00001 // Copyright 2018 The Abseil Authors. 00002 // 00003 // Licensed under the Apache License, Version 2.0 (the "License"); 00004 // you may not use this file except in compliance with the License. 00005 // You may obtain a copy of the License at 00006 // 00007 // https://www.apache.org/licenses/LICENSE-2.0 00008 // 00009 // Unless required by applicable law or agreed to in writing, software 00010 // distributed under the License is distributed on an "AS IS" BASIS, 00011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00012 // See the License for the specific language governing permissions and 00013 // limitations under the License. 00014 // 00015 // ----------------------------------------------------------------------------- 00016 // File: flat_hash_set.h 00017 // ----------------------------------------------------------------------------- 00018 // 00019 // An `absl::flat_hash_set<T>` is an unordered associative container designed to 00020 // be a more efficient replacement for `std::unordered_set`. Like 00021 // `unordered_set`, search, insertion, and deletion of set elements can be done 00022 // as an `O(1)` operation. However, `flat_hash_set` (and other unordered 00023 // associative containers known as the collection of Abseil "Swiss tables") 00024 // contain other optimizations that result in both memory and computation 00025 // advantages. 00026 // 00027 // In most cases, your default choice for a hash set should be a set of type 00028 // `flat_hash_set`. 00029 #ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_ 00030 #define ABSL_CONTAINER_FLAT_HASH_SET_H_ 00031 00032 #include <type_traits> 00033 #include <utility> 00034 00035 #include "absl/algorithm/container.h" 00036 #include "absl/base/macros.h" 00037 #include "absl/container/internal/container_memory.h" 00038 #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export 00039 #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export 00040 #include "absl/memory/memory.h" 00041 00042 namespace absl { 00043 namespace container_internal { 00044 template <typename T> 00045 struct FlatHashSetPolicy; 00046 } // namespace container_internal 00047 00048 // ----------------------------------------------------------------------------- 00049 // absl::flat_hash_set 00050 // ----------------------------------------------------------------------------- 00051 // 00052 // An `absl::flat_hash_set<T>` is an unordered associative container which has 00053 // been optimized for both speed and memory footprint in most common use cases. 00054 // Its interface is similar to that of `std::unordered_set<T>` with the 00055 // following notable differences: 00056 // 00057 // * Requires keys that are CopyConstructible 00058 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and 00059 // `insert()`, provided that the set is provided a compatible heterogeneous 00060 // hashing function and equality operator. 00061 // * Invalidates any references and pointers to elements within the table after 00062 // `rehash()`. 00063 // * Contains a `capacity()` member function indicating the number of element 00064 // slots (open, deleted, and empty) within the hash set. 00065 // * Returns `void` from the `erase(iterator)` overload. 00066 // 00067 // By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All 00068 // fundamental and Abseil types that support the `absl::Hash` framework have a 00069 // compatible equality operator for comparing insertions into `flat_hash_map`. 00070 // If your type is not yet supported by the `absl::Hash` framework, see 00071 // absl/hash/hash.h for information on extending Abseil hashing to user-defined 00072 // types. 00073 // 00074 // NOTE: A `flat_hash_set` stores its keys directly inside its implementation 00075 // array to avoid memory indirection. Because a `flat_hash_set` is designed to 00076 // move data when rehashed, set keys will not retain pointer stability. If you 00077 // require pointer stability, consider using 00078 // `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and 00079 // you require pointer stability, consider `absl::node_hash_set` instead. 