00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017 #include "cartographer/mapping/3d/hybrid_grid.h"
00018
00019 #include <map>
00020 #include <random>
00021 #include <tuple>
00022
00023 #include "gmock/gmock.h"
00024
00025 namespace cartographer {
00026 namespace mapping {
00027 namespace {
00028
00029 TEST(HybridGridTest, ApplyOdds) {
00030 HybridGrid hybrid_grid(1.f);
00031
00032 EXPECT_FALSE(hybrid_grid.IsKnown(Eigen::Array3i(0, 0, 0)));
00033 EXPECT_FALSE(hybrid_grid.IsKnown(Eigen::Array3i(0, 1, 0)));
00034 EXPECT_FALSE(hybrid_grid.IsKnown(Eigen::Array3i(1, 0, 0)));
00035 EXPECT_FALSE(hybrid_grid.IsKnown(Eigen::Array3i(1, 1, 0)));
00036 EXPECT_FALSE(hybrid_grid.IsKnown(Eigen::Array3i(0, 0, 1)));
00037 EXPECT_FALSE(hybrid_grid.IsKnown(Eigen::Array3i(0, 1, 1)));
00038 EXPECT_FALSE(hybrid_grid.IsKnown(Eigen::Array3i(1, 0, 1)));
00039 EXPECT_FALSE(hybrid_grid.IsKnown(Eigen::Array3i(1, 1, 1)));
00040
00041 hybrid_grid.SetProbability(Eigen::Array3i(1, 0, 1), 0.5f);
00042
00043 hybrid_grid.ApplyLookupTable(Eigen::Array3i(1, 0, 1),
00044 ComputeLookupTableToApplyOdds(Odds(0.9f)));
00045 hybrid_grid.FinishUpdate();
00046 EXPECT_GT(hybrid_grid.GetProbability(Eigen::Array3i(1, 0, 1)), 0.5f);
00047
00048 hybrid_grid.SetProbability(Eigen::Array3i(0, 1, 0), 0.5f);
00049
00050 hybrid_grid.ApplyLookupTable(Eigen::Array3i(0, 1, 0),
00051 ComputeLookupTableToApplyOdds(Odds(0.1f)));
00052 hybrid_grid.FinishUpdate();
00053 EXPECT_LT(hybrid_grid.GetProbability(Eigen::Array3i(0, 1, 0)), 0.5f);
00054
00055
00056 hybrid_grid.ApplyLookupTable(Eigen::Array3i(1, 1, 1),
00057 ComputeLookupTableToApplyOdds(Odds(0.42f)));
00058 EXPECT_NEAR(hybrid_grid.GetProbability(Eigen::Array3i(1, 1, 1)), 0.42f, 1e-4);
00059
00060
00061 hybrid_grid.ApplyLookupTable(Eigen::Array3i(1, 1, 1),
00062 ComputeLookupTableToApplyOdds(Odds(0.9f)));
00063 EXPECT_NEAR(hybrid_grid.GetProbability(Eigen::Array3i(1, 1, 1)), 0.42f, 1e-4);
00064 hybrid_grid.FinishUpdate();
00065 hybrid_grid.ApplyLookupTable(Eigen::Array3i(1, 1, 1),
00066 ComputeLookupTableToApplyOdds(Odds(0.9f)));
00067 EXPECT_GT(hybrid_grid.GetProbability(Eigen::Array3i(1, 1, 1)), 0.42f);
00068 }
00069
00070 TEST(HybridGridTest, GetProbability) {
00071 HybridGrid hybrid_grid(1.f);
00072
00073 hybrid_grid.SetProbability(
00074 hybrid_grid.GetCellIndex(Eigen::Vector3f(0.f, 1.f, 1.f)),
00075 kMaxProbability);
00076 EXPECT_NEAR(hybrid_grid.GetProbability(
00077 hybrid_grid.GetCellIndex(Eigen::Vector3f(0.f, 1.f, 1.f))),
00078 kMaxProbability, 1e-6);
00079 for (const Eigen::Array3i& index :
00080 {hybrid_grid.GetCellIndex(Eigen::Vector3f(0.f, 2.f, 1.f)),
00081 hybrid_grid.GetCellIndex(Eigen::Vector3f(1.f, 1.f, 1.f)),
