mutex.h
Go to the documentation of this file.
00001 // Copyright 2017 The Abseil Authors.
00002 //
00003 // Licensed under the Apache License, Version 2.0 (the "License");
00004 // you may not use this file except in compliance with the License.
00005 // You may obtain a copy of the License at
00006 //
00007 //      https://www.apache.org/licenses/LICENSE-2.0
00008 //
00009 // Unless required by applicable law or agreed to in writing, software
00010 // distributed under the License is distributed on an "AS IS" BASIS,
00011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00012 // See the License for the specific language governing permissions and
00013 // limitations under the License.
00014 //
00015 // -----------------------------------------------------------------------------
00016 // mutex.h
00017 // -----------------------------------------------------------------------------
00018 //
00019 // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
00020 // most common type of synchronization primitive for facilitating locks on
00021 // shared resources. A mutex is used to prevent multiple threads from accessing
00022 // and/or writing to a shared resource concurrently.
00023 //
00024 // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
00025 // features:
00026 //   * Conditional predicates intrinsic to the `Mutex` object
00027 //   * Shared/reader locks, in addition to standard exclusive/writer locks
00028 //   * Deadlock detection and debug support.
00029 //
00030 // The following helper classes are also defined within this file:
00031 //
00032 //  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
00033 //              write access within the current scope.
00034 //  ReaderMutexLock
00035 //            - An RAII wrapper to acquire and release a `Mutex` for shared/read
00036 //              access within the current scope.
00037 //
00038 //  WriterMutexLock
00039 //            - Alias for `MutexLock` above, designed for use in distinguishing
00040 //              reader and writer locks within code.
00041 //
00042 // In addition to simple mutex locks, this file also defines ways to perform
00043 // locking under certain conditions.
00044 //
00045 //  Condition   - (Preferred) Used to wait for a particular predicate that
00046 //                depends on state protected by the `Mutex` to become true.
00047 //  CondVar     - A lower-level variant of `Condition` that relies on
00048 //                application code to explicitly signal the `CondVar` when
00049 //                a condition has been met.
00050 //
00051 // See below for more information on using `Condition` or `CondVar`.
00052 //
00053 // Mutexes and mutex behavior can be quite complicated. The information within
00054 // this header file is limited, as a result. Please consult the Mutex guide for
00055 // more complete information and examples.
00056 
00057 #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
00058 #define ABSL_SYNCHRONIZATION_MUTEX_H_
00059 
00060 #include <atomic>
00061 #include <cstdint>
00062 #include <string>
00063 
00064 #include "absl/base/const_init.h"
00065 #include "absl/base/internal/identity.h"
00066 #include "absl/base/internal/low_level_alloc.h"
00067 #include "absl/base/internal/thread_identity.h"
00068 #include "absl/base/internal/tsan_mutex_interface.h"
00069 #include "absl/base/port.h"
00070 #include "absl/base/thread_annotations.h"
00071 #include "absl/synchronization/internal/kernel_timeout.h"
00072 #include "absl/synchronization/internal/per_thread_sem.h"
00073 #include "absl/time/time.h"
00074 
00075 // Decide if we should use the non-production implementation because
00076 // the production implementation hasn't been fully ported yet.
00077 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
00078 #error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set
00079 #elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING)
00080 #define ABSL_INTERNAL_USE_NONPROD_MUTEX 1
00081 #include "absl/synchronization/internal/mutex_nonprod.inc"
00082 #endif
00083 
00084 namespace absl {
00085 
00086 class Condition;
00087 struct SynchWaitParams;
00088 
00089 // -----------------------------------------------------------------------------
00090 // Mutex
00091 // -----------------------------------------------------------------------------
00092 //
00093 // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
00094 // on some resource, typically a variable or data structure with associated
00095 // invariants. Proper usage of mutexes prevents concurrent access by different
00096 // threads to the same resource.
00097 //
00098 // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
00099 // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
00100 // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
00101 // Mutex. During the span of time between the Lock() and Unlock() operations,
00102 // a mutex is said to be *held*. By design all mutexes support exclusive/write
00103 // locks, as this is the most common way to use a mutex.
00104 //
00105 // The `Mutex` state machine for basic lock/unlock operations is quite simple:
00106 //
00107 // |                | Lock()     | Unlock() |
00108 // |----------------+------------+----------|
00109 // | Free           | Exclusive  | invalid  |
00110 // | Exclusive      | blocks     | Free     |
00111 //
00112 // Attempts to `Unlock()` must originate from the thread that performed the
00113 // corresponding `Lock()` operation.
00114 //
00115 // An "invalid" operation is disallowed by the API. The `Mutex` implementation
00116 // is allowed to do anything on an invalid call, including but not limited to
00117 // crashing with a useful error message, silently succeeding, or corrupting
00118 // data structures. In debug mode, the implementation attempts to crash with a
00119 // useful error message.
00120 //
00121 // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
00122 // is, however, approximately fair over long periods, and starvation-free for
00123 // threads at the same priority.
00124 //
00125 // The lock/unlock primitives are now annotated with lock annotations
00126 // defined in (base/thread_annotations.h). When writing multi-threaded code,
00127 // you should use lock annotations whenever possible to document your lock
00128 // synchronization policy. Besides acting as documentation, these annotations
00129 // also help compilers or static analysis tools to identify and warn about
00130 // issues that could potentially result in race conditions and deadlocks.
