00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 namespace Eigen {
00011
00012 namespace internal {
00013
00014
00015
00016
00017 template <typename _Scalar>
00018 struct kiss_cpx_fft
00019 {
00020 typedef _Scalar Scalar;
00021 typedef std::complex<Scalar> Complex;
00022 std::vector<Complex> m_twiddles;
00023 std::vector<int> m_stageRadix;
00024 std::vector<int> m_stageRemainder;
00025 std::vector<Complex> m_scratchBuf;
00026 bool m_inverse;
00027
00028 inline
00029 void make_twiddles(int nfft,bool inverse)
00030 {
00031 m_inverse = inverse;
00032 m_twiddles.resize(nfft);
00033 Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
00034 for (int i=0;i<nfft;++i)
00035 m_twiddles[i] = exp( Complex(0,i*phinc) );
00036 }
00037
00038 void factorize(int nfft)
00039 {
00040
00041 int n= nfft;
00042 int p=4;
00043 do {
00044 while (n % p) {
00045 switch (p) {
00046 case 4: p = 2; break;
00047 case 2: p = 3; break;
00048 default: p += 2; break;
00049 }
00050 if (p*p>n)
00051 p=n;
00052 }
00053 n /= p;
00054 m_stageRadix.push_back(p);
00055 m_stageRemainder.push_back(n);
00056 if ( p > 5 )
00057 m_scratchBuf.resize(p);
00058 }while(n>1);
00059 }
00060
00061 template <typename _Src>
00062 inline
00063 void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
00064 {
00065 int p = m_stageRadix[stage];
00066 int m = m_stageRemainder[stage];
00067 Complex * Fout_beg = xout;
00068 Complex * Fout_end = xout + p*m;
00069
00070 if (m>1) {
00071 do{
00072
00073
00074
00075
00076 work(stage+1, xout , xin, fstride*p,in_stride);
00077 xin += fstride*in_stride;
00078 }while( (xout += m) != Fout_end );
00079 }else{
00080 do{
00081 *xout = *xin;
00082 xin += fstride*in_stride;
00083 }while(++xout != Fout_end );
00084 }
00085 xout=Fout_beg;
00086
00087
00088 switch (p) {
00089 case 2: bfly2(xout,fstride,m); break;
00090 case 3: bfly3(xout,fstride,m); break;
00091 case 4: bfly4(xout,fstride,m); break;
00092 case 5: bfly5(xout,fstride,m); break;
00093 default: bfly_generic(xout,fstride,m,p); break;
00094 }
00095 }
00096
00097 inline
00098 void bfly2( Complex * Fout, const size_t fstride, int m)
00099 {
00100 for (int k=0;k<m;++k) {
00101 Complex t = Fout[m+k] * m_twiddles[k*fstride];
00102 Fout[m+k] = Fout[k] - t;
00103 Fout[k] += t;
00104 }
00105 }
00106
00107 inline
00108 void bfly4( Complex * Fout, const size_t fstride, const size_t m)
00109 {
00110 Complex scratch[6];
00111 int negative_if_inverse = m_inverse * -2 +1;
00112 for (size_t k=0;k<m;++k) {
00113 scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
00114 scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
00115 scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
00116 scratch[5] = Fout[k] - scratch[1];
00117
00118 Fout[k] += scratch[1];
00119 scratch[3] = scratch[0] + scratch[2];
00120 scratch[4] = scratch[0] - scratch[2];
00121 scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
00122
00123 Fout[k+2*m] = Fout[k] - scratch[3];
00124 Fout[k] += scratch[3];
00125 Fout[k+m] = scratch[5] + scratch[4];
00126 Fout[k+3*m] = scratch[5] - scratch[4];
00127 }
00128 }
00129
00130 inline
00131 void bfly3( Complex * Fout, const size_t fstride, const size_t m)
00132 {
00133 size_t k=m;
00134 const size_t m2 = 2*m;
00135 Complex *tw1,*tw2;
00136 Complex scratch[5];
00137 Complex epi3;
00138 epi3 = m_twiddles[fstride*m];
00139
00140 tw1=tw2=&m_twiddles[0];
00141
00142 do{
00143 scratch[1]=Fout[m] * *tw1;
00144 scratch[2]=Fout[m2] * *tw2;
00145
00146 scratch[3]=scratch[1]+scratch[2];
00147 scratch[0]=scratch[1]-scratch[2];
00148 tw1 += fstride;
00149 tw2 += fstride*2;
