00001 // poly34.h : solution of cubic and quartic equation 00002 // (c) Khashin S.I. http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html 00003 // khash2 (at) gmail.com 00004 00005 00006 int SolveP3(double *x,double a,double b,double c); // solve cubic equation x^3 + a*x^2 + b*x + c = 0 00007 int SolveP4(double *x,double a,double b,double c,double d); // solve equation x^4 + a*x^3 + b*x^2 + c*x + d = 0 by Dekart-Euler method 00008 // x - array of size 4 00009 // return 4: 4 real roots x[0], x[1], x[2], x[3], possible multiple roots 00010 // return 2: 2 real roots x[0], x[1] and complex x[2]�i*x[3], 00011 // return 0: two pair of complex roots: x[0]�i*x[1], x[2]�i*x[3], 00012 int SolveP5(double *x,double a,double b,double c,double d,double e); // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0 00013 00014 int SolveP4Bi(double *x, double b, double d); // solve equation x^4 + b*x^2 + d = 0 00015 int SolveP4De(double *x, double b, double c, double d); // solve equation x^4 + b*x^2 + c*x + d = 0 00016 void CSqrt( double x, double y, double &a, double &b); // returns as a+i*s, sqrt(x+i*y) 00017 double N4Step(double x, double a,double b,double c,double d);// one Newton step for x^4 + a*x^3 + b*x^2 + c*x + d 00018 00019 double SolveP5_1(double a,double b,double c,double d,double e); // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0 00020 00021 // Solve2: let f(x ) = a*x^2 + b*x + c and 00022 // f(x0) = f0, 00023 // f(x1) = f1, 00024 // f(x2) = f3 00025 // Then r1, r2 - root of f(x)=0. 00026 // Returns 0, if there are no roots, else return 2. 00027 int Solve2( double x0, double x1, double x2, double f0, double f1, double f2, double &r1, double &r2); 00028