00131 //
00132 // For more information about the lock annotations, please see
00133 // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
00134 // in the Clang documentation.
00135 //
00136 // See also `MutexLock`, below, for scoped `Mutex` acquisition.
00137 
00138 class LOCKABLE Mutex {
00139  public:
00140   // Creates a `Mutex` that is not held by anyone. This constructor is
00141   // typically used for Mutexes allocated on the heap or the stack.
00142   //
00143   // To create `Mutex` instances with static storage duration
00144   // (e.g. a namespace-scoped or global variable), see
00145   // `Mutex::Mutex(absl::kConstInit)` below instead.
00146   Mutex();
00147 
00148   // Creates a mutex with static storage duration.  A global variable
00149   // constructed this way avoids the lifetime issues that can occur on program
00150   // startup and shutdown.  (See absl/base/const_init.h.)
00151   //
00152   // For Mutexes allocated on the heap and stack, instead use the default
00153   // constructor, which can interact more fully with the thread sanitizer.
00154   //
00155   // Example usage:
00156   //   namespace foo {
00157   //   ABSL_CONST_INIT Mutex mu(absl::kConstInit);
00158   //   }
00159   explicit constexpr Mutex(absl::ConstInitType);
00160 
00161   ~Mutex();
00162 
00163   // Mutex::Lock()
00164   //
00165   // Blocks the calling thread, if necessary, until this `Mutex` is free, and
00166   // then acquires it exclusively. (This lock is also known as a "write lock.")
00167   void Lock() EXCLUSIVE_LOCK_FUNCTION();
00168 
00169   // Mutex::Unlock()
00170   //
00171   // Releases this `Mutex` and returns it from the exclusive/write state to the
00172   // free state. Caller must hold the `Mutex` exclusively.
00173   void Unlock() UNLOCK_FUNCTION();
00174 
00175   // Mutex::TryLock()
00176   //
00177   // If the mutex can be acquired without blocking, does so exclusively and
00178   // returns `true`. Otherwise, returns `false`. Returns `true` with high
00179   // probability if the `Mutex` was free.
00180   bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true);
00181 
00182   // Mutex::AssertHeld()
00183   //
00184   // Return immediately if this thread holds the `Mutex` exclusively (in write
00185   // mode). Otherwise, may report an error (typically by crashing with a
00186   // diagnostic), or may return immediately.
00187   void AssertHeld() const ASSERT_EXCLUSIVE_LOCK();
00188 
00189   // ---------------------------------------------------------------------------
00190   // Reader-Writer Locking
00191   // ---------------------------------------------------------------------------
00192 
00193   // A Mutex can also be used as a starvation-free reader-writer lock.
00194   // Neither read-locks nor write-locks are reentrant/recursive to avoid
00195   // potential client programming errors.
00196   //
00197   // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
00198   // `Unlock()` and `TryLock()` methods for use within applications mixing
00199   // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
00200   // manner can make locking behavior clearer when mixing read and write modes.
00201   //
00202   // Introducing reader locks necessarily complicates the `Mutex` state
00203   // machine somewhat. The table below illustrates the allowed state transitions
00204   // of a mutex in such cases. Note that ReaderLock() may block even if the lock
00205   // is held in shared mode; this occurs when another thread is blocked on a
00206   // call to WriterLock().
00207   //
00208   // ---------------------------------------------------------------------------
00209   //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
00210   // ---------------------------------------------------------------------------
00211   // State
00212   // ---------------------------------------------------------------------------
00213   // Free           Exclusive    invalid   Shared(1)              invalid
00214   // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
00215   // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
00216   // Exclusive      blocks       Free      blocks                 invalid
00217   // ---------------------------------------------------------------------------
00218   //
00219   // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
00220 
00221   // Mutex::ReaderLock()
00222   //
00223   // Blocks the calling thread, if necessary, until this `Mutex` is either free,
00224   // or in shared mode, and then acquires a share of it. Note that
00225   // `ReaderLock()` will block if some other thread has an exclusive/writer lock
00226   // on the mutex.
00227 
00228   void ReaderLock() SHARED_LOCK_FUNCTION();
00229 
00230   // Mutex::ReaderUnlock()
00231   //
00232   // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
00233   // the free state if this thread holds the last reader lock on the mutex. Note
00234   // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
00235   void ReaderUnlock() UNLOCK_FUNCTION();
00236 
00237   // Mutex::ReaderTryLock()
00238   //
00239   // If the mutex can be acquired without blocking, acquires this mutex for
00240   // shared access and returns `true`. Otherwise, returns `false`. Returns
00241   // `true` with high probability if the `Mutex` was free or shared.
00242   bool ReaderTryLock() SHARED_TRYLOCK_FUNCTION(true);
00243 
00244   // Mutex::AssertReaderHeld()
00245   //
00246   // Returns immediately if this thread holds the `Mutex` in at least shared
00247   // mode (read mode). Otherwise, may report an error (typically by
00248   // crashing with a diagnostic), or may return immediately.