00080 // 00081 // Example: 00082 // 00083 // // Create a flat hash set of three strings 00084 // absl::flat_hash_set<std::string> ducks = 00085 // {"huey", "dewey", "louie"}; 00086 // 00087 // // Insert a new element into the flat hash set 00088 // ducks.insert("donald"); 00089 // 00090 // // Force a rehash of the flat hash set 00091 // ducks.rehash(0); 00092 // 00093 // // See if "dewey" is present 00094 // if (ducks.contains("dewey")) { 00095 // std::cout << "We found dewey!" << std::endl; 00096 // } 00097 template <class T, class Hash = absl::container_internal::hash_default_hash<T>, 00098 class Eq = absl::container_internal::hash_default_eq<T>, 00099 class Allocator = std::allocator<T>> 00100 class flat_hash_set 00101 : public absl::container_internal::raw_hash_set< 00102 absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> { 00103 using Base = typename flat_hash_set::raw_hash_set; 00104 00105 public: 00106 // Constructors and Assignment Operators 00107 // 00108 // A flat_hash_set supports the same overload set as `std::unordered_map` 00109 // for construction and assignment: 00110 // 00111 // * Default constructor 00112 // 00113 // // No allocation for the table's elements is made. 00114 // absl::flat_hash_set<std::string> set1; 00115 // 00116 // * Initializer List constructor 00117 // 00118 // absl::flat_hash_set<std::string> set2 = 00119 // {{"huey"}, {"dewey"}, {"louie"},}; 00120 // 00121 // * Copy constructor 00122 // 00123 // absl::flat_hash_set<std::string> set3(set2); 00124 // 00125 // * Copy assignment operator 00126 // 00127 // // Hash functor and Comparator are copied as well 00128 // absl::flat_hash_set<std::string> set4; 00129 // set4 = set3; 00130 // 00131 // * Move constructor 00132 // 00133 // // Move is guaranteed efficient 00134 // absl::flat_hash_set<std::string> set5(std::move(set4)); 00135 // 00136 // * Move assignment operator 00137 // 00138 // // May be efficient if allocators are compatible 00139 // absl::flat_hash_set<std::string> set6; 00140 // set6 = std::move(set5); 00141 // 00142 // * Range constructor 00143 // 00144 // std::vector<std::string> v = {"a", "b"}; 00145 // absl::flat_hash_set<std::string> set7(v.begin(), v.end()); 00146 flat_hash_set() {} 00147 using Base::Base; 00148 00149 // flat_hash_set::begin() 00150 // 00151 // Returns an iterator to the beginning of the `flat_hash_set`. 00152 using Base::begin; 00153 00154 // flat_hash_set::cbegin() 00155 // 00156 // Returns a const iterator to the beginning of the `flat_hash_set`. 00157 using Base::cbegin; 00158 00159 // flat_hash_set::cend() 00160 // 00161 // Returns a const iterator to the end of the `flat_hash_set`. 00162 using Base::cend; 00163 00164 // flat_hash_set::end() 00165 // 00166 // Returns an iterator to the end of the `flat_hash_set`. 00167 using Base::end; 00168 00169 // flat_hash_set::capacity() 00170 // 00171 // Returns the number of element slots (assigned, deleted, and empty) 00172 // available within the `flat_hash_set`. 00173 // 00174 // NOTE: this member function is particular to `absl::flat_hash_set` and is 00175 // not provided in the `std::unordered_map` API. 00176 using Base::capacity; 00177 00178 // flat_hash_set::empty() 00179 // 00180 // Returns whether or not the `flat_hash_set` is empty. 00181 using Base::empty; 00182 00183 // flat_hash_set::max_size() 00184 // 00185 // Returns the largest theoretical possible number of elements within a 00186 // `flat_hash_set` under current memory constraints. This value can be thought 00187 // of the largest value of `std::distance(begin(), end())` for a 00188 // `flat_hash_set<T>`. 00189 using Base::max_size; 00190 00191 // flat_hash_set::size() 00192 // 00193 // Returns the number of elements currently within the `flat_hash_set`. 00194 using Base::size; 00195 00196 // flat_hash_set::clear() 00197 // 00198 // Removes all elements from the `flat_hash_set`. Invalidates any references, 00199 // pointers, or iterators referring to contained elements. 