00150 Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() );
00151 scratch[0] *= epi3.imag();
00152 *Fout += scratch[3];
00153 Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
00154 Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
00155 ++Fout;
00156 }while(--k);
00157 }
00158
00159 inline
00160 void bfly5( Complex * Fout, const size_t fstride, const size_t m)
00161 {
00162 Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
00163 size_t u;
00164 Complex scratch[13];
00165 Complex * twiddles = &m_twiddles[0];
00166 Complex *tw;
00167 Complex ya,yb;
00168 ya = twiddles[fstride*m];
00169 yb = twiddles[fstride*2*m];
00170
00171 Fout0=Fout;
00172 Fout1=Fout0+m;
00173 Fout2=Fout0+2*m;
00174 Fout3=Fout0+3*m;
00175 Fout4=Fout0+4*m;
00176
00177 tw=twiddles;
00178 for ( u=0; u<m; ++u ) {
00179 scratch[0] = *Fout0;
00180
00181 scratch[1] = *Fout1 * tw[u*fstride];
00182 scratch[2] = *Fout2 * tw[2*u*fstride];
00183 scratch[3] = *Fout3 * tw[3*u*fstride];
00184 scratch[4] = *Fout4 * tw[4*u*fstride];
00185
00186 scratch[7] = scratch[1] + scratch[4];
00187 scratch[10] = scratch[1] - scratch[4];
00188 scratch[8] = scratch[2] + scratch[3];
00189 scratch[9] = scratch[2] - scratch[3];
00190
00191 *Fout0 += scratch[7];
00192 *Fout0 += scratch[8];
00193
00194 scratch[5] = scratch[0] + Complex(
00195 (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
00196 (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
00197 );
00198
00199 scratch[6] = Complex(
00200 (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
00201 -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
00202 );
00203
00204 *Fout1 = scratch[5] - scratch[6];
00205 *Fout4 = scratch[5] + scratch[6];
00206
00207 scratch[11] = scratch[0] +
00208 Complex(
00209 (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
00210 (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
00211 );
00212
00213 scratch[12] = Complex(
00214 -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
00215 (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
00216 );
00217
00218 *Fout2=scratch[11]+scratch[12];
00219 *Fout3=scratch[11]-scratch[12];
00220
00221 ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
00222 }
00223 }
00224
00225
00226 inline
00227 void bfly_generic(
00228 Complex * Fout,
00229 const size_t fstride,
00230 int m,
00231 int p
00232 )
00233 {
00234 int u,k,q1,q;
00235 Complex * twiddles = &m_twiddles[0];
00236 Complex t;
00237 int Norig = static_cast<int>(m_twiddles.size());
00238 Complex * scratchbuf = &m_scratchBuf[0];
00239
00240 for ( u=0; u<m; ++u ) {
00241 k=u;
00242 for ( q1=0 ; q1<p ; ++q1 ) {
00243 scratchbuf[q1] = Fout[ k ];
00244 k += m;
00245 }
00246
00247 k=u;
00248 for ( q1=0 ; q1<p ; ++q1 ) {
00249 int twidx=0;
00250 Fout[ k ] = scratchbuf[0];
00251 for (q=1;q<p;++q ) {
00252 twidx += static_cast<int>(fstride) * k;
00253 if (twidx>=Norig) twidx-=Norig;
00254 t=scratchbuf[q] * twiddles[twidx];
00255 Fout[ k ] += t;
00256 }
00257 k += m;
00258 }
00259 }
00260 }
00261 };
00262
00263 template <typename _Scalar>
00264 struct kissfft_impl
00265 {
00266 typedef _Scalar Scalar;
00267 typedef std::complex<Scalar> Complex;
00268
00269 void clear()
00270 {
00271 m_plans.clear();
00272 m_realTwiddles.clear();
00273 }
00274
00275 inline
00276 void fwd( Complex * dst,const Complex *src,int nfft)
00277 {
00278 get_plan(nfft,false).work(0, dst, src, 1,1);
00279 }
00280
00281 inline
00282 void fwd2( Complex * dst,const Complex *src,int n0,int n1)
00283 {
00284 EIGEN_UNUSED_VARIABLE(dst);
00285 EIGEN_UNUSED_VARIABLE(src);
00286 EIGEN_UNUSED_VARIABLE(n0);
