00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
00011 #define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
00012
00013 namespace Eigen {
00014
00015 namespace internal {
00016
00017
00018
00019
00020
00021
00022
00023 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version=Specialized>
00024 struct selfadjoint_matrix_vector_product;
00025
00026 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
00027 struct selfadjoint_matrix_vector_product
00028
00029 {
00030 static EIGEN_DONT_INLINE void run(
00031 Index size,
00032 const Scalar* lhs, Index lhsStride,
00033 const Scalar* _rhs, Index rhsIncr,
00034 Scalar* res,
00035 Scalar alpha)
00036 {
00037 typedef typename packet_traits<Scalar>::type Packet;
00038 typedef typename NumTraits<Scalar>::Real RealScalar;
00039 const Index PacketSize = sizeof(Packet)/sizeof(Scalar);
00040
00041 enum {
00042 IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
00043 IsLower = UpLo == Lower ? 1 : 0,
00044 FirstTriangular = IsRowMajor == IsLower
00045 };
00046
00047 conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> cj0;
00048 conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
00049 conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex, ConjugateRhs> cjd;
00050
00051 conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> pcj0;
00052 conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;
00053
00054 Scalar cjAlpha = ConjugateRhs ? conj(alpha) : alpha;
00055
00056
00057
00058
00059 ei_declare_aligned_stack_constructed_variable(Scalar,rhs,size,rhsIncr==1 ? const_cast<Scalar*>(_rhs) : 0);
00060 if (rhsIncr!=1)
00061 {
00062 const Scalar* it = _rhs;
00063 for (Index i=0; i<size; ++i, it+=rhsIncr)
00064 rhs[i] = *it;
00065 }
00066
00067 Index bound = (std::max)(Index(0),size-8) & 0xfffffffe;
00068 if (FirstTriangular)
00069 bound = size - bound;
00070
00071 for (Index j=FirstTriangular ? bound : 0;
00072 j<(FirstTriangular ? size : bound);j+=2)
00073 {
00074 register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
00075 register const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
00076
00077 Scalar t0 = cjAlpha * rhs[j];
00078 Packet ptmp0 = pset1<Packet>(t0);
00079 Scalar t1 = cjAlpha * rhs[j+1];
00080 Packet ptmp1 = pset1<Packet>(t1);
00081
00082 Scalar t2(0);
00083 Packet ptmp2 = pset1<Packet>(t2);
00084 Scalar t3(0);
00085 Packet ptmp3 = pset1<Packet>(t3);
00086
00087 size_t starti = FirstTriangular ? 0 : j+2;
00088 size_t endi = FirstTriangular ? j : size;
00089 size_t alignedStart = (starti) + internal::first_aligned(&res[starti], endi-starti);
00090 size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
00091
00092
00093 res[j] += cjd.pmul(internal::real(A0[j]), t0);
00094 res[j+1] += cjd.pmul(internal::real(A1[j+1]), t1);
00095 if(FirstTriangular)
00096 {
00097 res[j] += cj0.pmul(A1[j], t1);
00098 t3 += cj1.pmul(A1[j], rhs[j]);
00099 }
00100 else
00101 {
00102 res[j+1] += cj0.pmul(A0[j+1],t0);
00103 t2 += cj1.pmul(A0[j+1], rhs[j+1]);
00104 }
00105
00106 for (size_t i=starti; i<alignedStart; ++i)
00107 {
00108 res[i] += t0 * A0[i] + t1 * A1[i];
00109 t2 += conj(A0[i]) * rhs[i];
00110 t3 += conj(A1[i]) * rhs[i];
00111 }
00112
00113
00114 const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart;
00115 const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart;
00116 const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
00117 Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
00118 for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
00119 {
00120 Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
00121 Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
00122 Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize;
00123 Packet Xi = pload <Packet>(resIt);
00124
00125 Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
00126 ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2);
00127 ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3);
00128 pstore(resIt,Xi); resIt += PacketSize;
00129 }
00130 for (size_t i=alignedEnd; i<endi; i++)
00131 {
00132 res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
00133 t2 += cj1.pmul(A0[i], rhs[i]);
00134 t3 += cj1.pmul(A1[i], rhs[i]);
00135 }
00136
00137 res[j] += alpha * (t2 + predux(ptmp2));
00138 res[j+1] += alpha * (t3 + predux(ptmp3));
00139 }
00140 for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
00141 {
00142 register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
00143
00144 Scalar t1 = cjAlpha * rhs[j];
00145 Scalar t2(0);
00146
00147 res[j] += cjd.pmul(internal::real(A0[j]), t1);
00148 for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
00149 {
00150 res[i] += cj0.pmul(A0[i], t1);
00151 t2 += cj1.pmul(A0[i], rhs[i]);
00152 }
00153 res[j] += alpha * t2;
00154 }
00155 }
00156 };
00157
00158 }
00159
00160
00161
00162
00163
00164 namespace internal {
00165 template<typename Lhs, int LhsMode, typename Rhs>
00166 struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
00167 : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
00168 {};
00169 }
00170
00171 template<typename Lhs, int LhsMode, typename Rhs>
00172 struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
00173 : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
00174 {
00175 EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
00176
00177 enum {
00178 LhsUpLo = LhsMode&(Upper|Lower)
00179 };
00180
00181 SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
00182
00183 template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
00184 {
00185 typedef typename Dest::Scalar ResScalar;
00186 typedef typename Base::RhsScalar RhsScalar;
00187 typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
00188
00189 eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());
00190
00191 typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
00192 typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
00193
00194 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
00195 * RhsBlasTraits::extractScalarFactor(m_rhs);
00196
00197 enum {
00198 EvalToDest = (Dest::InnerStrideAtCompileTime==1),
00199 UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
00200 };
00201
00202 internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
00203 internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;
00204
00205 ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
00206 EvalToDest ? dest.data() : static_dest.data());
00207
00208 ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
00209 UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
00210
00211 if(!EvalToDest)
00212 {
00213 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00214 int size = dest.size();
00215 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00216 #endif
00217 MappedDest(actualDestPtr, dest.size()) = dest;
00218 }
00219
00220 if(!UseRhs)
00221 {
00222 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00223 int size = rhs.size();
00224 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00225 #endif
00226 Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
00227 }
00228
00229
00230 internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
00231 (
00232 lhs.rows(),
00233 &lhs.coeffRef(0,0), lhs.outerStride(),
00234 actualRhsPtr, 1,
00235 actualDestPtr,
00236 actualAlpha
00237 );
00238
00239 if(!EvalToDest)
00240 dest = MappedDest(actualDestPtr, dest.size());
00241 }
00242 };
00243
00244 namespace internal {
00245 template<typename Lhs, typename Rhs, int RhsMode>
00246 struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
00247 : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
00248 {};
00249 }
00250
00251 template<typename Lhs, typename Rhs, int RhsMode>
00252 struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
00253 : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
00254 {
00255 EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
00256
00257 enum {
00258 RhsUpLo = RhsMode&(Upper|Lower)
00259 };
00260
00261 SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
00262
00263 template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
00264 {
00265
00266 Transpose<Dest> destT(dest);
00267 SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
00268 Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
00269 }
00270 };
00271
00272 }
00273
00274 #endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H