00200 // 00201 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking 00202 // the underlying buffer call `erase(begin(), end())`. 00203 using Base::clear; 00204 00205 // flat_hash_set::erase() 00206 // 00207 // Erases elements within the `flat_hash_set`. Erasing does not trigger a 00208 // rehash. Overloads are listed below. 00209 // 00210 // void erase(const_iterator pos): 00211 // 00212 // Erases the element at `position` of the `flat_hash_set`, returning 00213 // `void`. 00214 // 00215 // NOTE: returning `void` in this case is different than that of STL 00216 // containers in general and `std::unordered_set` in particular (which 00217 // return an iterator to the element following the erased element). If that 00218 // iterator is needed, simply post increment the iterator: 00219 // 00220 // set.erase(it++); 00221 // 00222 // iterator erase(const_iterator first, const_iterator last): 00223 // 00224 // Erases the elements in the open interval [`first`, `last`), returning an 00225 // iterator pointing to `last`. 00226 // 00227 // size_type erase(const key_type& key): 00228 // 00229 // Erases the element with the matching key, if it exists. 00230 using Base::erase; 00231 00232 // flat_hash_set::insert() 00233 // 00234 // Inserts an element of the specified value into the `flat_hash_set`, 00235 // returning an iterator pointing to the newly inserted element, provided that 00236 // an element with the given key does not already exist. If rehashing occurs 00237 // due to the insertion, all iterators are invalidated. Overloads are listed 00238 // below. 00239 // 00240 // std::pair<iterator,bool> insert(const T& value): 00241 // 00242 // Inserts a value into the `flat_hash_set`. Returns a pair consisting of an 00243 // iterator to the inserted element (or to the element that prevented the 00244 // insertion) and a bool denoting whether the insertion took place. 00245 // 00246 // std::pair<iterator,bool> insert(T&& value): 00247 // 00248 // Inserts a moveable value into the `flat_hash_set`. Returns a pair 00249 // consisting of an iterator to the inserted element (or to the element that 00250 // prevented the insertion) and a bool denoting whether the insertion took 00251 // place. 00252 // 00253 // iterator insert(const_iterator hint, const T& value): 00254 // iterator insert(const_iterator hint, T&& value): 00255 // 00256 // Inserts a value, using the position of `hint` as a non-binding suggestion 00257 // for where to begin the insertion search. Returns an iterator to the 00258 // inserted element, or to the existing element that prevented the 00259 // insertion. 00260 // 00261 // void insert(InputIterator first, InputIterator last): 00262 // 00263 // Inserts a range of values [`first`, `last`). 00264 // 00265 // NOTE: Although the STL does not specify which element may be inserted if 00266 // multiple keys compare equivalently, for `flat_hash_set` we guarantee the 00267 // first match is inserted. 00268 // 00269 // void insert(std::initializer_list<T> ilist): 00270 // 00271 // Inserts the elements within the initializer list `ilist`. 00272 // 00273 // NOTE: Although the STL does not specify which element may be inserted if 00274 // multiple keys compare equivalently within the initializer list, for 00275 // `flat_hash_set` we guarantee the first match is inserted. 00276 using Base::insert; 00277 00278 // flat_hash_set::emplace() 00279 // 00280 // Inserts an element of the specified value by constructing it in-place 00281 // within the `flat_hash_set`, provided that no element with the given key 00282 // already exists. 00283 // 00284 // The element may be constructed even if there already is an element with the 00285 // key in the container, in which case the newly constructed element will be 00286 // destroyed immediately. 00287 // 00288 // If rehashing occurs due to the insertion, all iterators are invalidated. 