00249   void AssertReaderHeld() const ASSERT_SHARED_LOCK();
00250 
00251   // Mutex::WriterLock()
00252   // Mutex::WriterUnlock()
00253   // Mutex::WriterTryLock()
00254   //
00255   // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
00256   //
00257   // These methods may be used (along with the complementary `Reader*()`
00258   // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
00259   // etc.) from reader/writer lock usage.
00260   void WriterLock() EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
00261 
00262   void WriterUnlock() UNLOCK_FUNCTION() { this->Unlock(); }
00263 
00264   bool WriterTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) {
00265     return this->TryLock();
00266   }
00267 
00268   // ---------------------------------------------------------------------------
00269   // Conditional Critical Regions
00270   // ---------------------------------------------------------------------------
00271 
00272   // Conditional usage of a `Mutex` can occur using two distinct paradigms:
00273   //
00274   //   * Use of `Mutex` member functions with `Condition` objects.
00275   //   * Use of the separate `CondVar` abstraction.
00276   //
00277   // In general, prefer use of `Condition` and the `Mutex` member functions
00278   // listed below over `CondVar`. When there are multiple threads waiting on
00279   // distinctly different conditions, however, a battery of `CondVar`s may be
00280   // more efficient. This section discusses use of `Condition` objects.
00281   //
00282   // `Mutex` contains member functions for performing lock operations only under
00283   // certain conditions, of class `Condition`. For correctness, the `Condition`
00284   // must return a boolean that is a pure function, only of state protected by
00285   // the `Mutex`. The condition must be invariant w.r.t. environmental state
00286   // such as thread, cpu id, or time, and must be `noexcept`. The condition will
00287   // always be invoked with the mutex held in at least read mode, so you should
00288   // not block it for long periods or sleep it on a timer.
00289   //
00290   // Since a condition must not depend directly on the current time, use
00291   // `*WithTimeout()` member function variants to make your condition
00292   // effectively true after a given duration, or `*WithDeadline()` variants to
00293   // make your condition effectively true after a given time.
00294   //
00295   // The condition function should have no side-effects aside from debug
00296   // logging; as a special exception, the function may acquire other mutexes
00297   // provided it releases all those that it acquires.  (This exception was
00298   // required to allow logging.)
00299 
00300   // Mutex::Await()
00301   //
00302   // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
00303   // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
00304   // same mode in which it was previously held. If the condition is initially
00305   // `true`, `Await()` *may* skip the release/re-acquire step.
00306   //
00307   // `Await()` requires that this thread holds this `Mutex` in some mode.
00308   void Await(const Condition &cond);
00309 
00310   // Mutex::LockWhen()
00311   // Mutex::ReaderLockWhen()
00312   // Mutex::WriterLockWhen()
00313   //
00314   // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
00315   // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
00316   // logically equivalent to `*Lock(); Await();` though they may have different
00317   // performance characteristics.
00318   void LockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION();
00319 
00320   void ReaderLockWhen(const Condition &cond) SHARED_LOCK_FUNCTION();
00321 
00322   void WriterLockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION() {
00323     this->LockWhen(cond);
00324   }
00325 
00326   // ---------------------------------------------------------------------------
00327   // Mutex Variants with Timeouts/Deadlines
00328   // ---------------------------------------------------------------------------
00329 
00330   // Mutex::AwaitWithTimeout()
00331   // Mutex::AwaitWithDeadline()
00332   //
00333   // If `cond` is initially true, do nothing, or act as though `cond` is
00334   // initially false.
00335   //
00336   // If `cond` is initially false, unlock this `Mutex` and block until
00337   // simultaneously:
00338   //   - either `cond` is true or the {timeout has expired, deadline has passed}
00339   //     and
00340   //   - this `Mutex` can be reacquired,
00341   // then reacquire this `Mutex` in the same mode in which it was previously
00342   // held, returning `true` iff `cond` is `true` on return.
00343   //
00344   // Deadlines in the past are equivalent to an immediate deadline.
00345   // Negative timeouts are equivalent to a zero timeout.
00346   //
00347   // This method requires that this thread holds this `Mutex` in some mode.
00348   bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
00349 
00350   bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
00351 
00352   // Mutex::LockWhenWithTimeout()
00353   // Mutex::ReaderLockWhenWithTimeout()
00354   // Mutex::WriterLockWhenWithTimeout()
00355   //
00356   // Blocks until simultaneously both:
00357   //   - either `cond` is `true` or the timeout has expired, and
00358   //   - this `Mutex` can be acquired,
00359   // then atomically acquires this `Mutex`, returning `true` iff `cond` is
00360   // `true` on return.
00361   //
00362   // Negative timeouts are equivalent to a zero timeout.
00363   bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
00364       EXCLUSIVE_LOCK_FUNCTION();
00365   bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
00366       SHARED_LOCK_FUNCTION();
00367   bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
00368       EXCLUSIVE_LOCK_FUNCTION() {
00369     return this->LockWhenWithTimeout(cond, timeout);
00370   }
00371 
00372   // Mutex::LockWhenWithDeadline()
00373   // Mutex::ReaderLockWhenWithDeadline()
00374   // Mutex::WriterLockWhenWithDeadline()
00375   //
00376   // Blocks until simultaneously both:
00377   //   - either `cond` is `true` or the deadline has been passed, and
00378   //   - this `Mutex` can be acquired,
00379   // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
00380   // on return.
