delaunay triangulation.                            */
05607 /*                                                                           */
05608 /*  This is similar to the algorithm given by Guibas and Stolfi, but uses    */
05609 /*  a triangle-based, rather than edge-based, data structure.                */
05610 /*                                                                           */
05611 /*  The algorithm walks up the gap between the two triangulations, knitting  */
05612 /*  them together.  As they are merged, some of their bounding triangles     */
05613 /*  are converted into real triangles of the triangulation.  The procedure   */
05614 /*  pulls each hull's bounding triangles apart, then knits them together     */
05615 /*  like the teeth of two gears.  The Delaunay property determines, at each  */
05616 /*  step, whether the next "tooth" is a bounding triangle of the left hull   */
05617 /*  or the right.  When a bounding triangle becomes real, its apex is        */
05618 /*  changed from NULL to a real vertex.                                      */
05619 /*                                                                           */
05620 /*  Only two new triangles need to be allocated.  These become new bounding  */
05621 /*  triangles at the top and bottom of the seam.  They are used to connect   */
05622 /*  the remaining bounding triangles (those that have not been converted     */
05623 /*  into real triangles) into a single fan.                                  */
05624 /*                                                                           */
05625 /*  On entry, `farleft' and `innerleft' are bounding triangles of the left   */
05626 /*  triangulation.  The origin of `farleft' is the leftmost vertex, and      */
05627 /*  the destination of `innerleft' is the rightmost vertex of the            */
05628 /*  triangulation.  Similarly, `innerright' and `farright' are bounding      */
05629 /*  triangles of the right triangulation.  The origin of `innerright' and    */
05630 /*  destination of `farright' are the leftmost and rightmost vertices.       */
05631 /*                                                                           */
05632 /*  On completion, the origin of `farleft' is the leftmost vertex of the     */
05633 /*  merged triangulation, and the destination of `farright' is the rightmost */
05634 /*  vertex.                                                                  */
05635 /*                                                                           */
05636 /*****************************************************************************/
05637 
05638 void mergehulls(struct mesh *m, struct behavior *b, struct otri *farleft,
05639                 struct otri *innerleft, struct otri *innerright,
05640                 struct otri *farright, int axis)
05641 {
05642   struct otri leftcand, rightcand;
05643   struct otri baseedge;
05644   struct otri nextedge;
05645   struct otri sidecasing, topcasing, outercasing;
05646   struct otri checkedge;
05647   vertex innerleftdest;
05648   vertex innerrightorg;
05649   vertex innerleftapex, innerrightapex;
05650   vertex farleftpt, farrightpt;
05651   vertex farleftapex, farrightapex;
05652   vertex lowerleft, lowerright;
05653   vertex upperleft, upperright;
05654   vertex nextapex;
05655   vertex checkvertex;
05656   int changemade;
05657   int badedge;
05658   int leftfinished, rightfinished;
05659   triangle ptr;                         /* Temporary variable used by sym(). */
05660 
05661   dest(*innerleft, innerleftdest);
05662   apex(*innerleft, innerleftapex);
05663   org(*innerright, innerrightorg);
05664   apex(*innerright, innerrightapex);
05665   /* Special treatment for horizontal cuts. */
05666   if (b->dwyer && (axis == 1)) {
05667     org(*farleft, farleftpt);
05668     apex(*farleft, farleftapex);
05669     dest(*farright, farrightpt);
05670     apex(*farright, farrightapex);
05671     /* The pointers to the extremal vertices are shifted to point to the */
05672     /*   topmost and bottommost vertex of each hull, rather than the     */
05673     /*   leftmost and rightmost vertices.                                */
05674     while (farleftapex[1] < farleftpt[1]) {
05675       lnextself(*farleft);
05676       symself(*farleft);
05677       farleftpt = farleftapex;
05678       apex(*farleft, farleftapex);
05679     }
05680     sym(*innerleft, checkedge);
05681     apex(checkedge, checkvertex);
05682     while (checkvertex[1] > innerleftdest[1]) {
05683       lnext(checkedge, *innerleft);
05684       innerleftapex = innerleftdest;
05685       innerleftdest = checkvertex;
05686       sym(*innerleft, checkedge);
05687       apex(checkedge, checkvertex);
05688     }
05689     while (innerrightapex[1] < innerrightorg[1]) {
05690       lnextself(*innerright);
05691       symself(*innerright);
05692       innerrightorg = innerrightapex;
05693       apex(*innerright, innerrightapex);
05694     }
05695     sym(*farright, checkedge);
05696     apex(checkedge, checkvertex);
05697     while (checkvertex[1] > farrightpt[1]) {
05698       lnext(checkedge, *farright);
05699       farrightapex = farrightpt;
05700       farrightpt = checkvertex;
05701       sym(*farright, checkedge);
05702       apex(checkedge, checkvertex);
05703     }
05704   }
05705   /* Find a line tangent to and below both hulls. */
05706   do {
05707     changemade = 0;
05708     /* Make innerleftdest the "bottommost" vertex of the left hull. */
05709     if (counterclockwise(m, b, innerleftdest, innerleftapex, innerrightorg) >
05710         0.0) {
05711       lprevself(*innerleft);
05712       symself(*innerleft);
05713       innerleftdest = innerleftapex;
05714       apex(*innerleft, innerleftapex);
05715       changemade = 1;
05716     }
05717     /* Make innerrightorg the "bottommost" vertex of the right hull. */
05718     if (counterclockwise(m, b, innerrightapex, innerrightorg, innerleftdest) >
05719         0.0) {
05720       lnextself(*innerright);
05721       symself(*innerright);
05722       innerrightorg = innerrightapex;
05723       apex(*innerright, innerrightapex);
05724       changemade = 1;
05725     }
05726   } while (changemade);
05727   /* Find the two candidates to be the next "gear tooth." */
05728   sym(*innerleft, leftcand);
05729   sym(*innerright, rightcand);
05730   /* Create the bottom new bounding triangle. */
05731   maketriangle(m, b, &baseedge);
05732   /* Connect it to the bounding boxes of the left and right triangulations. */
05733   bond(baseedge, *innerleft);
05734   lnextself(baseedge);
05735   bond(baseedge, *innerright);
05736   lnextself(baseedge);
05737   setorg(baseedge, innerrightorg);
05738   setdest(baseedge, innerleftdest);
05739   /* Apex is intentionally left NULL. */
05740   if (b->verbose > 2) {
05741     printf("  Creating base bounding ");
05742     printtriangle(m, b, &baseedge);
05743   }
05744   /* Fix the extreme triangles if necessary. */
05745   org(*farleft, farleftpt);
05746   if (innerleftdest == farleftpt) {
05747     lnext(baseedge, *farleft);
05748   }
05749   dest(*farright, farrightpt);
05750   if (innerrightorg == farrightpt) {
05751     lprev(baseedge, *farright);
05752   }
05753   /* The vertices of the current knitting edge. */
05754   lowerleft = innerleftdest;
05755   lowerright = innerrightorg;
05756   /* The candidate vertices for knitting. */
05757   apex(leftcand, upperleft);
05758   apex(rightcand, upperright);
05759   /* Walk up the gap between the two triangulations, knitting them together. */
05760   while (1) {
05761     /* Have we reached the top?  (This isn't quite the right question,       */
05762     /*   because even though the left triangulation might seem finished now, */
05763     /*   moving up on the right triangulation might reveal a new vertex of   */
05764     /*   the left triangulation.  And vice-versa.)                           */
05765     leftfinished = counterclockwise(m, b, upperleft, lowerleft, lowerright) <=
05766                    0.0;
05767     rightfinished = counterclockwise(m, b, upperright, lowerleft, lowerright)
05768                  <= 0.0;
05769     if (leftfinished && rightfinished) {
05770       /* Create the top new bounding triangle. */
05771       maketriangle(m, b, &nextedge);
05772       setorg(nextedge, lowerleft);
05773       setdest(nextedge, lowerright);
05774       /* Apex is intentionally left NULL. */
05775       /* Connect it to the bounding boxes of the two triangulations. */
05776       bond(nextedge, baseedge);
05777       lnextself(nextedge);
05778       bond(nextedge, rightcand);
05779       lnextself(nextedge);
05780       bond(nextedge, leftcand);
05781       if (b->verbose > 2) {
05782         printf("  Creating top bounding ");
05783         printtriangle(m, b, &nextedge);
05784       }
05785       /* Special treatment for horizontal cuts. */
05786       if (b->dwyer && (axis == 1)) {
05787         org(*farleft, farleftpt);
05788         apex(*farleft, farleftapex);
05789         dest(*farright, farrightpt);
05790         apex(*farright, farrightapex);
05791         sym(*farleft, checkedge);
05792         apex(checkedge, checkvertex);
05793         /* The pointers to the extremal vertices are restored to the  */
05794         /*   leftmost and rightmost vertices (rather than topmost and */
05795         /*   bottommost).                                             */
05796         while (checkvertex[0] < farleftpt[0]) {
05797           lprev(checkedge, *farleft);
05798           farleftapex = farleftpt;
05799           farleftpt = checkvertex;
05800           sym(*farleft, checkedge);
05801           apex(checkedge, checkvertex);
05802         }
05803         while (farrightapex[0] > farrightpt[0]) {
05804           lprevself(*farright);
05805           symself(*farright);
05806           farrightpt = farrightapex;
05807           apex(*farright, farrightapex);
05808         }
05809       }
05810       return;
05811     }
05812     /* Consider eliminating edges from the left triangulation. */
05813     if (!leftfinished) {
05814       /* What vertex would be exposed if an edge were deleted? */
05815       lprev(leftcand, nextedge);
05816       symself(nextedge);
05817       apex(nextedge, nextapex);
05818       /* If nextapex is NULL, then no vertex would be exposed; the */
05819       /*   triangulation would have been eaten right through.      */
05820       if (nextapex != (vertex) NULL) {
05821         /* Check whether the edge is Delaunay. */
05822         badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) >
05823                   0.0;
05824         while (badedge) {
05825           /* Eliminate the edge with an edge flip.  As a result, the    */
05826           /*   left triangulation will have one more boundary triangle. */
05827           lnextself(nextedge);
05828           sym(nextedge, topcasing);
05829           lnextself(nextedge);
05830           sym(nextedge, sidecasing);
05831           bond(nextedge, topcasing);
05832           bond(leftcand, sidecasing);
05833           lnextself(leftcand);
05834           sym(leftcand, outercasing);
05835           lprevself(nextedge);
05836           bond(nextedge, outercasing);
05837           /* Correct the vertices to reflect the edge flip. */
05838           setorg(leftcand, lowerleft);
05839           setdest(leftcand, NULL);
05840           setapex(leftcand, nextapex);
05841           setorg(nextedge, NULL);
05842           setdest(nextedge, upperleft);
05843           setapex(nextedge, nextapex);
05844           /* Consider the newly exposed vertex. */
05845           upperleft = nextapex;
05846           /* What vertex would be exposed if another edge were deleted? */
05847           otricopy(sidecasing, nextedge);
05848           apex(nextedge, nextapex);
05849           if (nextapex != (vertex) NULL) {
05850             /* Check whether the edge is Delaunay. */
05851             badedge = incircle(m, b, lowerleft, lowerright, upperleft,
05852                                nextapex) > 0.0;
05853           } else {
05854             /* Avoid eating right through the triangulation. */
05855             badedge = 0;
05856           }
05857         }
05858       }
05859     }
05860     /* Consider eliminating edges from the right triangulation. */
05861     if (!rightfinished) {
05862       /* What vertex would be exposed if an edge were deleted? */
05863       lnext(rightcand, nextedge);
05864       symself(nextedge);
05865       apex(nextedge, nextapex);
05866       /* If nextapex is NULL, then no vertex would be exposed; the */
05867       /*   triangulation would have been eaten right through.      */
05868       if (nextapex != (vertex) NULL) {
05869         /* Check whether the edge is Delaunay. */
05870         badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) >
05871                   0.0;
05872         while (badedge) {
05873           /* Eliminate the edge with an edge flip.  As a result, the     */
05874           /*   right triangulation will have one more boundary triangle. */
05875           lprevself(nextedge);
05876           sym(nextedge, topcasing);
05877           lprevself(nextedge);
05878           sym(nextedge, sidecasing);
05879           bond(nextedge, topcasing);
05880           bond(rightcand, sidecasing);
05881           lprevself(rightcand);
05882           sym(rightcand, outercasing);
05883           lnextself(nextedge);
05884           bond(nextedge, outercasing);
05885           /* Correct the vertices to reflect the edge flip. */
05886           setorg(rightcand, NULL);
05887           setdest(rightcand, lowerright);
05888           setapex(rightcand, nextapex);
05889           setorg(nextedge, upperright);
05890           setdest(nextedge, NULL);
05891           setapex(nextedge, nextapex);
05892           /* Consider the newly exposed vertex. */
05893           upperright = nextapex;
05894           /* What vertex would be exposed if another edge were deleted? */
05895           otricopy(sidecasing, nextedge);
05896           apex(nextedge, nextapex);
05897           if (nextapex != (vertex) NULL) {
05898             /* Check whether the edge is Delaunay. */
05899             badedge = incircle(m, b, lowerleft, lowerright, upperright,
05900                                nextapex) > 0.0;
05901           } else {
05902             /* Avoid eating right through the triangulation. */
05903             badedge = 0;
05904           }
05905         }
05906       }
05907     }
05908     if (leftfinished || (!rightfinished &&
05909            (incircle(m, b, upperleft, lowerleft, lowerright, upperright) >
05910             0.0))) {
05911       /* Knit the triangulations, adding an edge from `lowerleft' */
05912       /*   to `upperright'.                                       */
05913       bond(baseedge, rightcand);
05914       lprev(rightcand, baseedge);
05915       setdest(baseedge, lowerleft);
05916       lowerright = upperright;
05917       sym(baseedge, rightcand);
05918       apex(rightcand, upperright);
05919     } else {
05920       /* Knit the triangulations, adding an edge from `upperleft' */
05921       /*   to `lowerright'.                                       */
05922       bond(baseedge, leftcand);
05923       lnext(leftcand, baseedge);
05924       setorg(baseedge, lowerright);
05925       lowerleft = upperleft;
05926       sym(baseedge, leftcand);
05927       apex(leftcand, upperleft);
05928     }
05929     if (b->verbose > 2) {
05930       printf("  Connecting ");
05931       printtriangle(m, b, &baseedge);
05932     }
05933   }
05934 }
05935 
05936 /*****************************************************************************/
05937 /*                                                                           */
05938 /*  divconqrecurse()   Recursively form a Delaunay triangulation by the      */
05939 /*                     divide-and-conquer method.                            */
05940 /*                                                                           */
05941 /*  Recursively breaks down the problem into smaller pieces, which are       */
05942 /*  knitted together by mergehulls().  The base cases (problems of two or    */
05943 /*  three vertices) are handled specially here.                              */
05944 /*                                                                           */
05945 /*  On completion, `farleft' and `farright' are bounding triangles such that */
05946 /*  the origin of `farleft' is the leftmost vertex (breaking ties by         */
05947 /*  choosing the highest leftmost vertex), and the destination of            */
05948 /*  `farright' is the rightmost vertex (breaking ties by choosing the        */
05949 /*  lowest rightmost vertex).                                                */
05950 /*                                                                           */
05951 /*****************************************************************************/
05952 
05953 void divconqrecurse(struct mesh *m, struct behavior *b, vertex *sortarray,
05954                     int vertices, int axis,
05955                     struct otri *farleft, struct otri *farright)
05956 {
05957   struct otri midtri, tri1, tri2, tri3;
05958   struct otri innerleft, innerright;
05959   float area;
05960   int divider;
05961 
05962   if (b->verbose > 2) {
05963     printf("  Triangulating %d vertices.\n", vertices);
05964   }
05965   if (vertices == 2) {
05966     /* The triangulation of two vertices is an edge.  An edge is */
05967     /*   represented by two bounding triangles.                  */
