poly34.h
Go to the documentation of this file.
00001 // poly34.h : solution of cubic and quartic equation
00002 // (c) Khashin S.I. http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html
00003 // khash2 (at) gmail.com
00004 
00005 
00006 int   SolveP3(double *x,double a,double b,double c);                    // solve cubic equation x^3 + a*x^2 + b*x + c = 0
00007 int   SolveP4(double *x,double a,double b,double c,double d);   // solve equation x^4 + a*x^3 + b*x^2 + c*x + d = 0 by Dekart-Euler method
00008 // x - array of size 4
00009 // return 4: 4 real roots x[0], x[1], x[2], x[3], possible multiple roots
00010 // return 2: 2 real roots x[0], x[1] and complex x[2]�i*x[3],
00011 // return 0: two pair of complex roots: x[0]�i*x[1],  x[2]�i*x[3],
00012 int   SolveP5(double *x,double a,double b,double c,double d,double e);  // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
00013 
00014 int   SolveP4Bi(double *x, double b, double d);                         // solve equation x^4 + b*x^2 + d = 0
00015 int   SolveP4De(double *x, double b, double c, double d);       // solve equation x^4 + b*x^2 + c*x + d = 0
00016 void  CSqrt( double x, double y, double &a, double &b);         // returns as a+i*s,  sqrt(x+i*y)
00017 double N4Step(double x, double a,double b,double c,double d);// one Newton step for x^4 + a*x^3 + b*x^2 + c*x + d
00018 
00019     double SolveP5_1(double a,double b,double c,double d,double e);     // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
00020 
00021 // Solve2: let f(x ) = a*x^2 + b*x + c and
00022 //     f(x0) = f0,
00023 //     f(x1) = f1,
00024 //     f(x2) = f3
00025 // Then r1, r2 - root of f(x)=0.
00026 // Returns 0, if there are no roots, else return 2.
00027 int Solve2( double x0, double x1, double x2, double f0, double f1, double f2, double &r1, double &r2);
00028 


asr_mild_calibration_tool
Author(s): Aumann Florian, Heller Florian, Meißner Pascal
autogenerated on Thu Jun 6 2019 21:22:44