00381   //
00382   // Deadlines in the past are equivalent to an immediate deadline.
00383   bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
00384       EXCLUSIVE_LOCK_FUNCTION();
00385   bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
00386       SHARED_LOCK_FUNCTION();
00387   bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
00388       EXCLUSIVE_LOCK_FUNCTION() {
00389     return this->LockWhenWithDeadline(cond, deadline);
00390   }
00391 
00392   // ---------------------------------------------------------------------------
00393   // Debug Support: Invariant Checking, Deadlock Detection, Logging.
00394   // ---------------------------------------------------------------------------
00395 
00396   // Mutex::EnableInvariantDebugging()
00397   //
00398   // If `invariant`!=null and if invariant debugging has been enabled globally,
00399   // cause `(*invariant)(arg)` to be called at moments when the invariant for
00400   // this `Mutex` should hold (for example: just after acquire, just before
00401   // release).
00402   //
00403   // The routine `invariant` should have no side-effects since it is not
00404   // guaranteed how many times it will be called; it should check the invariant
00405   // and crash if it does not hold. Enabling global invariant debugging may
00406   // substantially reduce `Mutex` performance; it should be set only for
00407   // non-production runs.  Optimization options may also disable invariant
00408   // checks.
00409   void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
00410 
00411   // Mutex::EnableDebugLog()
00412   //
00413   // Cause all subsequent uses of this `Mutex` to be logged via
00414   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
00415   // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
00416   //
00417   // Note: This method substantially reduces `Mutex` performance.
00418   void EnableDebugLog(const char *name);
00419 
00420   // Deadlock detection
00421 
00422   // Mutex::ForgetDeadlockInfo()
00423   //
00424   // Forget any deadlock-detection information previously gathered
00425   // about this `Mutex`. Call this method in debug mode when the lock ordering
00426   // of a `Mutex` changes.
00427   void ForgetDeadlockInfo();
00428 
00429   // Mutex::AssertNotHeld()
00430   //
00431   // Return immediately if this thread does not hold this `Mutex` in any
00432   // mode; otherwise, may report an error (typically by crashing with a
00433   // diagnostic), or may return immediately.
00434   //
00435   // Currently this check is performed only if all of:
00436   //    - in debug mode
00437   //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
00438   //    - number of locks concurrently held by this thread is not large.
00439   // are true.
00440   void AssertNotHeld() const;
00441 
00442   // Special cases.
00443 
00444   // A `MuHow` is a constant that indicates how a lock should be acquired.
00445   // Internal implementation detail.  Clients should ignore.
00446   typedef const struct MuHowS *MuHow;
00447 
00448   // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
00449   //
00450   // Causes the `Mutex` implementation to prepare itself for re-entry caused by
00451   // future use of `Mutex` within a fatal signal handler. This method is
00452   // intended for use only for last-ditch attempts to log crash information.
00453   // It does not guarantee that attempts to use Mutexes within the handler will
00454   // not deadlock; it merely makes other faults less likely.
00455   //
00456   // WARNING:  This routine must be invoked from a signal handler, and the
00457   // signal handler must either loop forever or terminate the process.
00458   // Attempts to return from (or `longjmp` out of) the signal handler once this
00459   // call has been made may cause arbitrary program behaviour including
00460   // crashes and deadlocks.
00461   static void InternalAttemptToUseMutexInFatalSignalHandler();
00462 
00463  private:
00464 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
00465   friend class CondVar;
00466 
00467   synchronization_internal::MutexImpl *impl() { return impl_.get(); }
00468 
00469   synchronization_internal::SynchronizationStorage<
00470       synchronization_internal::MutexImpl>
00471       impl_;
00472 #else
00473   std::atomic<intptr_t> mu_;  // The Mutex state.
00474 
00475   // Post()/Wait() versus associated PerThreadSem; in class for required
00476   // friendship with PerThreadSem.
00477   static inline void IncrementSynchSem(Mutex *mu,
00478                                        base_internal::PerThreadSynch *w);
00479   static inline bool DecrementSynchSem(
00480       Mutex *mu, base_internal::PerThreadSynch *w,
00481       synchronization_internal::KernelTimeout t);
00482 
00483   // slow path acquire
00484   void LockSlowLoop(SynchWaitParams *waitp, int flags);
00485   // wrappers around LockSlowLoop()
00486   bool LockSlowWithDeadline(MuHow how, const Condition *cond,
00487                             synchronization_internal::KernelTimeout t,
00488                             int flags);
00489   void LockSlow(MuHow how, const Condition *cond,
00490                 int flags) ABSL_ATTRIBUTE_COLD;
00491   // slow path release
00492   void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
00493   // Common code between Await() and AwaitWithTimeout/Deadline()
00494   bool AwaitCommon(const Condition &cond,
00495                    synchronization_internal::KernelTimeout t);
00496   // Attempt to remove thread s from queue.
00497   void TryRemove(base_internal::PerThreadSynch *s);
00498   // Block a thread on mutex.
00499   void Block(base_internal::PerThreadSynch *s);
00500   // Wake a thread; return successor.
00501   base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
00502 
00503   friend class CondVar;   // for access to Trans()/Fer().