00082 hybrid_grid.GetCellIndex(Eigen::Vector3f(1.f, 2.f, 1.f))}) {
00083 EXPECT_FALSE(hybrid_grid.IsKnown(index));
00084 }
00085 }
00086
00087 MATCHER_P(AllCwiseEqual, index, "") { return (arg == index).all(); }
00088
00089 TEST(HybridGridTest, GetCellIndex) {
00090 HybridGrid hybrid_grid(2.f);
00091
00092 EXPECT_THAT(hybrid_grid.GetCellIndex(Eigen::Vector3f(0.f, 0.f, 0.f)),
00093 AllCwiseEqual(Eigen::Array3i(0, 0, 0)));
00094 EXPECT_THAT(hybrid_grid.GetCellIndex(Eigen::Vector3f(0.f, 26.f, 10.f)),
00095 AllCwiseEqual(Eigen::Array3i(0, 13, 5)));
00096 EXPECT_THAT(hybrid_grid.GetCellIndex(Eigen::Vector3f(14.f, 0.f, 10.f)),
00097 AllCwiseEqual(Eigen::Array3i(7, 0, 5)));
00098 EXPECT_THAT(hybrid_grid.GetCellIndex(Eigen::Vector3f(14.f, 26.f, 0.f)),
00099 AllCwiseEqual(Eigen::Array3i(7, 13, 0)));
00100
00101
00102 EXPECT_THAT(hybrid_grid.GetCellIndex(Eigen::Vector3f(8.5f, 11.5f, 0.5f)),
00103 AllCwiseEqual(Eigen::Array3i(4, 6, 0)));
00104 EXPECT_THAT(hybrid_grid.GetCellIndex(Eigen::Vector3f(7.5f, 12.5f, 1.5f)),
00105 AllCwiseEqual(Eigen::Array3i(4, 6, 1)));
00106 EXPECT_THAT(hybrid_grid.GetCellIndex(Eigen::Vector3f(6.5f, 14.5f, 2.5f)),
00107 AllCwiseEqual(Eigen::Array3i(3, 7, 1)));
00108 EXPECT_THAT(hybrid_grid.GetCellIndex(Eigen::Vector3f(5.5f, 13.5f, 3.5f)),
00109 AllCwiseEqual(Eigen::Array3i(3, 7, 2)));
00110 }
00111
00112 TEST(HybridGridTest, GetCenterOfCell) {
00113 HybridGrid hybrid_grid(2.f);
00114
00115 const Eigen::Array3i index(3, 2, 1);
00116 const Eigen::Vector3f center = hybrid_grid.GetCenterOfCell(index);
00117 EXPECT_NEAR(6.f, center.x(), 1e-6);
00118 EXPECT_NEAR(4.f, center.y(), 1e-6);
00119 EXPECT_NEAR(2.f, center.z(), 1e-6);
00120 EXPECT_THAT(hybrid_grid.GetCellIndex(center), AllCwiseEqual(index));
00121 }
00122
00123 class RandomHybridGridTest : public ::testing::Test {
00124 public:
00125 RandomHybridGridTest() : hybrid_grid_(2.f), values_() {
00126 std::mt19937 rng(1285120005);
00127 std::uniform_real_distribution<float> value_distribution(kMinProbability,
00128 kMaxProbability);
00129 std::uniform_int_distribution<int> xyz_distribution(-3000, 2999);
00130 for (int i = 0; i < 10000; ++i) {
00131 const auto x = xyz_distribution(rng);
00132 const auto y = xyz_distribution(rng);
00133 const auto z = xyz_distribution(rng);
00134 values_.emplace(std::make_tuple(x, y, z), value_distribution(rng));
00135 }
00136
00137 for (const auto& pair : values_) {
00138 const Eigen::Array3i cell_index(std::get<0>(pair.first),
00139 std::get<1>(pair.first),
00140 std::get<2>(pair.first));
00141 hybrid_grid_.SetProbability(cell_index, pair.second);
00142 }
00143 }
00144
00145 protected:
00146 HybridGrid hybrid_grid_;
00147 using ValueMap = std::map<std::tuple<int, int, int>, float>;
00148 ValueMap values_;