00289 using Base::emplace; 00290 00291 // flat_hash_set::emplace_hint() 00292 // 00293 // Inserts an element of the specified value by constructing it in-place 00294 // within the `flat_hash_set`, using the position of `hint` as a non-binding 00295 // suggestion for where to begin the insertion search, and only inserts 00296 // provided that no element with the given key already exists. 00297 // 00298 // The element may be constructed even if there already is an element with the 00299 // key in the container, in which case the newly constructed element will be 00300 // destroyed immediately. 00301 // 00302 // If rehashing occurs due to the insertion, all iterators are invalidated. 00303 using Base::emplace_hint; 00304 00305 // flat_hash_set::extract() 00306 // 00307 // Extracts the indicated element, erasing it in the process, and returns it 00308 // as a C++17-compatible node handle. Overloads are listed below. 00309 // 00310 // node_type extract(const_iterator position): 00311 // 00312 // Extracts the element at the indicated position and returns a node handle 00313 // owning that extracted data. 00314 // 00315 // node_type extract(const key_type& x): 00316 // 00317 // Extracts the element with the key matching the passed key value and 00318 // returns a node handle owning that extracted data. If the `flat_hash_set` 00319 // does not contain an element with a matching key, this function returns an 00320 // empty node handle. 00321 using Base::extract; 00322 00323 // flat_hash_set::merge() 00324 // 00325 // Extracts elements from a given `source` flat hash map into this 00326 // `flat_hash_set`. If the destination `flat_hash_set` already contains an 00327 // element with an equivalent key, that element is not extracted. 00328 using Base::merge; 00329 00330 // flat_hash_set::swap(flat_hash_set& other) 00331 // 00332 // Exchanges the contents of this `flat_hash_set` with those of the `other` 00333 // flat hash map, avoiding invocation of any move, copy, or swap operations on 00334 // individual elements. 00335 // 00336 // All iterators and references on the `flat_hash_set` remain valid, excepting 00337 // for the past-the-end iterator, which is invalidated. 00338 // 00339 // `swap()` requires that the flat hash set's hashing and key equivalence 00340 // functions be Swappable, and are exchaged using unqualified calls to 00341 // non-member `swap()`. If the map's allocator has 00342 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value` 00343 // set to `true`, the allocators are also exchanged using an unqualified call 00344 // to non-member `swap()`; otherwise, the allocators are not swapped. 00345 using Base::swap; 00346 00347 // flat_hash_set::rehash(count) 00348 // 00349 // Rehashes the `flat_hash_set`, setting the number of slots to be at least 00350 // the passed value. If the new number of slots increases the load factor more 00351 // than the current maximum load factor 00352 // (`count` < `size()` / `max_load_factor()`), then the new number of slots 00353 // will be at least `size()` / `max_load_factor()`. 00354 // 00355 // To force a rehash, pass rehash(0). 00356 // 00357 // NOTE: unlike behavior in `std::unordered_set`, references are also 00358 // invalidated upon a `rehash()`. 00359 using Base::rehash; 00360 00361 // flat_hash_set::reserve(count) 00362 // 00363 // Sets the number of slots in the `flat_hash_set` to the number needed to 00364 // accommodate at least `count` total elements without exceeding the current 00365 // maximum load factor, and may rehash the container if needed. 00366 using Base::reserve; 00367 00368 // flat_hash_set::contains() 00369 // 00370 // Determines whether an element comparing equal to the given `key` exists 00371 // within the `flat_hash_set`, returning `true` if so or `false` otherwise. 00372 using Base::contains; 00373 00374 // flat_hash_set::count(const Key& key) const 00375 // 00376 // Returns the number of elements comparing equal to the given `key` within 00377 // the `flat_hash_set`. note that this function will return either `1` or `0` 00378 // since duplicate elements are not allowed within a `flat_hash_set`. 