00504   void Trans(MuHow how);  // used for CondVar->Mutex transfer
00505   void Fer(
00506       base_internal::PerThreadSynch *w);  // used for CondVar->Mutex transfer
00507 #endif
00508 
00509   // Catch the error of writing Mutex when intending MutexLock.
00510   Mutex(const volatile Mutex * /*ignored*/) {}  // NOLINT(runtime/explicit)
00511 
00512   Mutex(const Mutex&) = delete;
00513   Mutex& operator=(const Mutex&) = delete;
00514 };
00515 
00516 // -----------------------------------------------------------------------------
00517 // Mutex RAII Wrappers
00518 // -----------------------------------------------------------------------------
00519 
00520 // MutexLock
00521 //
00522 // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
00523 // RAII.
00524 //
00525 // Example:
00526 //
00527 // Class Foo {
00528 //
00529 //   Foo::Bar* Baz() {
00530 //     MutexLock l(&lock_);
00531 //     ...
00532 //     return bar;
00533 //   }
00534 //
00535 // private:
00536 //   Mutex lock_;
00537 // };
00538 class SCOPED_LOCKABLE MutexLock {
00539  public:
00540   explicit MutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
00541     this->mu_->Lock();
00542   }
00543 
00544   MutexLock(const MutexLock &) = delete;  // NOLINT(runtime/mutex)
00545   MutexLock(MutexLock&&) = delete;  // NOLINT(runtime/mutex)
00546   MutexLock& operator=(const MutexLock&) = delete;
00547   MutexLock& operator=(MutexLock&&) = delete;
00548 
00549   ~MutexLock() UNLOCK_FUNCTION() { this->mu_->Unlock(); }
00550 
00551  private:
00552   Mutex *const mu_;
00553 };
00554 
00555 // ReaderMutexLock
00556 //
00557 // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
00558 // releases a shared lock on a `Mutex` via RAII.
00559 class SCOPED_LOCKABLE ReaderMutexLock {
00560  public:
00561   explicit ReaderMutexLock(Mutex *mu) SHARED_LOCK_FUNCTION(mu)
00562       :  mu_(mu) {
00563     mu->ReaderLock();
00564   }
00565 
00566   ReaderMutexLock(const ReaderMutexLock&) = delete;
00567   ReaderMutexLock(ReaderMutexLock&&) = delete;
00568   ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
00569   ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
00570 
00571   ~ReaderMutexLock() UNLOCK_FUNCTION() {
00572     this->mu_->ReaderUnlock();
00573   }
00574 
00575  private:
00576   Mutex *const mu_;
00577 };
00578 
00579 // WriterMutexLock
00580 //
00581 // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
00582 // releases a write (exclusive) lock on a `Mutex` via RAII.
00583 class SCOPED_LOCKABLE WriterMutexLock {
00584  public:
00585   explicit WriterMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)
00586       : mu_(mu) {
00587     mu->WriterLock();
00588   }
00589 
00590   WriterMutexLock(const WriterMutexLock&) = delete;
00591   WriterMutexLock(WriterMutexLock&&) = delete;
00592   WriterMutexLock& operator=(const WriterMutexLock&) = delete;
00593   WriterMutexLock& operator=(WriterMutexLock&&) = delete;
00594 
00595   ~WriterMutexLock() UNLOCK_FUNCTION() {
00596     this->mu_->WriterUnlock();
00597   }
00598 
00599  private:
00600   Mutex *const mu_;
00601 };
00602 
00603 // -----------------------------------------------------------------------------
00604 // Condition
00605 // -----------------------------------------------------------------------------
00606 //
00607 // As noted above, `Mutex` contains a number of member functions which take a
00608 // `Condition` as an argument; clients can wait for conditions to become `true`
00609 // before attempting to acquire the mutex. These sections are known as
00610 // "condition critical" sections. To use a `Condition`, you simply need to
00611 // construct it, and use within an appropriate `Mutex` member function;
00612 // everything else in the `Condition` class is an implementation detail.
00613 //
00614 // A `Condition` is specified as a function pointer which returns a boolean.
00615 // `Condition` functions should be pure functions -- their results should depend
00616 // only on passed arguments, should not consult any external state (such as
00617 // clocks), and should have no side-effects, aside from debug logging. Any
00618 // objects that the function may access should be limited to those which are
00619 // constant while the mutex is blocked on the condition (e.g. a stack variable),
00620 // or objects of state protected explicitly by the mutex.
00621 //
00622 // No matter which construction is used for `Condition`, the underlying
00623 // function pointer / functor / callable must not throw any
00624 // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
00625 // the face of a throwing `Condition`. (When Abseil is allowed to depend
00626 // on C++17, these function pointers will be explicitly marked
00627 // `noexcept`; until then this requirement cannot be enforced in the
00628 // type system.)
00629 //
00630 // Note: to use a `Condition`, you need only construct it and pass it within the
00631 // appropriate `Mutex' member function, such as `Mutex::Await()`.
00632 //
00633 // Example:
00634 //
00635 //   // assume count_ is not internal reference count
00636 //   int count_ GUARDED_BY(mu_);
00637 //
00638 //   mu_.LockWhen(Condition(+[](int* count) { return *count == 0; },
00639 //         &count_));
00640 //
00641 // When multiple threads are waiting on exactly the same condition, make sure
00642 // that they are constructed with the same parameters (same pointer to function
00643 // + arg, or same pointer to object + method), so that the mutex implementation
00644 // can avoid redundantly evaluating the same condition for each thread.