05968     maketriangle(m, b, farleft);
05969     setorg(*farleft, sortarray[0]);
05970     setdest(*farleft, sortarray[1]);
05971     /* The apex is intentionally left NULL. */
05972     maketriangle(m, b, farright);
05973     setorg(*farright, sortarray[1]);
05974     setdest(*farright, sortarray[0]);
05975     /* The apex is intentionally left NULL. */
05976     bond(*farleft, *farright);
05977     lprevself(*farleft);
05978     lnextself(*farright);
05979     bond(*farleft, *farright);
05980     lprevself(*farleft);
05981     lnextself(*farright);
05982     bond(*farleft, *farright);
05983     if (b->verbose > 2) {
05984       printf("  Creating ");
05985       printtriangle(m, b, farleft);
05986       printf("  Creating ");
05987       printtriangle(m, b, farright);
05988     }
05989     /* Ensure that the origin of `farleft' is sortarray[0]. */
05990     lprev(*farright, *farleft);
05991     return;
05992   } else if (vertices == 3) {
05993     /* The triangulation of three vertices is either a triangle (with */
05994     /*   three bounding triangles) or two edges (with four bounding   */
05995     /*   triangles).  In either case, four triangles are created.     */
05996     maketriangle(m, b, &midtri);
05997     maketriangle(m, b, &tri1);
05998     maketriangle(m, b, &tri2);
05999     maketriangle(m, b, &tri3);
06000     area = counterclockwise(m, b, sortarray[0], sortarray[1], sortarray[2]);
06001     if (area == 0.0) {
06002       /* Three collinear vertices; the triangulation is two edges. */
06003       setorg(midtri, sortarray[0]);
06004       setdest(midtri, sortarray[1]);
06005       setorg(tri1, sortarray[1]);
06006       setdest(tri1, sortarray[0]);
06007       setorg(tri2, sortarray[2]);
06008       setdest(tri2, sortarray[1]);
06009       setorg(tri3, sortarray[1]);
06010       setdest(tri3, sortarray[2]);
06011       /* All apices are intentionally left NULL. */
06012       bond(midtri, tri1);
06013       bond(tri2, tri3);
06014       lnextself(midtri);
06015       lprevself(tri1);
06016       lnextself(tri2);
06017       lprevself(tri3);
06018       bond(midtri, tri3);
06019       bond(tri1, tri2);
06020       lnextself(midtri);
06021       lprevself(tri1);
06022       lnextself(tri2);
06023       lprevself(tri3);
06024       bond(midtri, tri1);
06025       bond(tri2, tri3);
06026       /* Ensure that the origin of `farleft' is sortarray[0]. */
06027       otricopy(tri1, *farleft);
06028       /* Ensure that the destination of `farright' is sortarray[2]. */
06029       otricopy(tri2, *farright);
06030     } else {
06031       /* The three vertices are not collinear; the triangulation is one */
06032       /*   triangle, namely `midtri'.                                   */
06033       setorg(midtri, sortarray[0]);
06034       setdest(tri1, sortarray[0]);
06035       setorg(tri3, sortarray[0]);
06036       /* Apices of tri1, tri2, and tri3 are left NULL. */
06037       if (area > 0.0) {
06038         /* The vertices are in counterclockwise order. */
06039         setdest(midtri, sortarray[1]);
06040         setorg(tri1, sortarray[1]);
06041         setdest(tri2, sortarray[1]);
06042         setapex(midtri, sortarray[2]);
06043         setorg(tri2, sortarray[2]);
06044         setdest(tri3, sortarray[2]);
06045       } else {
06046         /* The vertices are in clockwise order. */
06047         setdest(midtri, sortarray[2]);
06048         setorg(tri1, sortarray[2]);
06049         setdest(tri2, sortarray[2]);
06050         setapex(midtri, sortarray[1]);
06051         setorg(tri2, sortarray[1]);
06052         setdest(tri3, sortarray[1]);
06053       }
06054       /* The topology does not depend on how the vertices are ordered. */
06055       bond(midtri, tri1);
06056       lnextself(midtri);
06057       bond(midtri, tri2);
06058       lnextself(midtri);
06059       bond(midtri, tri3);
06060       lprevself(tri1);
06061       lnextself(tri2);
06062       bond(tri1, tri2);
06063       lprevself(tri1);
06064       lprevself(tri3);
06065       bond(tri1, tri3);
06066       lnextself(tri2);
06067       lprevself(tri3);
06068       bond(tri2, tri3);
06069       /* Ensure that the origin of `farleft' is sortarray[0]. */
06070       otricopy(tri1, *farleft);
06071       /* Ensure that the destination of `farright' is sortarray[2]. */
06072       if (area > 0.0) {
06073         otricopy(tri2, *farright);
06074       } else {
06075         lnext(*farleft, *farright);
06076       }
06077     }
06078     if (b->verbose > 2) {
06079       printf("  Creating ");
06080       printtriangle(m, b, &midtri);
06081       printf("  Creating ");
06082       printtriangle(m, b, &tri1);
06083       printf("  Creating ");
06084       printtriangle(m, b, &tri2);
06085       printf("  Creating ");
06086       printtriangle(m, b, &tri3);
06087     }
06088     return;
06089   } else {
06090     /* Split the vertices in half. */
06091     divider = vertices >> 1;
06092     /* Recursively triangulate each half. */
06093     divconqrecurse(m, b, sortarray, divider, 1 - axis, farleft, &innerleft);
06094     divconqrecurse(m, b, &sortarray[divider], vertices - divider, 1 - axis,
06095                    &innerright, farright);
06096     if (b->verbose > 1) {
06097       printf("  Joining triangulations with %d and %d vertices.\n", divider,
06098              vertices - divider);
06099     }
06100     /* Merge the two triangulations into one. */
06101     mergehulls(m, b, farleft, &innerleft, &innerright, farright, axis);
06102   }
06103 }
06104 
06105 long removeghosts(struct mesh *m, struct behavior *b, struct otri *startghost)
06106 {
06107   struct otri searchedge;
06108   struct otri dissolveedge;
06109   struct otri deadtriangle;
06110   vertex markorg;
06111   long hullsize;
06112   triangle ptr;                         /* Temporary variable used by sym(). */
06113 
06114   if (b->verbose) {
06115     printf("  Removing ghost triangles.\n");
06116   }
06117   /* Find an edge on the convex hull to start point location from. */
06118   lprev(*startghost, searchedge);
06119   symself(searchedge);
06120   m->dummytri[0] = encode(searchedge);
06121   /* Remove the bounding box and count the convex hull edges. */
06122   otricopy(*startghost, dissolveedge);
06123   hullsize = 0;
06124   do {
06125     hullsize++;
06126     lnext(dissolveedge, deadtriangle);
06127     lprevself(dissolveedge);
06128     symself(dissolveedge);
06129     /* If no PSLG is involved, set the boundary markers of all the vertices */
06130     /*   on the convex hull.  If a PSLG is used, this step is done later.   */
06131     if (!b->poly) {
06132       /* Watch out for the case where all the input vertices are collinear. */
06133       if (dissolveedge.tri != m->dummytri) {
06134         org(dissolveedge, markorg);
06135         if (vertexmark(markorg) == 0) {
06136           setvertexmark(markorg, 1);
06137         }
06138       }
06139     }
06140     /* Remove a bounding triangle from a convex hull triangle. */
06141     dissolve(dissolveedge);
06142     /* Find the next bounding triangle. */
06143     sym(deadtriangle, dissolveedge);
06144     /* Delete the bounding triangle. */
06145     triangledealloc(m, deadtriangle.tri);
06146   } while (!otriequal(dissolveedge, *startghost));
06147   return hullsize;
06148 }
06149 
06150 /*****************************************************************************/
06151 /*                                                                           */
06152 /*  divconqdelaunay()   Form a Delaunay triangulation by the divide-and-     */
06153 /*                      conquer method.                                      */
06154 /*                                                                           */
06155 /*  Sorts the vertices, calls a recursive procedure to triangulate them, and */
06156 /*  removes the bounding box, setting boundary markers as appropriate.       */
06157 /*                                                                           */
06158 /*****************************************************************************/
06159 
06160 long divconqdelaunay(struct mesh *m, struct behavior *b)
06161 {
06162   vertex *sortarray;
06163   struct otri hullleft, hullright;
06164   int divider;
06165   int i, j;
06166 
06167   if (b->verbose) {
06168     printf("  Sorting vertices.\n");
06169   }
06170 
06171   /* Allocate an array of pointers to vertices for sorting. */
06172   sortarray = (vertex *) trimalloc(m->invertices * (int) sizeof(vertex));
06173   traversalinit(&m->vertices);
06174   for (i = 0; i < m->invertices; i++) {
06175     sortarray[i] = vertextraverse(m);
06176   }
06177   /* Sort the vertices. */
06178   vertexsort(sortarray, m->invertices);
06179   /* Discard duplicate vertices, which can really mess up the algorithm. */
06180   i = 0;
06181   for (j = 1; j < m->invertices; j++) {
06182     if ((sortarray[i][0] == sortarray[j][0])
06183         && (sortarray[i][1] == sortarray[j][1])) {
06184       if (!b->quiet) {
06185         printf(
06186 "Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
06187                sortarray[j][0], sortarray[j][1]);
06188       }
06189       setvertextype(sortarray[j], UNDEADVERTEX);
06190       m->undeads++;
06191     } else {
06192       i++;
06193       sortarray[i] = sortarray[j];
06194     }
06195   }
06196   i++;
06197   if (b->dwyer) {
06198     /* Re-sort the array of vertices to accommodate alternating cuts. */
06199     divider = i >> 1;
06200     if (i - divider >= 2) {
06201       if (divider >= 2) {
06202         alternateaxes(sortarray, divider, 1);
06203       }
06204       alternateaxes(&sortarray[divider], i - divider, 1);
06205     }
06206   }
06207 
06208   if (b->verbose) {
06209     printf("  Forming triangulation.\n");
06210   }
06211 
06212   /* Form the Delaunay triangulation. */
06213   divconqrecurse(m, b, sortarray, i, 0, &hullleft, &hullright);
06214   trifree((int *) sortarray);
06215 
06216   return removeghosts(m, b, &hullleft);
06217 }
06218 
06221 /********* Divide-and-conquer Delaunay triangulation ends here       *********/
06222 
06223 /********* General mesh construction routines begin here             *********/
06227 /*****************************************************************************/
06228 /*                                                                           */
06229 /*  delaunay()   Form a Delaunay triangulation.                              */
06230 /*                                                                           */
06231 /*****************************************************************************/
06232 
06233 long delaunay(struct mesh *m, struct behavior *b)
06234 {
06235   long hulledges;
06236 
06237   m->eextras = 0;
06238   initializetrisubpools(m, b);
06239 
06240   if (!b->quiet) {
06241     printf(
06242       "Constructing Delaunay triangulation by divide-and-conquer method.\n");
06243   }
06244   hulledges = divconqdelaunay(m, b);
06245 
06246   if (m->triangles.items == 0) {
06247     /* The input vertices were all collinear, so there are no triangles. */
06248     return 0l;
06249   } else {
06250     return hulledges;
06251   }
06252 }
06253 
06256 /********* General mesh construction routines end here               *********/
06257 
06258 /********* Segment insertion begins here                             *********/
06262 /*****************************************************************************/
06263 /*                                                                           */
06264 /*  finddirection()   Find the first triangle on the path from one point     */
06265 /*                    to another.                                            */
06266 /*                                                                           */
06267 /*  Finds the triangle that intersects a line segment drawn from the         */
06268 /*  origin of `searchtri' to the point `searchpoint', and returns the result */
06269 /*  in `searchtri'.  The origin of `searchtri' does not change, even though  */
06270 /*  the triangle returned may differ from the one passed in.  This routine   */
06271 /*  is used to find the direction to move in to get from one point to        */
06272 /*  another.                                                                 */
06273 /*                                                                           */
06274 /*  The return value notes whether the destination or apex of the found      */
06275 /*  triangle is collinear with the two points in question.                   */
06276 /*                                                                           */
06277 /*****************************************************************************/
06278 
06279 enum finddirectionresult finddirection(struct mesh *m, struct behavior *b,
06280                                        struct otri *searchtri,
06281                                        vertex searchpoint)
06282 {
06283   struct otri checktri;
06284   vertex startvertex;
06285   vertex leftvertex, rightvertex;
06286   float leftccw, rightccw;
06287   int leftflag, rightflag;
06288   triangle ptr;           /* Temporary variable used by onext() and oprev(). */
06289 
06290   org(*searchtri, startvertex);
06291   dest(*searchtri, rightvertex);
06292   apex(*searchtri, leftvertex);
06293   /* Is `searchpoint' to the left? */
06294   leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
06295   leftflag = leftccw > 0.0;
06296   /* Is `searchpoint' to the right? */
06297   rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
06298   rightflag = rightccw > 0.0;
06299   if (leftflag && rightflag) {
06300     /* `searchtri' faces directly away from `searchpoint'.  We could go left */
06301     /*   or right.  Ask whether it's a triangle or a boundary on the left.   */
06302     onext(*searchtri, checktri);
06303     if (checktri.tri == m->dummytri) {
06304       leftflag = 0;
06305     } else {
06306       rightflag = 0;
06307     }
06308   }
06309   while (leftflag) {
06310     /* Turn left until satisfied. */
06311     onextself(*searchtri);
06312     if (searchtri->tri == m->dummytri) {
06313       printf("Internal error in finddirection():  Unable to find a\n");
06314       printf("  triangle leading from (%.12g, %.12g) to", startvertex[0],
06315              startvertex[1]);
06316       printf("  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
06317       internalerror();
06318     }
06319     apex(*searchtri, leftvertex);
06320     rightccw = leftccw;
06321     leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
06322     leftflag = leftccw > 0.0;
06323   }
06324   while (rightflag) {
06325     /* Turn right until satisfied. */
06326     oprevself(*searchtri);
06327     if (searchtri->tri == m->dummytri) {
06328       printf("Internal error in finddirection():  Unable to find a\n");
06329       printf("  triangle leading from (%.12g, %.12g) to", startvertex[0],
06330              startvertex[1]);
06331       printf("  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
06332       internalerror();
06333     }
06334     dest(*searchtri, rightvertex);
06335     leftccw = rightccw;
06336     rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
06337     rightflag = rightccw > 0.0;
06338   }
06339   if (leftccw == 0.0) {
06340     return LEFTCOLLINEAR;
06341   } else if (rightccw == 0.0) {
06342     return RIGHTCOLLINEAR;
06343   } else {
06344     return WITHIN;
06345   }
06346 }
06347 
06348 /*****************************************************************************/
06349 /*                                                                           */
06350 /*  segmentintersection()   Find the intersection of an existing segment     */
06351 /*                          and a segment that is being inserted.  Insert    */
06352 /*                          a vertex at the intersection, splitting an       */
06353 /*                          existing subsegment.                             */
06354 /*                                                                           */
06355 /*  The segment being inserted connects the apex of splittri to endpoint2.   */
06356 /*  splitsubseg is the subsegment being split, and MUST adjoin splittri.     */
06357 /*  Hence, endpoints of the subsegment being split are the origin and        */
06358 /*  destination of splittri.                                                 */
06359 /*                                                                           */
06360 /*  On completion, splittri is a handle having the newly inserted            */
06361 /*  intersection point as its origin, and endpoint1 as its destination.      */
06362 /*                                                                           */
06363 /*****************************************************************************/
06364 
06365 void segmentintersection(struct mesh *m, struct behavior *b,
06366                          struct otri *splittri, struct osub *splitsubseg,
06367                          vertex endpoint2)
06368 {
06369   struct osub opposubseg;
06370   vertex endpoint1;
06371   vertex torg, tdest;
06372   vertex leftvertex, rightvertex;
06373   vertex newvertex;
06374   enum insertvertexresult success;
06375   enum finddirectionresult collinear;
06376   float ex, ey;
06377   float tx, ty;
06378   float etx, ety;
06379   float split, denom;
06380   int i;
06381   triangle ptr;                       /* Temporary variable used by onext(). */
06382   subseg sptr;                        /* Temporary variable used by snext(). */