00287 EIGEN_UNUSED_VARIABLE(n1);
00288 }
00289
00290 inline
00291 void inv2( Complex * dst,const Complex *src,int n0,int n1)
00292 {
00293 EIGEN_UNUSED_VARIABLE(dst);
00294 EIGEN_UNUSED_VARIABLE(src);
00295 EIGEN_UNUSED_VARIABLE(n0);
00296 EIGEN_UNUSED_VARIABLE(n1);
00297 }
00298
00299
00300
00301
00302
00303 inline
00304 void fwd( Complex * dst,const Scalar * src,int nfft)
00305 {
00306 if ( nfft&3 ) {
00307
00308 m_tmpBuf1.resize(nfft);
00309 get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
00310 std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
00311 }else{
00312 int ncfft = nfft>>1;
00313 int ncfft2 = nfft>>2;
00314 Complex * rtw = real_twiddles(ncfft2);
00315
00316
00317 fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
00318 Complex dc = dst[0].real() + dst[0].imag();
00319 Complex nyquist = dst[0].real() - dst[0].imag();
00320 int k;
00321 for ( k=1;k <= ncfft2 ; ++k ) {
00322 Complex fpk = dst[k];
00323 Complex fpnk = conj(dst[ncfft-k]);
00324 Complex f1k = fpk + fpnk;
00325 Complex f2k = fpk - fpnk;
00326 Complex tw= f2k * rtw[k-1];
00327 dst[k] = (f1k + tw) * Scalar(.5);
00328 dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
00329 }
00330 dst[0] = dc;
00331 dst[ncfft] = nyquist;
00332 }
00333 }
00334
00335
00336 inline
00337 void inv(Complex * dst,const Complex *src,int nfft)
00338 {
00339 get_plan(nfft,true).work(0, dst, src, 1,1);
00340 }
00341
00342
00343 inline
00344 void inv( Scalar * dst,const Complex * src,int nfft)
00345 {
00346 if (nfft&3) {
00347 m_tmpBuf1.resize(nfft);
00348 m_tmpBuf2.resize(nfft);
00349 std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
00350 for (int k=1;k<(nfft>>1)+1;++k)
00351 m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
00352 inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
00353 for (int k=0;k<nfft;++k)
00354 dst[k] = m_tmpBuf2[k].real();
00355 }else{
00356
00357 int ncfft = nfft>>1;
00358 int ncfft2 = nfft>>2;
00359 Complex * rtw = real_twiddles(ncfft2);
00360 m_tmpBuf1.resize(ncfft);
00361 m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
00362 for (int k = 1; k <= ncfft / 2; ++k) {
00363 Complex fk = src[k];
00364 Complex fnkc = conj(src[ncfft-k]);
00365 Complex fek = fk + fnkc;
00366 Complex tmp = fk - fnkc;
00367 Complex fok = tmp * conj(rtw[k-1]);
00368 m_tmpBuf1[k] = fek + fok;
00369 m_tmpBuf1[ncfft-k] = conj(fek - fok);
00370 }
00371 get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
00372 }
00373 }
00374
00375 protected:
00376 typedef kiss_cpx_fft<Scalar> PlanData;
00377 typedef std::map<int,PlanData> PlanMap;
00378
00379 PlanMap m_plans;
00380 std::map<int, std::vector<Complex> > m_realTwiddles;
00381 std::vector<Complex> m_tmpBuf1;
00382 std::vector<Complex> m_tmpBuf2;
00383
00384 inline
00385 int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); }
00386
00387 inline
00388 PlanData & get_plan(int nfft, bool inverse)
00389 {
00390
00391 PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
00392 if ( pd.m_twiddles.size() == 0 ) {
00393 pd.make_twiddles(nfft,inverse);
00394 pd.factorize(nfft);
00395 }
00396 return pd;
00397 }
00398
00399 inline
00400 Complex * real_twiddles(int ncfft2)
00401 {
00402 std::vector<Complex> & twidref = m_realTwiddles[ncfft2];
00403 if ( (int)twidref.size() != ncfft2 ) {
00404 twidref.resize(ncfft2);
00405 int ncfft= ncfft2<<1;
00406 Scalar pi = acos( Scalar(-1) );
00407 for (int k=1;k<=ncfft2;++k)
00408 twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) );
00409 }
00410 return &twidref[0];
00411 }
00412 };
00413
00414 }
00415
00416 }
00417
00418