00645 class Condition {
00646  public:
00647   // A Condition that returns the result of "(*func)(arg)"
00648   Condition(bool (*func)(void *), void *arg);
00649 
00650   // Templated version for people who are averse to casts.
00651   //
00652   // To use a lambda, prepend it with unary plus, which converts the lambda
00653   // into a function pointer:
00654   //     Condition(+[](T* t) { return ...; }, arg).
00655   //
00656   // Note: lambdas in this case must contain no bound variables.
00657   //
00658   // See class comment for performance advice.
00659   template<typename T>
00660   Condition(bool (*func)(T *), T *arg);
00661 
00662   // Templated version for invoking a method that returns a `bool`.
00663   //
00664   // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
00665   // `object->Method()`.
00666   //
00667   // Implementation Note: `absl::internal::identity` is used to allow methods to
00668   // come from base classes. A simpler signature like
00669   // `Condition(T*, bool (T::*)())` does not suffice.
00670   template<typename T>
00671   Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
00672 
00673   // Same as above, for const members
00674   template<typename T>
00675   Condition(const T *object,
00676             bool (absl::internal::identity<T>::type::* method)() const);
00677 
00678   // A Condition that returns the value of `*cond`
00679   explicit Condition(const bool *cond);
00680 
00681   // Templated version for invoking a functor that returns a `bool`.
00682   // This approach accepts pointers to non-mutable lambdas, `std::function`,
00683   // the result of` std::bind` and user-defined functors that define
00684   // `bool F::operator()() const`.
00685   //
00686   // Example:
00687   //
00688   //   auto reached = [this, current]() {
00689   //     mu_.AssertReaderHeld();                // For annotalysis.
00690   //     return processed_ >= current;
00691   //   };
00692   //   mu_.Await(Condition(&reached));
00693 
00694   // See class comment for performance advice. In particular, if there
00695   // might be more than one waiter for the same condition, make sure
00696   // that all waiters construct the condition with the same pointers.
00697 
00698   // Implementation note: The second template parameter ensures that this
00699   // constructor doesn't participate in overload resolution if T doesn't have
00700   // `bool operator() const`.
00701   template <typename T, typename E = decltype(
00702       static_cast<bool (T::*)() const>(&T::operator()))>
00703   explicit Condition(const T *obj)
00704       : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
00705 
00706   // A Condition that always returns `true`.
00707   static const Condition kTrue;
00708 
00709   // Evaluates the condition.
00710   bool Eval() const;
00711 
00712   // Returns `true` if the two conditions are guaranteed to return the same
00713   // value if evaluated at the same time, `false` if the evaluation *may* return
00714   // different results.
00715   //
00716   // Two `Condition` values are guaranteed equal if both their `func` and `arg`
00717   // components are the same. A null pointer is equivalent to a `true`
00718   // condition.
00719   static bool GuaranteedEqual(const Condition *a, const Condition *b);
00720 
00721  private:
00722   typedef bool (*InternalFunctionType)(void * arg);
00723   typedef bool (Condition::*InternalMethodType)();
00724   typedef bool (*InternalMethodCallerType)(void * arg,
00725                                            InternalMethodType internal_method);
00726 
00727   bool (*eval_)(const Condition*);  // Actual evaluator
00728   InternalFunctionType function_;   // function taking pointer returning bool
00729   InternalMethodType method_;       // method returning bool
00730   void *arg_;                       // arg of function_ or object of method_
00731 
00732   Condition();        // null constructor used only to create kTrue
00733 
00734   // Various functions eval_ can point to:
00735   static bool CallVoidPtrFunction(const Condition*);
00736   template <typename T> static bool CastAndCallFunction(const Condition* c);
00737   template <typename T> static bool CastAndCallMethod(const Condition* c);
00738 };
00739 
00740 // -----------------------------------------------------------------------------
00741 // CondVar
00742 // -----------------------------------------------------------------------------
00743 //
00744 // A condition variable, reflecting state evaluated separately outside of the
00745 // `Mutex` object, which can be signaled to wake callers.
00746 // This class is not normally needed; use `Mutex` member functions such as
00747 // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
00748 // with many threads and many conditions, `CondVar` may be faster.
00749 //
00750 // The implementation may deliver signals to any condition variable at
00751 // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
00752 // result, upon being awoken, you must check the logical condition you have
00753 // been waiting upon.
00754 //
00755 // Examples:
00756 //
00757 // Usage for a thread waiting for some condition C protected by mutex mu:
00758 //       mu.Lock();
00759 //       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
00760 //       //  C holds; process data
00761 //       mu.Unlock();
00762 //
00763 // Usage to wake T is:
00764 //       mu.Lock();
00765 //      // process data, possibly establishing C
00766 //      if (C) { cv->Signal(); }
00767 //      mu.Unlock();
00768 //
00769 // If C may be useful to more than one waiter, use `SignalAll()` instead of
00770 // `Signal()`.
00771 //
00772 // With this implementation it is efficient to use `Signal()/SignalAll()` inside
00773 // the locked region; this usage can make reasoning about your program easier.