06383 
06384   /* Find the other three segment endpoints. */
06385   apex(*splittri, endpoint1);
06386   org(*splittri, torg);
06387   dest(*splittri, tdest);
06388   /* Segment intersection formulae; see the Antonio reference. */
06389   tx = tdest[0] - torg[0];
06390   ty = tdest[1] - torg[1];
06391   ex = endpoint2[0] - endpoint1[0];
06392   ey = endpoint2[1] - endpoint1[1];
06393   etx = torg[0] - endpoint2[0];
06394   ety = torg[1] - endpoint2[1];
06395   denom = ty * ex - tx * ey;
06396   if (denom == 0.0) {
06397     printf("Internal error in segmentintersection():");
06398     printf("  Attempt to find intersection of parallel segments.\n");
06399     internalerror();
06400   }
06401   split = (ey * etx - ex * ety) / denom;
06402   /* Create the new vertex. */
06403   newvertex = (vertex) poolalloc(&m->vertices);
06404   /* Interpolate its coordinate and attributes. */
06405   for (i = 0; i < 2 + m->nextras; i++) {
06406     newvertex[i] = torg[i] + split * (tdest[i] - torg[i]);
06407   }
06408   setvertexmark(newvertex, mark(*splitsubseg));
06409   setvertextype(newvertex, INPUTVERTEX);
06410   if (b->verbose > 1) {
06411     printf(
06412   "  Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
06413            torg[0], torg[1], tdest[0], tdest[1], newvertex[0], newvertex[1]);
06414   }
06415   /* Insert the intersection vertex.  This should always succeed. */
06416   success = insertvertex(m, b, newvertex, splittri, splitsubseg, 0, 0);
06417   if (success != SUCCESSFULVERTEX) {
06418     printf("Internal error in segmentintersection():\n");
06419     printf("  Failure to split a segment.\n");
06420     internalerror();
06421   }
06422   /* Record a triangle whose origin is the new vertex. */
06423   setvertex2tri(newvertex, encode(*splittri));
06424   if (m->steinerleft > 0) {
06425     m->steinerleft--;
06426   }
06427 
06428   /* Divide the segment into two, and correct the segment endpoints. */
06429   ssymself(*splitsubseg);
06430   spivot(*splitsubseg, opposubseg);
06431   sdissolve(*splitsubseg);
06432   sdissolve(opposubseg);
06433   do {
06434     setsegorg(*splitsubseg, newvertex);
06435     snextself(*splitsubseg);
06436   } while (splitsubseg->ss != m->dummysub);
06437   do {
06438     setsegorg(opposubseg, newvertex);
06439     snextself(opposubseg);
06440   } while (opposubseg.ss != m->dummysub);
06441 
06442   /* Inserting the vertex may have caused edge flips.  We wish to rediscover */
06443   /*   the edge connecting endpoint1 to the new intersection vertex.         */
06444   collinear = finddirection(m, b, splittri, endpoint1);
06445   dest(*splittri, rightvertex);
06446   apex(*splittri, leftvertex);
06447   if ((leftvertex[0] == endpoint1[0]) && (leftvertex[1] == endpoint1[1])) {
06448     onextself(*splittri);
06449   } else if ((rightvertex[0] != endpoint1[0]) ||
06450              (rightvertex[1] != endpoint1[1])) {
06451     printf("Internal error in segmentintersection():\n");
06452     printf("  Topological inconsistency after splitting a segment.\n");
06453     internalerror();
06454   }
06455   /* `splittri' should have destination endpoint1. */
06456 }
06457 
06458 /*****************************************************************************/
06459 /*                                                                           */
06460 /*  scoutsegment()   Scout the first triangle on the path from one endpoint  */
06461 /*                   to another, and check for completion (reaching the      */
06462 /*                   second endpoint), a collinear vertex, or the            */
06463 /*                   intersection of two segments.                           */
06464 /*                                                                           */
06465 /*  Returns one if the entire segment is successfully inserted, and zero if  */
06466 /*  the job must be finished by conformingedge() or constrainededge().       */
06467 /*                                                                           */
06468 /*  If the first triangle on the path has the second endpoint as its         */
06469 /*  destination or apex, a subsegment is inserted and the job is done.       */
06470 /*                                                                           */
06471 /*  If the first triangle on the path has a destination or apex that lies on */
06472 /*  the segment, a subsegment is inserted connecting the first endpoint to   */
06473 /*  the collinear vertex, and the search is continued from the collinear     */
06474 /*  vertex.                                                                  */
06475 /*                                                                           */
06476 /*  If the first triangle on the path has a subsegment opposite its origin,  */
06477 /*  then there is a segment that intersects the segment being inserted.      */
06478 /*  Their intersection vertex is inserted, splitting the subsegment.         */
06479 /*                                                                           */
06480 /*****************************************************************************/
06481 
06482 int scoutsegment(struct mesh *m, struct behavior *b, struct otri *searchtri,
06483                  vertex endpoint2, int newmark)
06484 {
06485   struct otri crosstri;
06486   struct osub crosssubseg;
06487   vertex leftvertex, rightvertex;
06488   enum finddirectionresult collinear;
06489   subseg sptr;                      /* Temporary variable used by tspivot(). */
06490 
06491   collinear = finddirection(m, b, searchtri, endpoint2);
06492   dest(*searchtri, rightvertex);
06493   apex(*searchtri, leftvertex);
06494   if (((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) ||
06495       ((rightvertex[0] == endpoint2[0]) && (rightvertex[1] == endpoint2[1]))) {
06496     /* The segment is already an edge in the mesh. */
06497     if ((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) {
06498       lprevself(*searchtri);
06499     }
06500     /* Insert a subsegment, if there isn't already one there. */
06501     insertsubseg(m, b, searchtri, newmark);
06502     return 1;
06503   } else if (collinear == LEFTCOLLINEAR) {
06504     /* We've collided with a vertex between the segment's endpoints. */
06505     /* Make the collinear vertex be the triangle's origin. */
06506     lprevself(*searchtri);
06507     insertsubseg(m, b, searchtri, newmark);
06508     /* Insert the remainder of the segment. */
06509     return scoutsegment(m, b, searchtri, endpoint2, newmark);
06510   } else if (collinear == RIGHTCOLLINEAR) {
06511     /* We've collided with a vertex between the segment's endpoints. */
06512     insertsubseg(m, b, searchtri, newmark);
06513     /* Make the collinear vertex be the triangle's origin. */
06514     lnextself(*searchtri);
06515     /* Insert the remainder of the segment. */
06516     return scoutsegment(m, b, searchtri, endpoint2, newmark);
06517   } else {
06518     lnext(*searchtri, crosstri);
06519     tspivot(crosstri, crosssubseg);
06520     /* Check for a crossing segment. */
06521     if (crosssubseg.ss == m->dummysub) {
06522       return 0;
06523     } else {
06524       /* Insert a vertex at the intersection. */
06525       segmentintersection(m, b, &crosstri, &crosssubseg, endpoint2);
06526       otricopy(crosstri, *searchtri);
06527       insertsubseg(m, b, searchtri, newmark);
06528       /* Insert the remainder of the segment. */
06529       return scoutsegment(m, b, searchtri, endpoint2, newmark);
06530     }
06531   }
06532 }
06533 
06534 /*****************************************************************************/
06535 /*                                                                           */
06536 /*  delaunayfixup()   Enforce the Delaunay condition at an edge, fanning out */
06537 /*                    recursively from an existing vertex.  Pay special      */
06538 /*                    attention to stacking inverted triangles.              */
06539 /*                                                                           */
06540 /*  This is a support routine for inserting segments into a constrained      */
06541 /*  Delaunay triangulation.                                                  */
06542 /*                                                                           */
06543 /*  The origin of fixuptri is treated as if it has just been inserted, and   */
06544 /*  the local Delaunay condition needs to be enforced.  It is only enforced  */
06545 /*  in one sector, however, that being the angular range defined by          */
06546 /*  fixuptri.                                                                */
06547 /*                                                                           */
06548 /*  This routine also needs to make decisions regarding the "stacking" of    */
06549 /*  triangles.  (Read the description of constrainededge() below before      */
06550 /*  reading on here, so you understand the algorithm.)  If the position of   */
06551 /*  the new vertex (the origin of fixuptri) indicates that the vertex before */
06552 /*  it on the polygon is a reflex vertex, then "stack" the triangle by       */
06553 /*  doing nothing.  (fixuptri is an inverted triangle, which is how stacked  */
06554 /*  triangles are identified.)                                               */
06555 /*                                                                           */
06556 /*  Otherwise, check whether the vertex before that was a reflex vertex.     */
06557 /*  If so, perform an edge flip, thereby eliminating an inverted triangle    */
06558 /*  (popping it off the stack).  The edge flip may result in the creation    */
06559 /*  of a new inverted triangle, depending on whether or not the new vertex   */
06560 /*  is visible to the vertex three edges behind on the polygon.              */
06561 /*                                                                           */
06562 /*  If neither of the two vertices behind the new vertex are reflex          */
06563 /*  vertices, fixuptri and fartri, the triangle opposite it, are not         */
06564 /*  inverted; hence, ensure that the edge between them is locally Delaunay.  */
06565 /*                                                                           */
06566 /*  `leftside' indicates whether or not fixuptri is to the left of the       */
06567 /*  segment being inserted.  (Imagine that the segment is pointing up from   */
06568 /*  endpoint1 to endpoint2.)                                                 */
06569 /*                                                                           */
06570 /*****************************************************************************/
06571 
06572 void delaunayfixup(struct mesh *m, struct behavior *b,
06573                    struct otri *fixuptri, int leftside)
06574 {
06575   struct otri neartri;
06576   struct otri fartri;
06577   struct osub faredge;
06578   vertex nearvertex, leftvertex, rightvertex, farvertex;
06579   triangle ptr;                         /* Temporary variable used by sym(). */
06580   subseg sptr;                      /* Temporary variable used by tspivot(). */
06581 
06582   lnext(*fixuptri, neartri);
06583   sym(neartri, fartri);
06584   /* Check if the edge opposite the origin of fixuptri can be flipped. */
06585   if (fartri.tri == m->dummytri) {
06586     return;
06587   }
06588   tspivot(neartri, faredge);
06589   if (faredge.ss != m->dummysub) {
06590     return;
06591   }
06592   /* Find all the relevant vertices. */
06593   apex(neartri, nearvertex);
06594   org(neartri, leftvertex);
06595   dest(neartri, rightvertex);
06596   apex(fartri, farvertex);
06597   /* Check whether the previous polygon vertex is a reflex vertex. */
06598   if (leftside) {
06599     if (counterclockwise(m, b, nearvertex, leftvertex, farvertex) <= 0.0) {
06600       /* leftvertex is a reflex vertex too.  Nothing can */
06601       /*   be done until a convex section is found.      */
06602       return;
06603     }
06604   } else {
06605     if (counterclockwise(m, b, farvertex, rightvertex, nearvertex) <= 0.0) {
06606       /* rightvertex is a reflex vertex too.  Nothing can */
06607       /*   be done until a convex section is found.       */
06608       return;
06609     }
06610   }
06611   if (counterclockwise(m, b, rightvertex, leftvertex, farvertex) > 0.0) {
06612     /* fartri is not an inverted triangle, and farvertex is not a reflex */
06613     /*   vertex.  As there are no reflex vertices, fixuptri isn't an     */
06614     /*   inverted triangle, either.  Hence, test the edge between the    */
06615     /*   triangles to ensure it is locally Delaunay.                     */
06616     if (incircle(m, b, leftvertex, farvertex, rightvertex, nearvertex) <=
06617         0.0) {
06618       return;
06619     }
06620     /* Not locally Delaunay; go on to an edge flip. */
06621   }        /* else fartri is inverted; remove it from the stack by flipping. */
06622   flip(m, b, &neartri);
06623   lprevself(*fixuptri);    /* Restore the origin of fixuptri after the flip. */
06624   /* Recursively process the two triangles that result from the flip. */
06625   delaunayfixup(m, b, fixuptri, leftside);
06626   delaunayfixup(m, b, &fartri, leftside);
06627 }
06628 
06629 /*****************************************************************************/
06630 /*                                                                           */
06631 /*  constrainededge()   Force a segment into a constrained Delaunay          */
06632 /*                      triangulation by deleting the triangles it           */
06633 /*                      intersects, and triangulating the polygons that      */
06634 /*                      form on each side of it.                             */
06635 /*                                                                           */
06636 /*  Generates a single subsegment connecting `endpoint1' to `endpoint2'.     */
06637 /*  The triangle `starttri' has `endpoint1' as its origin.  `newmark' is the */
06638 /*  boundary marker of the segment.                                          */
06639 /*                                                                           */
06640 /*  To insert a segment, every triangle whose interior intersects the        */
06641 /*  segment is deleted.  The union of these deleted triangles is a polygon   */
06642 /*  (which is not necessarily monotone, but is close enough), which is       */
06643 /*  divided into two polygons by the new segment.  This routine's task is    */
06644 /*  to generate the Delaunay triangulation of these two polygons.            */
06645 /*                                                                           */
06646 /*  You might think of this routine's behavior as a two-step process.  The   */
06647 /*  first step is to walk from endpoint1 to endpoint2, flipping each edge    */
06648 /*  encountered.  This step creates a fan of edges connected to endpoint1,   */
06649 /*  including the desired edge to endpoint2.  The second step enforces the   */
06650 /*  Delaunay condition on each side of the segment in an incremental manner: */
06651 /*  proceeding along the polygon from endpoint1 to endpoint2 (this is done   */
06652 /*  independently on each side of the segment), each vertex is "enforced"    */
06653 /*  as if it had just been inserted, but affecting only the previous         */
06654 /*  vertices.  The result is the same as if the vertices had been inserted   */
06655 /*  in the order they appear on the polygon, so the result is Delaunay.      */
06656 /*                                                                           */
06657 /*  In truth, constrainededge() interleaves these two steps.  The procedure  */
06658 /*  walks from endpoint1 to endpoint2, and each time an edge is encountered  */
06659 /*  and flipped, the newly exposed vertex (at the far end of the flipped     */
06660 /*  edge) is "enforced" upon the previously flipped edges, usually affecting */
06661 /*  only one side of the polygon (depending upon which side of the segment   */
06662 /*  the vertex falls on).                                                    */
06663 /*                                                                           */
06664 /*  The algorithm is complicated by the need to handle polygons that are not */
06665 /*  convex.  Although the polygon is not necessarily monotone, it can be     */
06666 /*  triangulated in a manner similar to the stack-based algorithms for       */
06667 /*  monotone polygons.  For each reflex vertex (local concavity) of the      */
06668 /*  polygon, there will be an inverted triangle formed by one of the edge    */
06669 /*  flips.  (An inverted triangle is one with negative area - that is, its   */
06670 /*  vertices are arranged in clockwise order - and is best thought of as a   */
06671 /*  wrinkle in the fabric of the mesh.)  Each inverted triangle can be       */
06672 /*  thought of as a reflex vertex pushed on the stack, waiting to be fixed   */
06673 /*  later.                                                                   */
06674 /*                                                                           */
06675 /*  A reflex vertex is popped from the stack when a vertex is inserted that  */
06676 /*  is visible to the reflex vertex.  (However, if the vertex behind the     */
06677 /*  reflex vertex is not visible to the reflex vertex, a new inverted        */
06678 /*  triangle will take its place on the stack.)  These details are handled   */