00379 using Base::count; 00380 00381 // flat_hash_set::equal_range() 00382 // 00383 // Returns a closed range [first, last], defined by a `std::pair` of two 00384 // iterators, containing all elements with the passed key in the 00385 // `flat_hash_set`. 00386 using Base::equal_range; 00387 00388 // flat_hash_set::find() 00389 // 00390 // Finds an element with the passed `key` within the `flat_hash_set`. 00391 using Base::find; 00392 00393 // flat_hash_set::bucket_count() 00394 // 00395 // Returns the number of "buckets" within the `flat_hash_set`. Note that 00396 // because a flat hash map contains all elements within its internal storage, 00397 // this value simply equals the current capacity of the `flat_hash_set`. 00398 using Base::bucket_count; 00399 00400 // flat_hash_set::load_factor() 00401 // 00402 // Returns the current load factor of the `flat_hash_set` (the average number 00403 // of slots occupied with a value within the hash map). 00404 using Base::load_factor; 00405 00406 // flat_hash_set::max_load_factor() 00407 // 00408 // Manages the maximum load factor of the `flat_hash_set`. Overloads are 00409 // listed below. 00410 // 00411 // float flat_hash_set::max_load_factor() 00412 // 00413 // Returns the current maximum load factor of the `flat_hash_set`. 00414 // 00415 // void flat_hash_set::max_load_factor(float ml) 00416 // 00417 // Sets the maximum load factor of the `flat_hash_set` to the passed value. 00418 // 00419 // NOTE: This overload is provided only for API compatibility with the STL; 00420 // `flat_hash_set` will ignore any set load factor and manage its rehashing 00421 // internally as an implementation detail. 00422 using Base::max_load_factor; 00423 00424 // flat_hash_set::get_allocator() 00425 // 00426 // Returns the allocator function associated with this `flat_hash_set`. 00427 using Base::get_allocator; 00428 00429 // flat_hash_set::hash_function() 00430 // 00431 // Returns the hashing function used to hash the keys within this 00432 // `flat_hash_set`. 00433 using Base::hash_function; 00434 00435 // flat_hash_set::key_eq() 00436 // 00437 // Returns the function used for comparing keys equality. 00438 using Base::key_eq; 00439 }; 00440 00441 namespace container_internal { 00442 00443 template <class T> 00444 struct FlatHashSetPolicy { 00445 using slot_type = T; 00446 using key_type = T; 00447 using init_type = T; 00448 using constant_iterators = std::true_type; 00449 00450 template <class Allocator, class... Args> 00451 static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { 00452 absl::allocator_traits<Allocator>::construct(*alloc, slot, 00453 std::forward<Args>(args)...); 00454 } 00455 00456 template <class Allocator> 00457 static void destroy(Allocator* alloc, slot_type* slot) { 00458 absl::allocator_traits<Allocator>::destroy(*alloc, slot); 00459 } 00460 00461 template <class Allocator> 00462 static void transfer(Allocator* alloc, slot_type* new_slot, 00463 slot_type* old_slot) { 00464 construct(alloc, new_slot, std::move(*old_slot)); 00465 destroy(alloc, old_slot); 00466 } 00467 00468 static T& element(slot_type* slot) { return *slot; } 00469 00470 template <class F, class... Args> 00471 static decltype(absl::container_internal::DecomposeValue( 00472 std::declval<F>(), std::declval<Args>()...)) 00473 apply(F&& f, Args&&... args) { 00474 return absl::container_internal::DecomposeValue( 00475 std::forward<F>(f), std::forward<Args>(args)...); 00476 } 00477 00478 static size_t space_used(const T*) { return 0; } 00479 }; 00480 } // namespace container_internal 00481 00482 namespace container_algorithm_internal { 00483 00484 // Specialization of trait in absl/algorithm/container.h 00485 template <class Key, class Hash, class KeyEqual, class Allocator> 00486 struct IsUnorderedContainer<absl::flat_hash_set<Key, Hash, KeyEqual, Allocator>> 00487 : std::true_type {}; 00488 00489 } // namespace container_algorithm_internal 00490 00491 } // namespace absl 00492 00493 #endif // ABSL_CONTAINER_FLAT_HASH_SET_H_