00774 //
00775 class CondVar {
00776  public:
00777   CondVar();
00778   ~CondVar();
00779 
00780   // CondVar::Wait()
00781   //
00782   // Atomically releases a `Mutex` and blocks on this condition variable.
00783   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
00784   // spurious wakeup), then reacquires the `Mutex` and returns.
00785   //
00786   // Requires and ensures that the current thread holds the `Mutex`.
00787   void Wait(Mutex *mu);
00788 
00789   // CondVar::WaitWithTimeout()
00790   //
00791   // Atomically releases a `Mutex` and blocks on this condition variable.
00792   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
00793   // spurious wakeup), or until the timeout has expired, then reacquires
00794   // the `Mutex` and returns.
00795   //
00796   // Returns true if the timeout has expired without this `CondVar`
00797   // being signalled in any manner. If both the timeout has expired
00798   // and this `CondVar` has been signalled, the implementation is free
00799   // to return `true` or `false`.
00800   //
00801   // Requires and ensures that the current thread holds the `Mutex`.
00802   bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
00803 
00804   // CondVar::WaitWithDeadline()
00805   //
00806   // Atomically releases a `Mutex` and blocks on this condition variable.
00807   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
00808   // spurious wakeup), or until the deadline has passed, then reacquires
00809   // the `Mutex` and returns.
00810   //
00811   // Deadlines in the past are equivalent to an immediate deadline.
00812   //
00813   // Returns true if the deadline has passed without this `CondVar`
00814   // being signalled in any manner. If both the deadline has passed
00815   // and this `CondVar` has been signalled, the implementation is free
00816   // to return `true` or `false`.
00817   //
00818   // Requires and ensures that the current thread holds the `Mutex`.
00819   bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
00820 
00821   // CondVar::Signal()
00822   //
00823   // Signal this `CondVar`; wake at least one waiter if one exists.
00824   void Signal();
00825 
00826   // CondVar::SignalAll()
00827   //
00828   // Signal this `CondVar`; wake all waiters.
00829   void SignalAll();
00830 
00831   // CondVar::EnableDebugLog()
00832   //
00833   // Causes all subsequent uses of this `CondVar` to be logged via
00834   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
00835   // Note: this method substantially reduces `CondVar` performance.
00836   void EnableDebugLog(const char *name);
00837 
00838  private:
00839 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
00840   synchronization_internal::CondVarImpl *impl() { return impl_.get(); }
00841   synchronization_internal::SynchronizationStorage<
00842       synchronization_internal::CondVarImpl>
00843       impl_;
00844 #else
00845   bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
00846   void Remove(base_internal::PerThreadSynch *s);
00847   void Wakeup(base_internal::PerThreadSynch *w);
00848   std::atomic<intptr_t> cv_;  // Condition variable state.
00849 #endif
00850   CondVar(const CondVar&) = delete;
00851   CondVar& operator=(const CondVar&) = delete;
00852 };
00853 
00854 
00855 // Variants of MutexLock.
00856 //
00857 // If you find yourself using one of these, consider instead using
00858 // Mutex::Unlock() and/or if-statements for clarity.
00859 
00860 // MutexLockMaybe
00861 //
00862 // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
00863 class SCOPED_LOCKABLE MutexLockMaybe {
00864  public:
00865   explicit MutexLockMaybe(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)
00866       : mu_(mu) { if (this->mu_ != nullptr) { this->mu_->Lock(); } }
00867   ~MutexLockMaybe() UNLOCK_FUNCTION() {
00868     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
00869   }
00870  private:
00871   Mutex *const mu_;
00872   MutexLockMaybe(const MutexLockMaybe&) = delete;
00873   MutexLockMaybe(MutexLockMaybe&&) = delete;
00874   MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
00875   MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
00876 };
00877 
00878 // ReleasableMutexLock
00879 //
00880 // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
00881 // mutex before destruction. `Release()` may be called at most once.