06679 /*  by the delaunayfixup() routine above.                                    */
06680 /*                                                                           */
06681 /*****************************************************************************/
06682 
06683 void constrainededge(struct mesh *m, struct behavior *b,
06684                      struct otri *starttri, vertex endpoint2, int newmark)
06685 {
06686   struct otri fixuptri, fixuptri2;
06687   struct osub crosssubseg;
06688   vertex endpoint1;
06689   vertex farvertex;
06690   float area;
06691   int collision;
06692   int done;
06693   triangle ptr;             /* Temporary variable used by sym() and oprev(). */
06694   subseg sptr;                      /* Temporary variable used by tspivot(). */
06695 
06696   org(*starttri, endpoint1);
06697   lnext(*starttri, fixuptri);
06698   flip(m, b, &fixuptri);
06699   /* `collision' indicates whether we have found a vertex directly */
06700   /*   between endpoint1 and endpoint2.                            */
06701   collision = 0;
06702   done = 0;
06703   do {
06704     org(fixuptri, farvertex);
06705     /* `farvertex' is the extreme point of the polygon we are "digging" */
06706     /*   to get from endpoint1 to endpoint2.                           */
06707     if ((farvertex[0] == endpoint2[0]) && (farvertex[1] == endpoint2[1])) {
06708       oprev(fixuptri, fixuptri2);
06709       /* Enforce the Delaunay condition around endpoint2. */
06710       delaunayfixup(m, b, &fixuptri, 0);
06711       delaunayfixup(m, b, &fixuptri2, 1);
06712       done = 1;
06713     } else {
06714       /* Check whether farvertex is to the left or right of the segment */
06715       /*   being inserted, to decide which edge of fixuptri to dig      */
06716       /*   through next.                                                */
06717       area = counterclockwise(m, b, endpoint1, endpoint2, farvertex);
06718       if (area == 0.0) {
06719         /* We've collided with a vertex between endpoint1 and endpoint2. */
06720         collision = 1;
06721         oprev(fixuptri, fixuptri2);
06722         /* Enforce the Delaunay condition around farvertex. */
06723         delaunayfixup(m, b, &fixuptri, 0);
06724         delaunayfixup(m, b, &fixuptri2, 1);
06725         done = 1;
06726       } else {
06727         if (area > 0.0) {        /* farvertex is to the left of the segment. */
06728           oprev(fixuptri, fixuptri2);
06729           /* Enforce the Delaunay condition around farvertex, on the */
06730           /*   left side of the segment only.                        */
06731           delaunayfixup(m, b, &fixuptri2, 1);
06732           /* Flip the edge that crosses the segment.  After the edge is */
06733           /*   flipped, one of its endpoints is the fan vertex, and the */
06734           /*   destination of fixuptri is the fan vertex.               */
06735           lprevself(fixuptri);
06736         } else {                /* farvertex is to the right of the segment. */
06737           delaunayfixup(m, b, &fixuptri, 0);
06738           /* Flip the edge that crosses the segment.  After the edge is */
06739           /*   flipped, one of its endpoints is the fan vertex, and the */
06740           /*   destination of fixuptri is the fan vertex.               */
06741           oprevself(fixuptri);
06742         }
06743         /* Check for two intersecting segments. */
06744         tspivot(fixuptri, crosssubseg);
06745         if (crosssubseg.ss == m->dummysub) {
06746           flip(m, b, &fixuptri);    /* May create inverted triangle at left. */
06747         } else {
06748           /* We've collided with a segment between endpoint1 and endpoint2. */
06749           collision = 1;
06750           /* Insert a vertex at the intersection. */
06751           segmentintersection(m, b, &fixuptri, &crosssubseg, endpoint2);
06752           done = 1;
06753         }
06754       }
06755     }
06756   } while (!done);
06757   /* Insert a subsegment to make the segment permanent. */
06758   insertsubseg(m, b, &fixuptri, newmark);
06759   /* If there was a collision with an interceding vertex, install another */
06760   /*   segment connecting that vertex with endpoint2.                     */
06761   if (collision) {
06762     /* Insert the remainder of the segment. */
06763     if (!scoutsegment(m, b, &fixuptri, endpoint2, newmark)) {
06764       constrainededge(m, b, &fixuptri, endpoint2, newmark);
06765     }
06766   }
06767 }
06768 
06769 /*****************************************************************************/
06770 /*                                                                           */
06771 /*  insertsegment()   Insert a PSLG segment into a triangulation.            */
06772 /*                                                                           */
06773 /*****************************************************************************/
06774 
06775 void insertsegment(struct mesh *m, struct behavior *b,
06776                    vertex endpoint1, vertex endpoint2, int newmark)
06777 {
06778   struct otri searchtri1, searchtri2;
06779   triangle encodedtri;
06780   vertex checkvertex;
06781   triangle ptr;                         /* Temporary variable used by sym(). */
06782 
06783   if (b->verbose > 1) {
06784     printf("  Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
06785            endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
06786   }
06787 
06788   /* Find a triangle whose origin is the segment's first endpoint. */
06789   checkvertex = (vertex) NULL;
06790   encodedtri = vertex2tri(endpoint1);
06791   if (encodedtri != (triangle) NULL) {
06792     decode(encodedtri, searchtri1);
06793     org(searchtri1, checkvertex);
06794   }
06795   if (checkvertex != endpoint1) {
06796     /* Find a boundary triangle to search from. */
06797     searchtri1.tri = m->dummytri;
06798     searchtri1.orient = 0;
06799     symself(searchtri1);
06800     /* Search for the segment's first endpoint by point location. */
06801     if (locate(m, b, endpoint1, &searchtri1) != ONVERTEX) {
06802       printf(
06803         "Internal error in insertsegment():  Unable to locate PSLG vertex\n");
06804       printf("  (%.12g, %.12g) in triangulation.\n",
06805              endpoint1[0], endpoint1[1]);
06806       internalerror();
06807     }
06808   }
06809   /* Remember this triangle to improve subsequent point location. */
06810   otricopy(searchtri1, m->recenttri);
06811   /* Scout the beginnings of a path from the first endpoint */
06812   /*   toward the second.                                   */
06813   if (scoutsegment(m, b, &searchtri1, endpoint2, newmark)) {
06814     /* The segment was easily inserted. */
06815     return;
06816   }
06817   /* The first endpoint may have changed if a collision with an intervening */
06818   /*   vertex on the segment occurred.                                      */
06819   org(searchtri1, endpoint1);
06820 
06821   /* Find a triangle whose origin is the segment's second endpoint. */
06822   checkvertex = (vertex) NULL;
06823   encodedtri = vertex2tri(endpoint2);
06824   if (encodedtri != (triangle) NULL) {
06825     decode(encodedtri, searchtri2);
06826     org(searchtri2, checkvertex);
06827   }
06828   if (checkvertex != endpoint2) {
06829     /* Find a boundary triangle to search from. */
06830     searchtri2.tri = m->dummytri;
06831     searchtri2.orient = 0;
06832     symself(searchtri2);
06833     /* Search for the segment's second endpoint by point location. */
06834     if (locate(m, b, endpoint2, &searchtri2) != ONVERTEX) {
06835       printf(
06836         "Internal error in insertsegment():  Unable to locate PSLG vertex\n");
06837       printf("  (%.12g, %.12g) in triangulation.\n",
06838              endpoint2[0], endpoint2[1]);
06839       internalerror();
06840     }
06841   }
06842   /* Remember this triangle to improve subsequent point location. */
06843   otricopy(searchtri2, m->recenttri);
06844   /* Scout the beginnings of a path from the second endpoint */
06845   /*   toward the first.                                     */
06846   if (scoutsegment(m, b, &searchtri2, endpoint1, newmark)) {
06847     /* The segment was easily inserted. */
06848     return;
06849   }
06850   /* The second endpoint may have changed if a collision with an intervening */
06851   /*   vertex on the segment occurred.                                       */
06852   org(searchtri2, endpoint2);
06853 
06854     /* Insert the segment directly into the triangulation. */
06855     constrainededge(m, b, &searchtri1, endpoint2, newmark);
06856 }
06857 
06858 /*****************************************************************************/
06859 /*                                                                           */
06860 /*  markhull()   Cover the convex hull of a triangulation with subsegments.  */
06861 /*                                                                           */
06862 /*****************************************************************************/
06863 
06864 void markhull(struct mesh *m, struct behavior *b)
06865 {
06866   struct otri hulltri;
06867   struct otri nexttri;
06868   struct otri starttri;
06869   triangle ptr;             /* Temporary variable used by sym() and oprev(). */
06870 
06871   /* Find a triangle handle on the hull. */
06872   hulltri.tri = m->dummytri;
06873   hulltri.orient = 0;
06874   symself(hulltri);
06875   /* Remember where we started so we know when to stop. */
06876   otricopy(hulltri, starttri);
06877   /* Go once counterclockwise around the convex hull. */
06878   do {
06879     /* Create a subsegment if there isn't already one here. */
06880     insertsubseg(m, b, &hulltri, 1);
06881     /* To find the next hull edge, go clockwise around the next vertex. */
06882     lnextself(hulltri);
06883     oprev(hulltri, nexttri);
06884     while (nexttri.tri != m->dummytri) {
06885       otricopy(nexttri, hulltri);
06886       oprev(hulltri, nexttri);
06887     }
06888   } while (!otriequal(hulltri, starttri));
06889 }
06890 
06891 /*****************************************************************************/
06892 /*                                                                           */
06893 /*  formskeleton()   Create the segments of a triangulation, including PSLG  */
06894 /*                   segments and edges on the convex hull.                  */
06895 /*                                                                           */
06896 /*  The PSLG segments are read from a .poly file.  The return value is the   */
06897 /*  number of segments in the file.                                          */
06898 /*                                                                           */
06899 /*****************************************************************************/
06900 
06901 void formskeleton(struct mesh *m, struct behavior *b, int *segmentlist,
06902                   int *segmentmarkerlist, int numberofsegments)
06903 {
06904   char polyfilename[6];
06905   int index;
06906   vertex endpoint1, endpoint2;
06907   int segmentmarkers;
06908   int end1, end2;
06909   int boundmarker;
06910   int i;
06911 
06912   if (b->poly) {
06913     if (!b->quiet) {
06914       printf("Recovering segments in Delaunay triangulation.\n");
06915     }
06916     strcpy(polyfilename, "input");
06917     m->insegments = numberofsegments;
06918     segmentmarkers = segmentmarkerlist != (int *) NULL;
06919     index = 0;
06920     /* If the input vertices are collinear, there is no triangulation, */
06921     /*   so don't try to insert segments.                              */
06922     if (m->triangles.items == 0) {
06923       return;
06924     }
06925 
06926     /* If segments are to be inserted, compute a mapping */
06927     /*   from vertices to triangles.                     */
06928     if (m->insegments > 0) {
06929       makevertexmap(m, b);
06930       if (b->verbose) {
06931         printf("  Recovering PSLG segments.\n");
06932       }
06933     }
06934 
06935     boundmarker = 0;
06936     /* Read and insert the segments. */
06937     for (i = 0; i < m->insegments; i++) {
06938       end1 = segmentlist[index++];
06939       end2 = segmentlist[index++];
06940       if (segmentmarkers) {
06941         boundmarker = segmentmarkerlist[i];
06942       }
06943       if ((end1 < b->firstnumber) ||
06944           (end1 >= b->firstnumber + m->invertices)) {
06945         if (!b->quiet) {
06946           printf("Warning:  Invalid first endpoint of segment %d in %s.\n",
06947                  b->firstnumber + i, polyfilename);
06948         }
06949       } else if ((end2 < b->firstnumber) ||
06950                  (end2 >= b->firstnumber + m->invertices)) {
06951         if (!b->quiet) {
06952           printf("Warning:  Invalid second endpoint of segment %d in %s.\n",
06953                  b->firstnumber + i, polyfilename);
06954         }
06955       } else {
06956         /* Find the vertices numbered `end1' and `end2'. */
06957         endpoint1 = getvertex(m, b, end1);
06958         endpoint2 = getvertex(m, b, end2);
06959         if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
06960           if (!b->quiet) {
06961             printf("Warning:  Endpoints of segment %d are coincident in %s.\n",
06962                    b->firstnumber + i, polyfilename);
06963           }
06964         } else {
06965           insertsegment(m, b, endpoint1, endpoint2, boundmarker);
06966         }
06967       }
06968     }
06969   } else {
06970     m->insegments = 0;
06971   }
06972   if (b->convex || !b->poly) {
06973     /* Enclose the convex hull with subsegments. */
06974     if (b->verbose) {
06975       printf("  Enclosing convex hull with segments.\n");
06976     }
06977     markhull(m, b);
06978   }
06979 }
06980 
06983 /********* Segment insertion ends here                               *********/
06984 
06985 /********* Carving out holes and concavities begins here             *********/
06989 /*****************************************************************************/
06990 /*                                                                           */
06991 /*  infecthull()   Virally infect all of the triangles of the convex hull    */
06992 /*                 that are not protected by subsegments.  Where there are   */
06993 /*                 subsegments, set boundary markers as appropriate.         */
06994 /*                                                                           */
06995 /*****************************************************************************/
06996 
06997 void infecthull(struct mesh *m, struct behavior *b)
06998 {
06999   struct otri hulltri;
07000   struct otri nexttri;
07001   struct otri starttri;
07002   struct osub hullsubseg;
07003   triangle **deadtriangle;
07004   vertex horg, hdest;
07005   triangle ptr;                         /* Temporary variable used by sym(). */
07006   subseg sptr;                      /* Temporary variable used by tspivot(). */
07007 
07008   if (b->verbose) {
07009     printf("  Marking concavities (external triangles) for elimination.\n");
07010   }
07011   /* Find a triangle handle on the hull. */
07012   hulltri.tri = m->dummytri;
07013   hulltri.orient = 0;
07014   symself(hulltri);
07015   /* Remember where we started so we know when to stop. */
07016   otricopy(hulltri, starttri);
07017   /* Go once counterclockwise around the convex hull. */
07018   do {
07019     /* Ignore triangles that are already infected. */
07020     if (!infected(hulltri)) {
07021       /* Is the triangle protected by a subsegment? */
07022       tspivot(hulltri, hullsubseg);
07023       if (hullsubseg.ss == m->dummysub) {
07024         /* The triangle is not protected; infect it. */
07025         if (!infected(hulltri)) {
07026           infect(hulltri);
07027           deadtriangle = (triangle **) poolalloc(&m->viri);
07028           *deadtriangle = hulltri.tri;
07029         }
07030       } else {
07031         /* The triangle is protected; set boundary markers if appropriate. */
07032         if (mark(hullsubseg) == 0) {
07033           setmark(hullsubseg, 1);
07034           org(hulltri, horg);
07035           dest(hulltri, hdest);
07036           if (vertexmark(horg) == 0) {
07037             setvertexmark(horg, 1);
07038           }
07039           if (vertexmark(hdest) == 0) {
07040             setvertexmark(hdest, 1);
07041           }
07042         }
07043       }
07044     }
07045     /* To find the next hull edge, go clockwise around the next vertex. */
07046     lnextself(hulltri);
07047     oprev(hulltri, nexttri);
07048     while (nexttri.tri != m->dummytri) {
07049       otricopy(nexttri, hulltri);
07050       oprev(hulltri, nexttri);
07051     }
07052   } while (!otriequal(hulltri, starttri));
07053 }
07054 
07055 /*****************************************************************************/
07056 /*                                                                           */
07057 /*  plague()   Spread the virus from all infected triangles to any neighbors */
07058 /*             not protected by subsegments.  Delete all infected triangles. */
07059 /*                                                                           */
07060 /*  This is the procedure that actually creates holes and concavities.       */
07061 /*                                                                           */
07062 /*  This procedure operates in two phases.  The first phase identifies all   */