00149 };
00150
00151 TEST_F(RandomHybridGridTest, TestIteration) {
00152 for (auto it = HybridGrid::Iterator(hybrid_grid_); !it.Done(); it.Next()) {
00153 const Eigen::Array3i cell_index = it.GetCellIndex();
00154 const float iterator_probability = ValueToProbability(it.GetValue());
00155 EXPECT_EQ(iterator_probability, hybrid_grid_.GetProbability(cell_index));
00156 const std::tuple<int, int, int> key =
00157 std::make_tuple(cell_index[0], cell_index[1], cell_index[2]);
00158 EXPECT_TRUE(values_.count(key));
00159 EXPECT_NEAR(values_[key], iterator_probability, 1e-4);
00160 values_.erase(key);
00161 }
00162
00163
00164 auto it = HybridGrid::Iterator(hybrid_grid_);
00165 for (const auto& cell : hybrid_grid_) {
00166 ASSERT_FALSE(it.Done());
00167 EXPECT_THAT(cell.first, AllCwiseEqual(it.GetCellIndex()));
00168 EXPECT_EQ(cell.second, it.GetValue());
00169 it.Next();
00170 }
00171
00172
00173 for (const auto& pair : values_) {
00174 const Eigen::Array3i cell_index(std::get<0>(pair.first),
00175 std::get<1>(pair.first),
00176 std::get<2>(pair.first));
00177 ADD_FAILURE() << cell_index << " Probability: " << pair.second;
00178 }
00179 }
00180
00181 TEST_F(RandomHybridGridTest, ToProto) {
00182 const auto proto = hybrid_grid_.ToProto();
00183 EXPECT_EQ(hybrid_grid_.resolution(), proto.resolution());
00184 ASSERT_EQ(proto.x_indices_size(), proto.y_indices_size());
00185 ASSERT_EQ(proto.x_indices_size(), proto.z_indices_size());
00186 ASSERT_EQ(proto.x_indices_size(), proto.values_size());
00187
00188 ValueMap proto_map;
00189 for (int i = 0; i < proto.x_indices_size(); ++i) {
00190 proto_map[std::make_tuple(proto.x_indices(i), proto.y_indices(i),
00191 proto.z_indices(i))] = proto.values(i);
00192 }
00193
00194
00195 ValueMap hybrid_grid_map;
00196 for (const auto i : hybrid_grid_) {
00197 hybrid_grid_map[std::make_tuple(i.first.x(), i.first.y(), i.first.z())] =
00198 i.second;
00199 }
00200
00201 EXPECT_EQ(proto_map, hybrid_grid_map);
00202 }
00203
00204 struct EigenComparator {
00205 bool operator()(const Eigen::Vector3i& lhs,
00206 const Eigen::Vector3i& rhs) const {
00207 return std::forward_as_tuple(lhs.x(), lhs.y(), lhs.z()) <
00208 std::forward_as_tuple(rhs.x(), rhs.y(), rhs.z());
00209 }
00210 };
00211
00212 TEST_F(RandomHybridGridTest, FromProto) {
00213 const HybridGrid constructed_grid(hybrid_grid_.ToProto());
00214
00215 std::map<Eigen::Vector3i, float, EigenComparator> member_map(
00216 hybrid_grid_.begin(), hybrid_grid_.end());
00217
00218 std::map<Eigen::Vector3i, float, EigenComparator> constructed_map(
00219 constructed_grid.begin(), constructed_grid.end());
00220
00221 EXPECT_EQ(member_map, constructed_map);
00222 }
00223
00224 }
00225 }
00226 }