00882 class SCOPED_LOCKABLE ReleasableMutexLock {
00883  public:
00884   explicit ReleasableMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)
00885       : mu_(mu) {
00886     this->mu_->Lock();
00887   }
00888   ~ReleasableMutexLock() UNLOCK_FUNCTION() {
00889     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
00890   }
00891 
00892   void Release() UNLOCK_FUNCTION();
00893 
00894  private:
00895   Mutex *mu_;
00896   ReleasableMutexLock(const ReleasableMutexLock&) = delete;
00897   ReleasableMutexLock(ReleasableMutexLock&&) = delete;
00898   ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
00899   ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
00900 };
00901 
00902 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
00903 inline constexpr Mutex::Mutex(absl::ConstInitType) : impl_(absl::kConstInit) {}
00904 
00905 #else
00906 inline Mutex::Mutex() : mu_(0) {
00907   ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
00908 }
00909 
00910 inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
00911 
00912 inline CondVar::CondVar() : cv_(0) {}
00913 #endif
00914 
00915 // static
00916 template <typename T>
00917 bool Condition::CastAndCallMethod(const Condition *c) {
00918   typedef bool (T::*MemberType)();
00919   MemberType rm = reinterpret_cast<MemberType>(c->method_);
00920   T *x = static_cast<T *>(c->arg_);
00921   return (x->*rm)();
00922 }
00923 
00924 // static
00925 template <typename T>
00926 bool Condition::CastAndCallFunction(const Condition *c) {
00927   typedef bool (*FuncType)(T *);
00928   FuncType fn = reinterpret_cast<FuncType>(c->function_);
00929   T *x = static_cast<T *>(c->arg_);
00930   return (*fn)(x);
00931 }
00932 
00933 template <typename T>
00934 inline Condition::Condition(bool (*func)(T *), T *arg)
00935     : eval_(&CastAndCallFunction<T>),
00936       function_(reinterpret_cast<InternalFunctionType>(func)),
00937       method_(nullptr),
00938       arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
00939 
00940 template <typename T>
00941 inline Condition::Condition(T *object,
00942                             bool (absl::internal::identity<T>::type::*method)())
00943     : eval_(&CastAndCallMethod<T>),
00944       function_(nullptr),
00945       method_(reinterpret_cast<InternalMethodType>(method)),
00946       arg_(object) {}
00947 
00948 template <typename T>
00949 inline Condition::Condition(const T *object,
00950                             bool (absl::internal::identity<T>::type::*method)()
00951                                 const)
00952     : eval_(&CastAndCallMethod<T>),
00953       function_(nullptr),
00954       method_(reinterpret_cast<InternalMethodType>(method)),
00955       arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
00956 
00957 // Register a hook for profiling support.
00958 //
00959 // The function pointer registered here will be called whenever a mutex is
00960 // contended.  The callback is given the absl/base/cycleclock.h timestamp when
00961 // waiting began.
00962 //
00963 // Calls to this function do not race or block, but there is no ordering
00964 // guaranteed between calls to this function and call to the provided hook.
00965 // In particular, the previously registered hook may still be called for some
00966 // time after this function returns.
00967 void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
00968 
00969 // Register a hook for Mutex tracing.
00970 //
00971 // The function pointer registered here will be called whenever a mutex is
00972 // contended.  The callback is given an opaque handle to the contended mutex,
00973 // an event name, and the number of wait cycles (as measured by
00974 // //absl/base/internal/cycleclock.h, and which may not be real
00975 // "cycle" counts.)
00976 //
00977 // The only event name currently sent is "slow release".
00978 //
00979 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
00980 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
00981                               int64_t wait_cycles));
00982 
00983 // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
00984 // into a single interface, since they are only ever called in pairs.
00985 
00986 // Register a hook for CondVar tracing.
00987 //
00988 // The function pointer registered here will be called here on various CondVar
00989 // events.  The callback is given an opaque handle to the CondVar object and
00990 // a string identifying the event.  This is thread-safe, but only a single
00991 // tracer can be registered.
00992 //
00993 // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
00994 // "SignalAll wakeup".
00995 //
00996 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
00997 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
00998 
00999 // Register a hook for symbolizing stack traces in deadlock detector reports.
01000 //
01001 // 'pc' is the program counter being symbolized, 'out' is the buffer to write
01002 // into, and 'out_size' is the size of the buffer.  This function can return
01003 // false if symbolizing failed, or true if a null-terminated symbol was written
01004 // to 'out.'
01005 //
01006 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
01007 //
01008 // DEPRECATED: The default symbolizer function is absl::Symbolize() and the
01009 // ability to register a different hook for symbolizing stack traces will be
01010 // removed on or after 2023-05-01.
01011 ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
01012                 "on or after 2023-05-01")
01013 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
01014 
01015 // EnableMutexInvariantDebugging()
01016 //
01017 // Enable or disable global support for Mutex invariant debugging.  If enabled,
01018 // then invariant predicates can be registered per-Mutex for debug checking.
01019 // See Mutex::EnableInvariantDebugging().
01020 void EnableMutexInvariantDebugging(bool enabled);
01021 
01022 // When in debug mode, and when the feature has been enabled globally, the
01023 // implementation will keep track of lock ordering and complain (or optionally
01024 // crash) if a cycle is detected in the acquired-before graph.
01025 
01026 // Possible modes of operation for the deadlock detector in debug mode.
01027 enum class OnDeadlockCycle {
01028   kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
01029   kReport,  // Report lock cycles to stderr when detected
01030   kAbort,  // Report lock cycles to stderr when detected, then abort
01031 };
01032 
01033 // SetMutexDeadlockDetectionMode()
01034 //
01035 // Enable or disable global support for detection of potential deadlocks
01036 // due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
01037 // lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
01038 // will be maintained internally, and detected cycles will be reported in
01039 // the manner chosen here.
01040 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
01041 
01042 }  // namespace absl
01043 
01044 // In some build configurations we pass --detect-odr-violations to the
01045 // gold linker.  This causes it to flag weak symbol overrides as ODR
01046 // violations.  Because ODR only applies to C++ and not C,
01047 // --detect-odr-violations ignores symbols not mangled with C++ names.
01048 // By changing our extension points to be extern "C", we dodge this
01049 // check.
01050 extern "C" {
01051 void AbslInternalMutexYield();
01052 }  // extern "C"
01053 
01054 #endif  // ABSL_SYNCHRONIZATION_MUTEX_H_


abseil_cpp
Author(s):
autogenerated on Wed Jun 19 2019 19:42:15