07063 /*  the triangles that will die, and marks them as infected.  They are       */
07064 /*  marked to ensure that each triangle is added to the virus pool only      */
07065 /*  once, so the procedure will terminate.                                   */
07066 /*                                                                           */
07067 /*  The second phase actually eliminates the infected triangles.  It also    */
07068 /*  eliminates orphaned vertices.                                            */
07069 /*                                                                           */
07070 /*****************************************************************************/
07071 
07072 void plague(struct mesh *m, struct behavior *b)
07073 {
07074   struct otri testtri;
07075   struct otri neighbor;
07076   triangle **virusloop;
07077   triangle **deadtriangle;
07078   struct osub neighborsubseg;
07079   vertex testvertex;
07080   vertex norg, ndest;
07081   vertex deadorg, deaddest, deadapex;
07082   int killorg;
07083   triangle ptr;             /* Temporary variable used by sym() and onext(). */
07084   subseg sptr;                      /* Temporary variable used by tspivot(). */
07085 
07086   if (b->verbose) {
07087     printf("  Marking neighbors of marked triangles.\n");
07088   }
07089   /* Loop through all the infected triangles, spreading the virus to */
07090   /*   their neighbors, then to their neighbors' neighbors.          */
07091   traversalinit(&m->viri);
07092   virusloop = (triangle **) traverse(&m->viri);
07093   while (virusloop != (triangle **) NULL) {
07094     testtri.tri = *virusloop;
07095     /* A triangle is marked as infected by messing with one of its pointers */
07096     /*   to subsegments, setting it to an illegal value.  Hence, we have to */
07097     /*   temporarily uninfect this triangle so that we can examine its      */
07098     /*   adjacent subsegments.                                              */
07099     uninfect(testtri);
07100     if (b->verbose > 2) {
07101       /* Assign the triangle an orientation for convenience in */
07102       /*   checking its vertices.                              */
07103       testtri.orient = 0;
07104       org(testtri, deadorg);
07105       dest(testtri, deaddest);
07106       apex(testtri, deadapex);
07107       printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
07108              deadorg[0], deadorg[1], deaddest[0], deaddest[1],
07109              deadapex[0], deadapex[1]);
07110     }
07111     /* Check each of the triangle's three neighbors. */
07112     for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
07113       /* Find the neighbor. */
07114       sym(testtri, neighbor);
07115       /* Check for a subsegment between the triangle and its neighbor. */
07116       tspivot(testtri, neighborsubseg);
07117       /* Check if the neighbor is nonexistent or already infected. */
07118       if ((neighbor.tri == m->dummytri) || infected(neighbor)) {
07119         if (neighborsubseg.ss != m->dummysub) {
07120           /* There is a subsegment separating the triangle from its      */
07121           /*   neighbor, but both triangles are dying, so the subsegment */
07122           /*   dies too.                                                 */
07123           subsegdealloc(m, neighborsubseg.ss);
07124           if (neighbor.tri != m->dummytri) {
07125             /* Make sure the subsegment doesn't get deallocated again */
07126             /*   later when the infected neighbor is visited.         */
07127             uninfect(neighbor);
07128             tsdissolve(neighbor);
07129             infect(neighbor);
07130           }
07131         }
07132       } else {                   /* The neighbor exists and is not infected. */
07133         if (neighborsubseg.ss == m->dummysub) {
07134           /* There is no subsegment protecting the neighbor, so */
07135           /*   the neighbor becomes infected.                   */
07136           if (b->verbose > 2) {
07137             org(neighbor, deadorg);
07138             dest(neighbor, deaddest);
07139             apex(neighbor, deadapex);
07140             printf(
07141               "    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
07142                    deadorg[0], deadorg[1], deaddest[0], deaddest[1],
07143                    deadapex[0], deadapex[1]);
07144           }
07145           infect(neighbor);
07146           /* Ensure that the neighbor's neighbors will be infected. */
07147           deadtriangle = (triangle **) poolalloc(&m->viri);
07148           *deadtriangle = neighbor.tri;
07149         } else {               /* The neighbor is protected by a subsegment. */
07150           /* Remove this triangle from the subsegment. */
07151           stdissolve(neighborsubseg);
07152           /* The subsegment becomes a boundary.  Set markers accordingly. */
07153           if (mark(neighborsubseg) == 0) {
07154             setmark(neighborsubseg, 1);
07155           }
07156           org(neighbor, norg);
07157           dest(neighbor, ndest);
07158           if (vertexmark(norg) == 0) {
07159             setvertexmark(norg, 1);
07160           }
07161           if (vertexmark(ndest) == 0) {
07162             setvertexmark(ndest, 1);
07163           }
07164         }
07165       }
07166     }
07167     /* Remark the triangle as infected, so it doesn't get added to the */
07168     /*   virus pool again.                                             */
07169     infect(testtri);
07170     virusloop = (triangle **) traverse(&m->viri);
07171   }
07172 
07173   if (b->verbose) {
07174     printf("  Deleting marked triangles.\n");
07175   }
07176 
07177   traversalinit(&m->viri);
07178   virusloop = (triangle **) traverse(&m->viri);
07179   while (virusloop != (triangle **) NULL) {
07180     testtri.tri = *virusloop;
07181 
07182     /* Check each of the three corners of the triangle for elimination. */
07183     /*   This is done by walking around each vertex, checking if it is  */
07184     /*   still connected to at least one live triangle.                 */
07185     for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
07186       org(testtri, testvertex);
07187       /* Check if the vertex has already been tested. */
07188       if (testvertex != (vertex) NULL) {
07189         killorg = 1;
07190         /* Mark the corner of the triangle as having been tested. */
07191         setorg(testtri, NULL);
07192         /* Walk counterclockwise about the vertex. */
07193         onext(testtri, neighbor);
07194         /* Stop upon reaching a boundary or the starting triangle. */
07195         while ((neighbor.tri != m->dummytri) &&
07196                (!otriequal(neighbor, testtri))) {
07197           if (infected(neighbor)) {
07198             /* Mark the corner of this triangle as having been tested. */
07199             setorg(neighbor, NULL);
07200           } else {
07201             /* A live triangle.  The vertex survives. */
07202             killorg = 0;
07203           }
07204           /* Walk counterclockwise about the vertex. */
07205           onextself(neighbor);
07206         }
07207         /* If we reached a boundary, we must walk clockwise as well. */
07208         if (neighbor.tri == m->dummytri) {
07209           /* Walk clockwise about the vertex. */
07210           oprev(testtri, neighbor);
07211           /* Stop upon reaching a boundary. */
07212           while (neighbor.tri != m->dummytri) {
07213             if (infected(neighbor)) {
07214             /* Mark the corner of this triangle as having been tested. */
07215               setorg(neighbor, NULL);
07216             } else {
07217               /* A live triangle.  The vertex survives. */
07218               killorg = 0;
07219             }
07220             /* Walk clockwise about the vertex. */
07221             oprevself(neighbor);
07222           }
07223         }
07224         if (killorg) {
07225           if (b->verbose > 1) {
07226             printf("    Deleting vertex (%.12g, %.12g)\n",
07227                    testvertex[0], testvertex[1]);
07228           }
07229           setvertextype(testvertex, UNDEADVERTEX);
07230           m->undeads++;
07231         }
07232       }
07233     }
07234 
07235     /* Record changes in the number of boundary edges, and disconnect */
07236     /*   dead triangles from their neighbors.                         */
07237     for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
07238       sym(testtri, neighbor);
07239       if (neighbor.tri == m->dummytri) {
07240         /* There is no neighboring triangle on this edge, so this edge    */
07241         /*   is a boundary edge.  This triangle is being deleted, so this */
07242         /*   boundary edge is deleted.                                    */
07243         m->hullsize--;
07244       } else {
07245         /* Disconnect the triangle from its neighbor. */
07246         dissolve(neighbor);
07247         /* There is a neighboring triangle on this edge, so this edge */
07248         /*   becomes a boundary edge when this triangle is deleted.   */
07249         m->hullsize++;
07250       }
07251     }
07252     /* Return the dead triangle to the pool of triangles. */
07253     triangledealloc(m, testtri.tri);
07254     virusloop = (triangle **) traverse(&m->viri);
07255   }
07256   /* Empty the virus pool. */
07257   poolrestart(&m->viri);
07258 }
07259 
07260 /*****************************************************************************/
07261 /*                                                                           */
07262 /*  regionplague()   Spread regional attributes and/or area constraints      */
07263 /*                   (from a .poly file) throughout the mesh.                */
07264 /*                                                                           */
07265 /*  This procedure operates in two phases.  The first phase spreads an       */
07266 /*  attribute and/or an area constraint through a (segment-bounded) region.  */
07267 /*  The triangles are marked to ensure that each triangle is added to the    */
07268 /*  virus pool only once, so the procedure will terminate.                   */
07269 /*                                                                           */
07270 /*  The second phase uninfects all infected triangles, returning them to     */
07271 /*  normal.                                                                  */
07272 /*                                                                           */
07273 /*****************************************************************************/
07274 
07275 void regionplague(struct mesh *m, struct behavior *b,
07276                   float attribute, float area)
07277 {
07278   struct otri testtri;
07279   struct otri neighbor;
07280   triangle **virusloop;
07281   triangle **regiontri;
07282   struct osub neighborsubseg;
07283   vertex regionorg, regiondest, regionapex;
07284   triangle ptr;             /* Temporary variable used by sym() and onext(). */
07285   subseg sptr;                      /* Temporary variable used by tspivot(). */
07286 
07287   if (b->verbose > 1) {
07288     printf("  Marking neighbors of marked triangles.\n");
07289   }
07290   /* Loop through all the infected triangles, spreading the attribute      */
07291   /*   and/or area constraint to their neighbors, then to their neighbors' */
07292   /*   neighbors.                                                          */
07293   traversalinit(&m->viri);
07294   virusloop = (triangle **) traverse(&m->viri);
07295   while (virusloop != (triangle **) NULL) {
07296     testtri.tri = *virusloop;
07297     /* A triangle is marked as infected by messing with one of its pointers */
07298     /*   to subsegments, setting it to an illegal value.  Hence, we have to */
07299     /*   temporarily uninfect this triangle so that we can examine its      */
07300     /*   adjacent subsegments.                                              */
07301     uninfect(testtri);
07302     if (b->regionattrib) {
07303       /* Set an attribute. */
07304       setelemattribute(testtri, m->eextras, attribute);
07305     }
07306     if (b->vararea) {
07307       /* Set an area constraint. */
07308       setareabound(testtri, area);
07309     }
07310     if (b->verbose > 2) {
07311       /* Assign the triangle an orientation for convenience in */
07312       /*   checking its vertices.                              */
07313       testtri.orient = 0;
07314       org(testtri, regionorg);
07315       dest(testtri, regiondest);
07316       apex(testtri, regionapex);
07317       printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
07318              regionorg[0], regionorg[1], regiondest[0], regiondest[1],
07319              regionapex[0], regionapex[1]);
07320     }
07321     /* Check each of the triangle's three neighbors. */
07322     for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
07323       /* Find the neighbor. */
07324       sym(testtri, neighbor);
07325       /* Check for a subsegment between the triangle and its neighbor. */
07326       tspivot(testtri, neighborsubseg);
07327       /* Make sure the neighbor exists, is not already infected, and */
07328       /*   isn't protected by a subsegment.                          */
07329       if ((neighbor.tri != m->dummytri) && !infected(neighbor)
07330           && (neighborsubseg.ss == m->dummysub)) {
07331         if (b->verbose > 2) {
07332           org(neighbor, regionorg);
07333           dest(neighbor, regiondest);
07334           apex(neighbor, regionapex);
07335           printf("    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
07336                  regionorg[0], regionorg[1], regiondest[0], regiondest[1],
07337                  regionapex[0], regionapex[1]);
07338         }
07339         /* Infect the neighbor. */
07340         infect(neighbor);
07341         /* Ensure that the neighbor's neighbors will be infected. */
07342         regiontri = (triangle **) poolalloc(&m->viri);
07343         *regiontri = neighbor.tri;
07344       }
07345     }
07346     /* Remark the triangle as infected, so it doesn't get added to the */
07347     /*   virus pool again.                                             */
07348     infect(testtri);
07349     virusloop = (triangle **) traverse(&m->viri);
07350   }
07351 
07352   /* Uninfect all triangles. */
07353   if (b->verbose > 1) {
07354     printf("  Unmarking marked triangles.\n");
07355   }
07356   traversalinit(&m->viri);
07357   virusloop = (triangle **) traverse(&m->viri);
07358   while (virusloop != (triangle **) NULL) {
07359     testtri.tri = *virusloop;
07360     uninfect(testtri);
07361     virusloop = (triangle **) traverse(&m->viri);
07362   }
07363   /* Empty the virus pool. */
07364   poolrestart(&m->viri);
07365 }
07366 
07367 /*****************************************************************************/
07368 /*                                                                           */
07369 /*  carveholes()   Find the holes and infect them.  Find the area            */
07370 /*                 constraints and infect them.  Infect the convex hull.     */
07371 /*                 Spread the infection and kill triangles.  Spread the      */
07372 /*                 area constraints.                                         */
07373 /*                                                                           */
07374 /*  This routine mainly calls other routines to carry out all these          */
07375 /*  functions.                                                               */
07376 /*                                                                           */
07377 /*****************************************************************************/
07378 
07379 void carveholes(struct mesh *m, struct behavior *b, float *holelist, int holes,
07380                 float *regionlist, int regions)
07381 {
07382   struct otri searchtri;
07383   struct otri triangleloop;
07384   struct otri *regiontris;
07385   triangle **holetri;
07386   triangle **regiontri;
07387   vertex searchorg, searchdest;
07388   enum locateresult intersect;
07389   int i;
07390   triangle ptr;                         /* Temporary variable used by sym(). */
07391 
07392   if (!(b->quiet || (b->noholes && b->convex))) {
07393     printf("Removing unwanted triangles.\n");
07394     if (b->verbose && (holes > 0)) {
07395       printf("  Marking holes for elimination.\n");
07396     }
07397   }
07398 
07399   if (regions > 0) {
07400     /* Allocate storage for the triangles in which region points fall. */
07401     regiontris = (struct otri *) trimalloc(regions *
07402                                            (int) sizeof(struct otri));
07403   } else {
07404     regiontris = (struct otri *) NULL;
07405   }
07406 
07407   if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
07408     /* Initialize a pool of viri to be used for holes, concavities, */
07409     /*   regional attributes, and/or regional area constraints.     */
07410     poolinit(&m->viri, sizeof(triangle *), VIRUSPERBLOCK, VIRUSPERBLOCK, 0);
07411   }
07412 
07413   if (!b->convex) {
07414     /* Mark as infected any unprotected triangles on the boundary. */
07415     /*   This is one way by which concavities are created.         */
07416     infecthull(m, b);
07417   }
07418 
07419   if ((holes > 0) && !b->noholes) {
07420     /* Infect each triangle in which a hole lies. */
07421     for (i = 0; i < 2 * holes; i += 2) {
07422       /* Ignore holes that aren't within the bounds of the mesh. */
07423       if ((holelist[i] >= m->xmin) && (holelist[i] <= m->xmax)
07424           && (holelist[i + 1] >= m->ymin) && (holelist[i + 1] <= m->ymax)) {
07425         /* Start searching from some triangle on the outer boundary. */
07426         searchtri.tri = m->dummytri;
07427         searchtri.orient = 0;
07428         symself(searchtri);
07429         /* Ensure that the hole is to the left of this boundary edge; */
07430         /*   otherwise, locate() will falsely report that the hole    */
07431         /*   falls within the starting triangle.                      */
07432         org(searchtri, searchorg);
07433         dest(searchtri, searchdest);
07434         if (counterclockwise(m, b, searchorg, searchdest, &holelist[i]) >
07435             0.0) {
07436           /* Find a triangle that contains the hole. */
07437           intersect = locate(m, b, &holelist[i], &searchtri);
07438           if ((intersect != OUTSIDE) && (!infected(searchtri))) {
07439             /* Infect the triangle.  This is done by marking the triangle  */
07440             /*   as infected and including the triangle in the virus pool. */
07441             infect(searchtri);
07442             holetri = (triangle **) poolalloc(&m->viri);
07443             *holetri = searchtri.tri;
07444           }
07445         }
07446       }
07447     }
07448   }
07449 
07450   /* Now, we have to find all the regions BEFORE we carve the holes, because */
07451   /*   locate() won't work when the triangulation is no longer convex.       */
07452   /*   (Incidentally, this is the reason why regional attributes and area    */
07453   /*   constraints can't be used when refining a preexisting mesh, which     */
07454   /*   might not be convex; they can only be used with a freshly             */
07455   /*   triangulated PSLG.)                                                   */
07456   if (regions > 0) {
07457     /* Find the starting triangle for each region. */
07458     for (i = 0; i < regions; i++) {
07459       regiontris[i].tri = m->dummytri;
07460       /* Ignore region points that aren't within the bounds of the mesh. */
07461       if ((regionlist[4 * i] >= m->xmin) && (regionlist[4 * i] <= m->xmax) &&
07462           (regionlist[4 * i + 1] >= m->ymin) &&
07463           (regionlist[4 * i + 1] <= m->ymax)) {
07464         /* Start searching from some triangle on the outer boundary. */
07465         searchtri.tri = m->dummytri;
07466         searchtri.orient = 0;
07467         symself(searchtri);
07468         /* Ensure that the region point is to the left of this boundary */
07469         /*   edge; otherwise, locate() will falsely report that the     */
07470         /*   region point falls within the starting triangle.           */
07471         org(searchtri, searchorg);
07472         dest(searchtri, searchdest);
07473         if (counterclockwise(m, b, searchorg, searchdest, &regionlist[4 * i]) >
07474             0.0) {
07475           /* Find a triangle that contains the region point. */
07476           intersect = locate(m, b, &regionlist[4 * i], &searchtri);
07477           if ((intersect != OUTSIDE) && (!infected(searchtri))) {
07478             /* Record the triangle for processing after the */
07479             /*   holes have been carved.                    */
07480             otricopy(searchtri, regiontris[i]);
07481           }
07482         }
07483       }
07484     }
07485   }
07486 
07487   if (m->viri.items > 0) {
07488     /* Carve the holes and concavities. */
07489     plague(m, b);
07490   }
07491   /* The virus pool should be empty now. */
07492 
07493   if (regions > 0) {
07494     if (!b->quiet) {
07495       if (b->regionattrib) {
07496         if (b->vararea) {
07497           printf("Spreading regional attributes and area constraints.\n");
07498         } else {
07499           printf("Spreading regional attributes.\n");
07500         }
07501       } else { 
07502         printf("Spreading regional area constraints.\n");
07503       }
07504     }
07505     if (b->regionattrib && !b->refine) {
07506       /* Assign every triangle a regional attribute of zero. */
07507       traversalinit(&m->triangles);
07508       triangleloop.orient = 0;
07509       triangleloop.tri = triangletraverse(m);
07510       while (triangleloop.tri != (triangle *) NULL) {
07511         setelemattribute(triangleloop, m->eextras, 0.0);
07512         triangleloop.tri = triangletraverse(m);
07513       }
07514     }
07515     for (i = 0; i < regions; i++) {
07516       if (regiontris[i].tri != m->dummytri) {
07517         /* Make sure the triangle under consideration still exists. */
07518         /*   It may have been eaten by the virus.                   */
07519         if (!deadtri(regiontris[i].tri)) {
07520           /* Put one triangle in the virus pool. */
07521           infect(regiontris[i]);
07522           regiontri = (triangle **) poolalloc(&m->viri);
07523           *regiontri = regiontris[i].tri;
07524           /* Apply one region's attribute and/or area constraint. */
07525           regionplague(m, b, regionlist[4 * i + 2], regionlist[4 * i + 3]);
07526           /* The virus pool should be empty now. */
07527         }
07528       }
07529     }
07530     if (b->regionattrib && !b->refine) {
07531       /* Note the fact that each triangle has an additional attribute. */
07532       m->eextras++;
07533     }
07534   }
07535 
07536   /* Free up memory. */
07537   if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
07538     pooldeinit(&m->viri);
07539   }
07540   if (regions > 0) {
07541     trifree((int *) regiontris);
07542   }
07543 }
07544 
07547 /********* Carving out holes and concavities ends here               *********/
07548 
07549 /*****************************************************************************/
07550 /*                                                                           */
07551 /*  highorder()   Create extra nodes for quadratic subparametric elements.   */
07552 /*                                                                           */
07553 /*****************************************************************************/
07554 
07555 void highorder(struct mesh *m, struct behavior *b)
07556 {
07557   struct otri triangleloop, trisym;
07558   struct osub checkmark;
07559   vertex newvertex;
07560   vertex torg, tdest;
07561   int i;
07562   triangle ptr;                         /* Temporary variable used by sym(). */
07563   subseg sptr;                      /* Temporary variable used by tspivot(). */
07564 
07565   if (!b->quiet) {
07566     printf("Adding vertices for second-order triangles.\n");
07567   }
07568   /* The following line ensures that dead items in the pool of nodes    */
07569   /*   cannot be allocated for the extra nodes associated with high     */
07570   /*   order elements.  This ensures that the primary nodes (at the     */
07571   /*   corners of elements) will occur earlier in the output files, and */
07572   /*   have lower indices, than the extra nodes.                        */
07573   m->vertices.deaditemstack = (int *) NULL;
07574 
07575   traversalinit(&m->triangles);
07576   triangleloop.tri = triangletraverse(m);
07577   /* To loop over the set of edges, loop over all triangles, and look at   */
07578   /*   the three edges of each triangle.  If there isn't another triangle  */
07579   /*   adjacent to the edge, operate on the edge.  If there is another     */
07580   /*   adjacent triangle, operate on the edge only if the current triangle */
07581   /*   has a smaller pointer than its neighbor.  This way, each edge is    */
07582   /*   considered only once.                                               */
07583   while (triangleloop.tri != (triangle *) NULL) {
07584     for (triangleloop.orient = 0; triangleloop.orient < 3;
07585          triangleloop.orient++) {
07586       sym(triangleloop, trisym);
07587       if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
07588         org(triangleloop, torg);
07589         dest(triangleloop, tdest);
07590         /* Create a new node in the middle of the edge.  Interpolate */
07591         /*   its attributes.                                         */
07592         newvertex = (vertex) poolalloc(&m->vertices);
07593         for (i = 0; i < 2 + m->nextras; i++) {
07594           newvertex[i] = 0.5 * (torg[i] + tdest[i]);
07595         }
07596         /* Set the new node's marker to zero or one, depending on */
07597         /*   whether it lies on a boundary.                       */
07598         setvertexmark(newvertex, trisym.tri == m->dummytri);
07599         setvertextype(newvertex,
07600                       trisym.tri == m->dummytri ? FREEVERTEX : SEGMENTVERTEX);
07601         if (b->usesegments) {
07602           tspivot(triangleloop, checkmark);
07603           /* If this edge is a segment, transfer the marker to the new node. */
07604           if (checkmark.ss != m->dummysub) {
07605             setvertexmark(newvertex, mark(checkmark));
07606             setvertextype(newvertex, SEGMENTVERTEX);
07607           }
07608         }
07609         if (b->verbose > 1) {
07610           printf("  Creating (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
07611         }
07612         /* Record the new node in the (one or two) adjacent elements. */
07613         triangleloop.tri[m->highorderindex + triangleloop.orient] =
07614                 (triangle) newvertex;
07615         if (trisym.tri != m->dummytri) {
07616           trisym.tri[m->highorderindex + trisym.orient] = (triangle) newvertex;
07617         }
07618       }
07619     }
07620     triangleloop.tri = triangletraverse(m);
07621   }
07622 }
07623 
07624 /********* File I/O routines begin here                              *********/
07628 /*****************************************************************************/
07629 /*                                                                           */
07630 /*  transfernodes()   Read the vertices from memory.                         */
07631 /*                                                                           */
07632 /*****************************************************************************/
07633 
07634 void transfernodes(struct mesh *m, struct behavior *b, float *pointlist,
07635                    float *pointattriblist, int *pointmarkerlist,
07636                    int numberofpoints, int numberofpointattribs)
07637 {
07638   vertex vertexloop;
07639   float x, y;
07640   int i, j;
07641   int coordindex;
07642   int attribindex;
07643 
07644   m->invertices = numberofpoints;
07645   m->mesh_dim = 2;
07646   m->nextras = numberofpointattribs;
07647   m->readnodefile = 0;
07648   if (m->invertices < 3) {
07649     printf("Error:  Input must have at least three input vertices.\n");
07650     triexit(1);
07651   }
07652   if (m->nextras == 0) {
07653     b->weighted = 0;
07654   }
07655 
07656   initializevertexpool(m, b);
07657 
07658   /* Read the vertices. */
07659   coordindex = 0;
07660   attribindex = 0;
07661   for (i = 0; i < m->invertices; i++) {
07662     vertexloop = (vertex) poolalloc(&m->vertices);
07663     /* Read the vertex coordinates. */
07664     x = vertexloop[0] = pointlist[coordindex++];
07665     y = vertexloop[1] = pointlist[coordindex++];
07666     /* Read the vertex attributes. */
07667     for (j = 0; j < numberofpointattribs; j++) {
07668       vertexloop[2 + j] = pointattriblist[attribindex++];
07669     }
07670     if (pointmarkerlist != (int *) NULL) {
07671       /* Read a vertex marker. */
07672       setvertexmark(vertexloop, pointmarkerlist[i]);
07673     } else {
07674       /* If no markers are specified, they default to zero. */
07675       setvertexmark(vertexloop, 0);
07676     }
07677     setvertextype(vertexloop, INPUTVERTEX);
07678     /* Determine the smallest and largest x and y coordinates. */
07679     if (i == 0) {
07680       m->xmin = m->xmax = x;
07681       m->ymin = m->ymax = y;
07682     } else {
07683       m->xmin = (x < m->xmin) ? x : m->xmin;
07684       m->xmax = (x > m->xmax) ? x : m->xmax;
07685       m->ymin = (y < m->ymin) ? y : m->ymin;
07686       m->ymax = (y > m->ymax) ? y : m->ymax;
07687     }
07688   }
07689 
07690   /* Nonexistent x value used as a flag to mark circle events in sweepline */
07691   /*   Delaunay algorithm.                                                 */
07692   m->xminextreme = 10 * m->xmin - 9 * m->xmax;
07693 }
07694 
07695 /*****************************************************************************/
07696 /*                                                                           */
07697 /*  writenodes()   Number the vertices and write them to a .node file.       */
07698 /*                                                                           */
07699 /*  To save memory, the vertex numbers are written over the boundary markers */
07700 /*  after the vertices are written to a file.                                */
07701 /*                                                                           */
07702 /*****************************************************************************/
07703 
07704 void writenodes(struct mesh *m, struct behavior *b, float **pointlist,
07705                 float **pointattriblist, int **pointmarkerlist)
07706 {
07707   float *plist;
07708   float *palist;
07709   int *pmlist;
07710   int coordindex;
07711   int attribindex;
07712   vertex vertexloop;
07713   long outvertices;
07714   int vertexnumber;
07715   int i;
07716 
07717   if (b->jettison) {
07718     outvertices = m->vertices.items - m->undeads;
07719   } else {
07720     outvertices = m->vertices.items;
07721   }
07722 
07723   if (!b->quiet) {
07724     printf("Writing vertices.\n");
07725   }
07726   /* Allocate memory for output vertices if necessary. */
07727   if (*pointlist == (float *) NULL) {
07728     *pointlist = (float *) trimalloc((int) (outvertices * 2 * sizeof(float)));
07729   }
07730   /* Allocate memory for output vertex attributes if necessary. */
07731   if ((m->nextras > 0) && (*pointattriblist == (float *) NULL)) {
07732     *pointattriblist = (float *) trimalloc((int) (outvertices * m->nextras *
07733                                                  sizeof(float)));
07734   }
07735   /* Allocate memory for output vertex markers if necessary. */
07736   if (!b->nobound && (*pointmarkerlist == (int *) NULL)) {
07737     *pointmarkerlist = (int *) trimalloc((int) (outvertices * sizeof(int)));
07738   }
07739   plist = *pointlist;
07740   palist = *pointattriblist;
07741   pmlist = *pointmarkerlist;
07742   coordindex = 0;
07743   attribindex = 0;
07744   traversalinit(&m->vertices);
07745   vertexnumber = b->firstnumber;
07746   vertexloop = vertextraverse(m);
07747   while (vertexloop != (vertex) NULL) {
07748     if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
07749       /* X and y coordinates. */
07750       plist[coordindex++] = vertexloop[0];
07751       plist[coordindex++] = vertexloop[1];
07752       /* Vertex attributes. */
07753       for (i = 0; i < m->nextras; i++) {
07754         palist[attribindex++] = vertexloop[2 + i];
07755       }
07756       if (!b->nobound) {
07757         /* Copy the boundary marker. */
07758         pmlist[vertexnumber - b->firstnumber] = vertexmark(vertexloop);
07759       }
07760       setvertexmark(vertexloop, vertexnumber);
07761       vertexnumber++;
07762     }
07763     vertexloop = vertextraverse(m);
07764   }
07765 }
07766 
07767 /*****************************************************************************/
07768 /*                                                                           */
07769 /*  numbernodes()   Number the vertices.                                     */
07770 /*                                                                           */
07771 /*  Each vertex is assigned a marker equal to its number.                    */
07772 /*                                                                           */
07773 /*  Used when writenodes() is not called because no .node file is written.   */
07774 /*                                                                           */
07775 /*****************************************************************************/
07776 
07777 void numbernodes(struct mesh *m, struct behavior *b)
07778 {
07779   vertex vertexloop;
07780   int vertexnumber;
07781 
07782   traversalinit(&m->vertices);
07783   vertexnumber = b->firstnumber;
07784   vertexloop = vertextraverse(m);
07785   while (vertexloop != (vertex) NULL) {
07786     setvertexmark(vertexloop, vertexnumber);
07787     if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
07788       vertexnumber++;
07789     }
07790     vertexloop = vertextraverse(m);
07791   }
07792 }
07793 
07794 /*****************************************************************************/
07795 /*                                                                           */
07796 /*  writeelements()   Write the triangles to an .ele file.                   */
07797 /*                                                                           */
07798 /*****************************************************************************/
07799 
07800 void writeelements(struct mesh *m, struct behavior *b,
07801                    int **trianglelist, float **triangleattriblist)
07802 {
07803   int *tlist;
07804   float *talist;
07805   int vertexindex;
07806   int attribindex;
07807   struct otri triangleloop;
07808   vertex p1, p2, p3;
07809   vertex mid1, mid2, mid3;
07810   long elementnumber;
07811   int i;
07812 
07813   if (!b->quiet) {
07814     printf("Writing triangles.\n");
07815   }
07816   /* Allocate memory for output triangles if necessary. */
07817   if (*trianglelist == (int *) NULL) {
07818     *trianglelist = (int *) trimalloc((int) (m->triangles.items *
07819                                              ((b->order + 1) * (b->order + 2) /
07820                                               2) * sizeof(int)));
07821   }
07822   /* Allocate memory for output triangle attributes if necessary. */
07823   if ((m->eextras > 0) && (*triangleattriblist == (float *) NULL)) {
07824     *triangleattriblist = (float *) trimalloc((int) (m->triangles.items *
07825                                                     m->eextras *
07826                                                     sizeof(float)));
07827   }
07828   tlist = *trianglelist;
07829   talist = *triangleattriblist;
07830   vertexindex = 0;
07831   attribindex = 0;
07832   traversalinit(&m->triangles);
07833   triangleloop.tri = triangletraverse(m);
07834   triangleloop.orient = 0;
07835   elementnumber = b->firstnumber;
07836   while (triangleloop.tri != (triangle *) NULL) {
07837     org(triangleloop, p1);
07838     dest(triangleloop, p2);
07839     apex(triangleloop, p3);
07840     if (b->order == 1) {
07841       tlist[vertexindex++] = vertexmark(p1);
07842       tlist[vertexindex++] = vertexmark(p2);
07843       tlist[vertexindex++] = vertexmark(p3);
07844     } else {
07845       mid1 = (vertex) triangleloop.tri[m->highorderindex + 1];
07846       mid2 = (vertex) triangleloop.tri[m->highorderindex + 2];
07847       mid3 = (vertex) triangleloop.tri[m->highorderindex];
07848       tlist[vertexindex++] = vertexmark(p1);
07849       tlist[vertexindex++] = vertexmark(p2);
07850       tlist[vertexindex++] = vertexmark(p3);
07851       tlist[vertexindex++] = vertexmark(mid1);
07852       tlist[vertexindex++] = vertexmark(mid2);
07853       tlist[vertexindex++] = vertexmark(mid3);
07854     }
07855 
07856     for (i = 0; i < m->eextras; i++) {
07857       talist[attribindex++] = elemattribute(triangleloop, i);
07858     }
07859     triangleloop.tri = triangletraverse(m);
07860     elementnumber++;
07861   }
07862 }
07863 
07864 /*****************************************************************************/
07865 /*                                                                           */
07866 /*  writepoly()   Write the segments and holes to a .poly file.              */
07867 /*                                                                           */
07868 /*****************************************************************************/
07869 
07870 void writepoly(struct mesh *m, struct behavior *b,
07871                int **segmentlist, int **segmentmarkerlist)
07872 {
07873   int *slist;
07874   int *smlist;
07875   int index;
07876   struct osub subsegloop;
07877   vertex endpoint1, endpoint2;
07878   long subsegnumber;
07879 
07880   if (!b->quiet) {
07881     printf("Writing segments.\n");
07882   }
07883   /* Allocate memory for output segments if necessary. */
07884   if (*segmentlist == (int *) NULL) {
07885     *segmentlist = (int *) trimalloc((int) (m->subsegs.items * 2 *
07886                                             sizeof(int)));
07887   }
07888   /* Allocate memory for output segment markers if necessary. */
07889   if (!b->nobound && (*segmentmarkerlist == (int *) NULL)) {
07890     *segmentmarkerlist = (int *) trimalloc((int) (m->subsegs.items *
07891                                                   sizeof(int)));
07892   }
07893   slist = *segmentlist;
07894   smlist = *segmentmarkerlist;
07895   index = 0;
07896   
07897   traversalinit(&m->subsegs);
07898   subsegloop.ss = subsegtraverse(m);
07899   subsegloop.ssorient = 0;
07900   subsegnumber = b->firstnumber;
07901   while (subsegloop.ss != (subseg *) NULL) {
07902     sorg(subsegloop, endpoint1);
07903     sdest(subsegloop, endpoint2);
07904     /* Copy indices of the segment's two endpoints. */
07905     slist[index++] = vertexmark(endpoint1);
07906     slist[index++] = vertexmark(endpoint2);
07907     if (!b->nobound) {
07908       /* Copy the boundary marker. */
07909       smlist[subsegnumber - b->firstnumber] = mark(subsegloop);
07910     }
07911     subsegloop.ss = subsegtraverse(m);
07912     subsegnumber++;
07913   }
07914 }
07915 
07916 /*****************************************************************************/
07917 /*                                                                           */
07918 /*  writeedges()   Write the edges to an .edge file.                         */
07919 /*                                                                           */
07920 /*****************************************************************************/
07921 
07922 void writeedges(struct mesh *m, struct behavior *b,
07923                 int **edgelist, int **edgemarkerlist)
07924 {
07925   int *elist;
07926   int *emlist;
07927   int index;
07928   struct otri triangleloop, trisym;
07929   struct osub checkmark;
07930   vertex p1, p2;
07931   long edgenumber;
07932   triangle ptr;                         /* Temporary variable used by sym(). */
07933   subseg sptr;                      /* Temporary variable used by tspivot(). */
07934 
07935   if (!b->quiet) {
07936     printf("Writing edges.\n");
07937   }
07938   /* Allocate memory for edges if necessary. */
07939   if (*edgelist == (int *) NULL) {
07940     *edgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
07941   }
07942   /* Allocate memory for edge markers if necessary. */
07943   if (!b->nobound && (*edgemarkerlist == (int *) NULL)) {
07944     *edgemarkerlist = (int *) trimalloc((int) (m->edges * sizeof(int)));
07945   }
07946   elist = *edgelist;
07947   emlist = *edgemarkerlist;
07948   index = 0;
07949 
07950   traversalinit(&m->triangles);
07951   triangleloop.tri = triangletraverse(m);
07952   edgenumber = b->firstnumber;
07953   /* To loop over the set of edges, loop over all triangles, and look at   */
07954   /*   the three edges of each triangle.  If there isn't another triangle  */
07955   /*   adjacent to the edge, operate on the edge.  If there is another     */
07956   /*   adjacent triangle, operate on the edge only if the current triangle */
07957   /*   has a smaller pointer than its neighbor.  This way, each edge is    */
07958   /*   considered only once.                                               */
07959   while (triangleloop.tri != (triangle *) NULL) {
07960     for (triangleloop.orient = 0; triangleloop.orient < 3;
07961          triangleloop.orient++) {
07962       sym(triangleloop, trisym);
07963       if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
07964         org(triangleloop, p1);
07965         dest(triangleloop, p2);
07966         elist[index++] = vertexmark(p1);
07967         elist[index++] = vertexmark(p2);
07968         if (b->nobound) {
07969         } else {
07970           /* Edge number, indices of two endpoints, and a boundary marker. */
07971           /*   If there's no subsegment, the boundary marker is zero.      */
07972           if (b->usesegments) {
07973             tspivot(triangleloop, checkmark);
07974             if (checkmark.ss == m->dummysub) {
07975               emlist[edgenumber - b->firstnumber] = 0;
07976             } else {
07977               emlist[edgenumber - b->firstnumber] = mark(checkmark);
07978             }
07979           } else {
07980             emlist[edgenumber - b->firstnumber] = trisym.tri == m->dummytri;
07981           }
07982         }
07983         edgenumber++;
07984       }
07985     }
07986     triangleloop.tri = triangletraverse(m);
07987   }
07988 }
07989 
07990 /*****************************************************************************/
07991 /*                                                                           */
07992 /*  writevoronoi()   Write the Voronoi diagram to a .v.node and .v.edge      */
07993 /*                   file.                                                   */
07994 /*                                                                           */
07995 /*  The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
07996 /*  Hence, the Voronoi vertices are listed by traversing the Delaunay        */
07997 /*  triangles, and the Voronoi edges are listed by traversing the Delaunay   */
07998 /*  edges.                                                                   */
07999 /*                                                                           */
08000 /*  WARNING:  In order to assign numbers to the Voronoi vertices, this       */
08001 /*  procedure messes up the subsegments or the extra nodes of every          */
08002 /*  element.  Hence, you should call this procedure last.                    */
08003 /*                                                                           */
08004 /*****************************************************************************/
08005 
08006 void writevoronoi(struct mesh *m, struct behavior *b, float **vpointlist,
08007                   float **vpointattriblist, int **vpointmarkerlist,
08008                   int **vedgelist, int **vedgemarkerlist, float **vnormlist)
08009 {
08010   float *plist;
08011   float *palist;
08012   int *elist;
08013   float *normlist;
08014   int coordindex;
08015   int attribindex;
08016   struct otri triangleloop, trisym;
08017   vertex torg, tdest, tapex;
08018   float circumcenter[2];
08019   float xi, eta;
08020   long vnodenumber, vedgenumber;
08021   int p1, p2;
08022   int i;
08023   triangle ptr;                         /* Temporary variable used by sym(). */
08024 
08025   if (!b->quiet) {
08026     printf("Writing Voronoi vertices.\n");
08027   }
08028   /* Allocate memory for Voronoi vertices if necessary. */
08029   if (*vpointlist == (float *) NULL) {
08030     *vpointlist = (float *) trimalloc((int) (m->triangles.items * 2 *
08031                                             sizeof(float)));
08032   }
08033   /* Allocate memory for Voronoi vertex attributes if necessary. */
08034   if (*vpointattriblist == (float *) NULL) {
08035     *vpointattriblist = (float *) trimalloc((int) (m->triangles.items *
08036                                                   m->nextras * sizeof(float)));
08037   }
08038   *vpointmarkerlist = (int *) NULL;
08039   plist = *vpointlist;
08040   palist = *vpointattriblist;
08041   coordindex = 0;
08042   attribindex = 0;
08043 
08044   traversalinit(&m->triangles);
08045   triangleloop.tri = triangletraverse(m);
08046   triangleloop.orient = 0;
08047   vnodenumber = b->firstnumber;
08048   while (triangleloop.tri != (triangle *) NULL) {
08049     org(triangleloop, torg);
08050     dest(triangleloop, tdest);
08051     apex(triangleloop, tapex);
08052     findcircumcenter(m, b, torg, tdest, tapex, circumcenter, &xi, &eta, 0);
08053 
08054     /* X and y coordinates. */
08055     plist[coordindex++] = circumcenter[0];
08056     plist[coordindex++] = circumcenter[1];
08057     for (i = 2; i < 2 + m->nextras; i++) {
08058       /* Interpolate the vertex attributes at the circumcenter. */
08059       palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])
08060                                      + eta * (tapex[i] - torg[i]);
08061     }
08062 
08063     * (int *) (triangleloop.tri + 6) = (int) vnodenumber;
08064     triangleloop.tri = triangletraverse(m);
08065     vnodenumber++;
08066   }
08067 
08068   if (!b->quiet) {
08069     printf("Writing Voronoi edges.\n");
08070   }
08071   /* Allocate memory for output Voronoi edges if necessary. */
08072   if (*vedgelist == (int *) NULL) {
08073     *vedgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
08074   }
08075   *vedgemarkerlist = (int *) NULL;
08076   /* Allocate memory for output Voronoi norms if necessary. */
08077   if (*vnormlist == (float *) NULL) {
08078     *vnormlist = (float *) trimalloc((int) (m->edges * 2 * sizeof(float)));
08079   }
08080   elist = *vedgelist;
08081   normlist = *vnormlist;
08082   coordindex = 0;
08083 
08084   traversalinit(&m->triangles);
08085   triangleloop.tri = triangletraverse(m);
08086   vedgenumber = b->firstnumber;
08087   /* To loop over the set of edges, loop over all triangles, and look at   */
08088   /*   the three edges of each triangle.  If there isn't another triangle  */
08089   /*   adjacent to the edge, operate on the edge.  If there is another     */
08090   /*   adjacent triangle, operate on the edge only if the current triangle */
08091   /*   has a smaller pointer than its neighbor.  This way, each edge is    */
08092   /*   considered only once.                                               */
08093   while (triangleloop.tri != (triangle *) NULL) {
08094     for (triangleloop.orient = 0; triangleloop.orient < 3;
08095          triangleloop.orient++) {
08096       sym(triangleloop, trisym);
08097       if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
08098         /* Find the number of this triangle (and Voronoi vertex). */
08099         p1 = * (int *) (triangleloop.tri + 6);
08100         if (trisym.tri == m->dummytri) {
08101           org(triangleloop, torg);
08102           dest(triangleloop, tdest);
08103           /* Copy an infinite ray.  Index of one endpoint, and -1. */
08104           elist[coordindex] = p1;
08105           normlist[coordindex++] = tdest[1] - torg[1];
08106           elist[coordindex] = -1;
08107           normlist[coordindex++] = torg[0] - tdest[0];
08108         } else {
08109           /* Find the number of the adjacent triangle (and Voronoi vertex). */
08110           p2 = * (int *) (trisym.tri + 6);
08111           /* Finite edge.  Write indices of two endpoints. */
08112           elist[coordindex] = p1;
08113           normlist[coordindex++] = 0.0;
08114           elist[coordindex] = p2;
08115           normlist[coordindex++] = 0.0;
08116         }
08117         vedgenumber++;
08118       }
08119     }
08120     triangleloop.tri = triangletraverse(m);
08121   }
08122 }
08123 
08124 
08125 void writeneighbors(struct mesh *m, struct behavior *b, int **neighborlist)
08126 {
08127   int *nlist;
08128   int index;
08129   struct otri triangleloop, trisym;
08130   long elementnumber;
08131   int neighbor1, neighbor2, neighbor3;
08132   triangle ptr;                         /* Temporary variable used by sym(). */
08133 
08134   if (!b->quiet) {
08135     printf("Writing neighbors.\n");
08136   }
08137   /* Allocate memory for neighbors if necessary. */
08138   if (*neighborlist == (int *) NULL) {
08139     *neighborlist = (int *) trimalloc((int) (m->triangles.items * 3 *
08140                                              sizeof(int)));
08141   }
08142   nlist = *neighborlist;
08143   index = 0;
08144 
08145   traversalinit(&m->triangles);
08146   triangleloop.tri = triangletraverse(m);
08147   triangleloop.orient = 0;
08148   elementnumber = b->firstnumber;
08149   while (triangleloop.tri != (triangle *) NULL) {
08150     * (int *) (triangleloop.tri + 6) = (int) elementnumber;
08151     triangleloop.tri = triangletraverse(m);
08152     elementnumber++;
08153   }
08154   * (int *) (m->dummytri + 6) = -1;
08155 
08156   traversalinit(&m->triangles);
08157   triangleloop.tri = triangletraverse(m);
08158   elementnumber = b->firstnumber;
08159   while (triangleloop.tri != (triangle *) NULL) {
08160     triangleloop.orient = 1;
08161     sym(triangleloop, trisym);
08162     neighbor1 = * (int *) (trisym.tri + 6);
08163     triangleloop.orient = 2;
08164     sym(triangleloop, trisym);
08165     neighbor2 = * (int *) (trisym.tri + 6);
08166     triangleloop.orient = 0;
08167     sym(triangleloop, trisym);
08168     neighbor3 = * (int *) (trisym.tri + 6);
08169     nlist[index++] = neighbor1;
08170     nlist[index++] = neighbor2;
08171     nlist[index++] = neighbor3;
08172 
08173     triangleloop.tri = triangletraverse(m);
08174     elementnumber++;
08175   }
08176 }
08177 
08180 /********* File I/O routines end here                                *********/
08181 
08182 /*****************************************************************************/
08183 /*                                                                           */
08184 /*  quality_statistics()   Print statistics about the quality of the mesh.   */
08185 /*                                                                           */
08186 /*****************************************************************************/
08187 
08188 void quality_statistics(struct mesh *m, struct behavior *b)
08189 {
08190   struct otri triangleloop;
08191   vertex p[3];
08192   float cossquaretable[8];
08193   float ratiotable[16];
08194   float dx[3], dy[3];
08195   float edgelength[3];
08196   float dotproduct;
08197   float cossquare;
08198   float triarea;
08199   float shortest, longest;
08200   float trilongest2;
08201   float smallestarea, biggestarea;
08202   float triminaltitude2;
08203   float minaltitude;
08204   float triaspect2;
08205   float worstaspect;
08206   float smallestangle, biggestangle;
08207   float radconst, degconst;
08208   int angletable[18];
08209   int aspecttable[16];
08210   int aspectindex;
08211   int tendegree;
08212   int acutebiggest;
08213   int i, ii, j, k;
08214 
08215   printf("Mesh quality statistics:\n\n");
08216   radconst = PI / 18.0;
08217   degconst = 180.0 / PI;
08218   for (i = 0; i < 8; i++) {
08219     cossquaretable[i] = cos(radconst * (float) (i + 1));
08220     cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
08221   }
08222   for (i = 0; i < 18; i++) {
08223     angletable[i] = 0;
08224   }
08225 
08226   ratiotable[0]  =      1.5;      ratiotable[1]  =     2.0;
08227   ratiotable[2]  =      2.5;      ratiotable[3]  =     3.0;
08228   ratiotable[4]  =      4.0;      ratiotable[5]  =     6.0;
08229   ratiotable[6]  =     10.0;      ratiotable[7]  =    15.0;
08230   ratiotable[8]  =     25.0;      ratiotable[9]  =    50.0;
08231   ratiotable[10] =    100.0;      ratiotable[11] =   300.0;
08232   ratiotable[12] =   1000.0;      ratiotable[13] = 10000.0;
08233   ratiotable[14] = 100000.0;      ratiotable[15] =     0.0;
08234   for (i = 0; i < 16; i++) {
08235     aspecttable[i] = 0;
08236   }
08237 
08238   worstaspect = 0.0;
08239   minaltitude = m->xmax - m->xmin + m->ymax - m->ymin;
08240   minaltitude = minaltitude * minaltitude;
08241   shortest = minaltitude;
08242   longest = 0.0;
08243   smallestarea = minaltitude;
08244   biggestarea = 0.0;
08245   worstaspect = 0.0;
08246   smallestangle = 0.0;
08247   biggestangle = 2.0;
08248   acutebiggest = 1;
08249 
08250   traversalinit(&m->triangles);
08251   triangleloop.tri = triangletraverse(m);
08252   triangleloop.orient = 0;
08253   while (triangleloop.tri != (triangle *) NULL) {
08254     org(triangleloop, p[0]);
08255     dest(triangleloop, p[1]);
08256     apex(triangleloop, p[2]);
08257     trilongest2 = 0.0;
08258 
08259     for (i = 0; i < 3; i++) {
08260       j = plus1mod3[i];
08261       k = minus1mod3[i];
08262       dx[i] = p[j][0] - p[k][0];
08263       dy[i] = p[j][1] - p[k][1];
08264       edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
08265       if (edgelength[i] > trilongest2) {
08266         trilongest2 = edgelength[i];
08267       }
08268       if (edgelength[i] > longest) {
08269         longest = edgelength[i];
08270       }
08271       if (edgelength[i] < shortest) {
08272         shortest = edgelength[i];
08273       }
08274     }
08275 
08276     triarea = counterclockwise(m, b, p[0], p[1], p[2]);
08277     if (triarea < smallestarea) {
08278       smallestarea = triarea;
08279     }
08280     if (triarea > biggestarea) {
08281       biggestarea = triarea;
08282     }
08283     triminaltitude2 = triarea * triarea / trilongest2;
08284     if (triminaltitude2 < minaltitude) {
08285       minaltitude = triminaltitude2;
08286     }
08287     triaspect2 = trilongest2 / triminaltitude2;
08288     if (triaspect2 > worstaspect) {
08289       worstaspect = triaspect2;
08290     }
08291     aspectindex = 0;
08292     while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])
08293            && (aspectindex < 15)) {
08294       aspectindex++;
08295     }
08296     aspecttable[aspectindex]++;
08297 
08298     for (i = 0; i < 3; i++) {
08299       j = plus1mod3[i];
08300       k = minus1mod3[i];
08301       dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
08302       cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
08303       tendegree = 8;
08304       for (ii = 7; ii >= 0; ii--) {
08305         if (cossquare > cossquaretable[ii]) {
08306           tendegree = ii;
08307         }
08308       }
08309       if (dotproduct <= 0.0) {
08310         angletable[tendegree]++;
08311         if (cossquare > smallestangle) {
08312           smallestangle = cossquare;
08313         }
08314         if (acutebiggest && (cossquare < biggestangle)) {
08315           biggestangle = cossquare;
08316         }
08317       } else {
08318         angletable[17 - tendegree]++;
08319         if (acutebiggest || (cossquare > biggestangle)) {
08320           biggestangle = cossquare;
08321           acutebiggest = 0;
08322         }
08323       }
08324     }
08325     triangleloop.tri = triangletraverse(m);
08326   }
08327 
08328   shortest = sqrt(shortest);
08329   longest = sqrt(longest);
08330   minaltitude = sqrt(minaltitude);
08331   worstaspect = sqrt(worstaspect);
08332   smallestarea *= 0.5;
08333   biggestarea *= 0.5;
08334   if (smallestangle >= 1.0) {
08335     smallestangle = 0.0;
08336   } else {
08337     smallestangle = degconst * acos(sqrt(smallestangle));
08338   }
08339   if (biggestangle >= 1.0) {
08340     biggestangle = 180.0;
08341   } else {
08342     if (acutebiggest) {
08343       biggestangle = degconst * acos(sqrt(biggestangle));
08344     } else {
08345       biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
08346     }
08347   }
08348 
08349   printf("  Smallest area: %16.5g   |  Largest area: %16.5g\n",
08350          smallestarea, biggestarea);
08351   printf("  Shortest edge: %16.5g   |  Longest edge: %16.5g\n",
08352          shortest, longest);
08353   printf("  Shortest altitude: %12.5g   |  Largest aspect ratio: %8.5g\n\n",
08354          minaltitude, worstaspect);
08355 
08356   printf("  Triangle aspect ratio histogram:\n");
08357   printf("  1.1547 - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
08358          ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8],
08359          aspecttable[8]);
08360   for (i = 1; i < 7; i++) {
08361     printf("  %6.6g - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
08362            ratiotable[i - 1], ratiotable[i], aspecttable[i],
08363            ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
08364   }
08365   printf("  %6.6g - %-6.6g    :  %8d    | %6.6g -            :  %8d\n",
08366          ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14],
08367          aspecttable[15]);
08368   printf("  (Aspect ratio is longest edge divided by shortest altitude)\n\n");
08369 
08370   printf("  Smallest angle: %15.5g   |  Largest angle: %15.5g\n\n",
08371          smallestangle, biggestangle);
08372 
08373   printf("  Angle histogram:\n");
08374   for (i = 0; i < 9; i++) {
08375     printf("    %3d - %3d degrees:  %8d    |    %3d - %3d degrees:  %8d\n",
08376            i * 10, i * 10 + 10, angletable[i],
08377            i * 10 + 90, i * 10 + 100, angletable[i + 9]);
08378   }
08379   printf("\n");
08380 }
08381 
08382 /*****************************************************************************/
08383 /*                                                                           */
08384 /*  statistics()   Print all sorts of cool facts.                            */
08385 /*                                                                           */
08386 /*****************************************************************************/
08387 
08388 void statistics(struct mesh *m, struct behavior *b)
08389 {
08390   printf("\nStatistics:\n\n");
08391   printf("  Input vertices: %d\n", m->invertices);
08392   if (b->refine) {
08393     printf("  Input triangles: %d\n", m->inelements);
08394   }
08395   if (b->poly) {
08396     printf("  Input segments: %d\n", m->insegments);
08397     if (!b->refine) {
08398       printf("  Input holes: %d\n", m->holes);
08399     }
08400   }
08401 
08402   printf("\n  Mesh vertices: %ld\n", m->vertices.items - m->undeads);
08403   printf("  Mesh triangles: %ld\n", m->triangles.items);
08404   printf("  Mesh edges: %ld\n", m->edges);
08405   printf("  Mesh exterior boundary edges: %ld\n", m->hullsize);
08406   if (b->poly || b->refine) {
08407     printf("  Mesh interior boundary edges: %ld\n",
08408            m->subsegs.items - m->hullsize);
08409     printf("  Mesh subsegments (constrained edges): %ld\n",
08410            m->subsegs.items);
08411   }
08412   printf("\n");
08413 
08414   if (b->verbose) {
08415     quality_statistics(m, b);
08416     printf("Memory allocation statistics:\n\n");
08417     printf("  Maximum number of vertices: %ld\n", m->vertices.maxitems);
08418     printf("  Maximum number of triangles: %ld\n", m->triangles.maxitems);
08419     if (m->subsegs.maxitems > 0) {
08420       printf("  Maximum number of subsegments: %ld\n", m->subsegs.maxitems);
08421     }
08422     if (m->viri.maxitems > 0) {
08423       printf("  Maximum number of viri: %ld\n", m->viri.maxitems);
08424     }
08425     if (m->badsubsegs.maxitems > 0) {
08426       printf("  Maximum number of encroached subsegments: %ld\n",
08427              m->badsubsegs.maxitems);
08428     }
08429     if (m->badtriangles.maxitems > 0) {
08430       printf("  Maximum number of bad triangles: %ld\n",
08431              m->badtriangles.maxitems);
08432     }
08433     if (m->flipstackers.maxitems > 0) {
08434       printf("  Maximum number of stacked triangle flips: %ld\n",
08435              m->flipstackers.maxitems);
08436     }
08437     if (m->splaynodes.maxitems > 0) {
08438       printf("  Maximum number of splay tree nodes: %ld\n",
08439              m->splaynodes.maxitems);
08440     }
08441     printf("  Approximate heap memory use (bytes): %ld\n\n",
08442            m->vertices.maxitems * m->vertices.itembytes +
08443            m->triangles.maxitems * m->triangles.itembytes +
08444            m->subsegs.maxitems * m->subsegs.itembytes +
08445            m->viri.maxitems * m->viri.itembytes +
08446            m->badsubsegs.maxitems * m->badsubsegs.itembytes +
08447            m->badtriangles.maxitems * m->badtriangles.itembytes +
08448            m->flipstackers.maxitems * m->flipstackers.itembytes +
08449            m->splaynodes.maxitems * m->splaynodes.itembytes);
08450 
08451     printf("Algorithmic statistics:\n\n");
08452     if (!b->weighted) {
08453       printf("  Number of incircle tests: %ld\n", m->incirclecount);
08454     } else {
08455       printf("  Number of 3D orientation tests: %ld\n", m->orient3dcount);
08456     }
08457     printf("  Number of 2D orientation tests: %ld\n", m->counterclockcount);
08458     if (m->hyperbolacount > 0) {
08459       printf("  Number of right-of-hyperbola tests: %ld\n",
08460              m->hyperbolacount);
08461     }
08462     if (m->circletopcount > 0) {
08463       printf("  Number of circle top computations: %ld\n",
08464              m->circletopcount);
08465     }
08466     if (m->circumcentercount > 0) {
08467       printf("  Number of triangle circumcenter computations: %ld\n",
08468              m->circumcentercount);
08469     }
08470     printf("\n");
08471   }
08472 }
08473 
08474 /*****************************************************************************/
08475 /*                                                                           */
08476 /*  main() or triangulate()   Gosh, do everything.                           */
08477 /*                                                                           */
08478 /*  The sequence is roughly as follows.  Many of these steps can be skipped, */
08479 /*  depending on the command line switches.                                  */
08480 /*                                                                           */
08481 /*  - Initialize constants and parse the command line.                       */
08482 /*  - Read the vertices from a file and either                               */
08483 /*    - triangulate them (no -r), or                                         */
08484 /*    - read an old mesh from files and reconstruct it (-r).                 */
08485 /*  - Insert the PSLG segments (-p), and possibly segments on the convex     */
08486 /*      hull (-c).                                                           */
08487 /*  - Read the holes (-p), regional attributes (-pA), and regional area      */
08488 /*      constraints (-pa).  Carve the holes and concavities, and spread the  */
08489 /*      regional attributes and area constraints.                            */
08490 /*  - Enforce the constraints on minimum angle (-q) and maximum area (-a).   */
08491 /*      Also enforce the conforming Delaunay property (-q and -a).           */
08492 /*  - Compute the number of edges in the resulting mesh.                     */
08493 /*  - Promote the mesh's linear triangles to higher order elements (-o).     */
08494 /*  - Write the output files and print the statistics.                       */
08495 /*  - Check the consistency and Delaunay property of the mesh (-C).          */
08496 /*                                                                           */
08497 /*****************************************************************************/
08498 
08499 void triangulate(char *triswitches, struct triangulateio *in,
08500                  struct triangulateio *out, struct triangulateio *vorout)
08501 {
08502   struct mesh m;
08503   struct behavior b;
08504   float *holearray;                                        /* Array of holes. */
08505   float *regionarray;   /* Array of regional attributes and area constraints. */
08506   
08507   triangleinit(&m);
08508   parsecommandline(1, &triswitches, &b);
08509   m.steinerleft = b.steiner;
08510 
08511   transfernodes(&m, &b, in->pointlist, in->pointattributelist,
08512                 in->pointmarkerlist, in->numberofpoints,
08513                 in->numberofpointattributes);
08514 
08515   m.hullsize = delaunay(&m, &b);                /* Triangulate the vertices. */
08516   /* Ensure that no vertex can be mistaken for a triangular bounding */
08517   /*   box vertex in insertvertex().                                 */
08518   m.infvertex1 = (vertex) NULL;
08519   m.infvertex2 = (vertex) NULL;
08520   m.infvertex3 = (vertex) NULL;
08521 
08522   if (b.usesegments) {
08523     m.checksegments = 1;                /* Segments will be introduced next. */
08524     if (!b.refine) {
08525       /* Insert PSLG segments and/or convex hull segments. */
08526       formskeleton(&m, &b, in->segmentlist,
08527                    in->segmentmarkerlist, in->numberofsegments);
08528     }
08529   }
08530 
08531   if (b.poly && (m.triangles.items > 0)) {
08532     holearray = in->holelist;
08533     m.holes = in->numberofholes;
08534     regionarray = in->regionlist;
08535     m.regions = in->numberofregions;
08536     if (!b.refine) {
08537       /* Carve out holes and concavities. */
08538       carveholes(&m, &b, holearray, m.holes, regionarray, m.regions);
08539     }
08540   } else {
08541     /* Without a PSLG, there can be no holes or regional attributes   */
08542     /*   or area constraints.  The following are set to zero to avoid */
08543     /*   an accidental free() later.                                  */
08544     m.holes = 0;
08545     m.regions = 0;
08546   }
08547 
08548   /* Calculate the number of edges. */
08549   m.edges = (3l * m.triangles.items + m.hullsize) / 2l;
08550 
08551   if (b.order > 1) {
08552     highorder(&m, &b);       /* Promote elements to higher polynomial order. */
08553   }
08554   if (!b.quiet) {
08555     printf("\n");
08556   }
08557 
08558   if (b.jettison) {
08559     out->numberofpoints = m.vertices.items - m.undeads;
08560   } else {
08561     out->numberofpoints = m.vertices.items;
08562   }
08563   out->numberofpointattributes = m.nextras;
08564   out->numberoftriangles = m.triangles.items;
08565   out->numberofcorners = (b.order + 1) * (b.order + 2) / 2;
08566   out->numberoftriangleattributes = m.eextras;
08567   out->numberofedges = m.edges;
08568   if (b.usesegments) {
08569     out->numberofsegments = m.subsegs.items;
08570   } else {
08571     out->numberofsegments = m.hullsize;
08572   }
08573   if (vorout != (struct triangulateio *) NULL) {
08574     vorout->numberofpoints = m.triangles.items;
08575     vorout->numberofpointattributes = m.nextras;
08576     vorout->numberofedges = m.edges;
08577   }
08578   /* If not using iteration numbers, don't write a .node file if one was */
08579   /*   read, because the original one would be overwritten!              */
08580   if (b.nonodewritten || (b.noiterationnum && m.readnodefile)) {
08581     if (!b.quiet) {
08582       printf("NOT writing vertices.\n");
08583     }
08584     numbernodes(&m, &b);         /* We must remember to number the vertices. */
08585   } else {
08586     /* writenodes() numbers the vertices too. */
08587     writenodes(&m, &b, &out->pointlist, &out->pointattributelist,
08588                &out->pointmarkerlist);
08589   }
08590   if (b.noelewritten) {
08591     if (!b.quiet) {
08592       printf("NOT writing triangles.\n");
08593     }
08594   } else {
08595     writeelements(&m, &b, &out->trianglelist, &out->triangleattributelist);
08596   }
08597   /* The -c switch (convex switch) causes a PSLG to be written */
08598   /*   even if none was read.                                  */
08599   if (b.poly || b.convex) {
08600     /* If not using iteration numbers, don't overwrite the .poly file. */
08601     if (b.nopolywritten || b.noiterationnum) {
08602       if (!b.quiet) {
08603         printf("NOT writing segments.\n");
08604       }
08605     } else {
08606       writepoly(&m, &b, &out->segmentlist, &out->segmentmarkerlist);
08607       out->numberofholes = m.holes;
08608       out->numberofregions = m.regions;
08609       if (b.poly) {
08610         out->holelist = in->holelist;
08611         out->regionlist = in->regionlist;
08612       } else {
08613         out->holelist = (float *) NULL;
08614         out->regionlist = (float *) NULL;
08615       }
08616     }
08617   }
08618   if (b.edgesout) {
08619     writeedges(&m, &b, &out->edgelist, &out->edgemarkerlist);
08620   }
08621   if (b.voronoi) {
08622     writevoronoi(&m, &b, &vorout->pointlist, &vorout->pointattributelist,
08623                  &vorout->pointmarkerlist, &vorout->edgelist,
08624                  &vorout->edgemarkerlist, &vorout->normlist);
08625   }
08626   if (b.neighbors) {
08627     writeneighbors(&m, &b, &out->neighborlist);
08628   }
08629 
08630   if (!b.quiet) {
08631     statistics(&m, &b);
08632   }
08633 
08634   triangledeinit(&m, &b);
08635 }


dlut_libvo
Author(s): Zhuang Yan
autogenerated on Thu Jun 6 2019 20:03:29