00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H
00011 #define EIGEN_SELFADJOINT_MATRIX_MATRIX_H
00012
00013 namespace Eigen {
00014
00015 namespace internal {
00016
00017
00018 template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder>
00019 struct symm_pack_lhs
00020 {
00021 template<int BlockRows> inline
00022 void pack(Scalar* blockA, const const_blas_data_mapper<Scalar,Index,StorageOrder>& lhs, Index cols, Index i, Index& count)
00023 {
00024
00025 for(Index k=0; k<i; k++)
00026 for(Index w=0; w<BlockRows; w++)
00027 blockA[count++] = lhs(i+w,k);
00028
00029 Index h = 0;
00030 for(Index k=i; k<i+BlockRows; k++)
00031 {
00032 for(Index w=0; w<h; w++)
00033 blockA[count++] = conj(lhs(k, i+w));
00034
00035 blockA[count++] = real(lhs(k,k));
00036
00037 for(Index w=h+1; w<BlockRows; w++)
00038 blockA[count++] = lhs(i+w, k);
00039 ++h;
00040 }
00041
00042 for(Index k=i+BlockRows; k<cols; k++)
00043 for(Index w=0; w<BlockRows; w++)
00044 blockA[count++] = conj(lhs(k, i+w));
00045 }
00046 void operator()(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows)
00047 {
00048 const_blas_data_mapper<Scalar,Index,StorageOrder> lhs(_lhs,lhsStride);
00049 Index count = 0;
00050 Index peeled_mc = (rows/Pack1)*Pack1;
00051 for(Index i=0; i<peeled_mc; i+=Pack1)
00052 {
00053 pack<Pack1>(blockA, lhs, cols, i, count);
00054 }
00055
00056 if(rows-peeled_mc>=Pack2)
00057 {
00058 pack<Pack2>(blockA, lhs, cols, peeled_mc, count);
00059 peeled_mc += Pack2;
00060 }
00061
00062
00063 for(Index i=peeled_mc; i<rows; i++)
00064 {
00065 for(Index k=0; k<i; k++)
00066 blockA[count++] = lhs(i, k);
00067
00068 blockA[count++] = real(lhs(i, i));
00069
00070 for(Index k=i+1; k<cols; k++)
00071 blockA[count++] = conj(lhs(k, i));
00072 }
00073 }
00074 };
00075
00076 template<typename Scalar, typename Index, int nr, int StorageOrder>
00077 struct symm_pack_rhs
00078 {
00079 enum { PacketSize = packet_traits<Scalar>::size };
00080 void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
00081 {
00082 Index end_k = k2 + rows;
00083 Index count = 0;
00084 const_blas_data_mapper<Scalar,Index,StorageOrder> rhs(_rhs,rhsStride);
00085 Index packet_cols = (cols/nr)*nr;
00086
00087
00088 for(Index j2=0; j2<k2; j2+=nr)
00089 {
00090 for(Index k=k2; k<end_k; k++)
00091 {
00092 blockB[count+0] = rhs(k,j2+0);
00093 blockB[count+1] = rhs(k,j2+1);
00094 if (nr==4)
00095 {
00096 blockB[count+2] = rhs(k,j2+2);
00097 blockB[count+3] = rhs(k,j2+3);
00098 }
00099 count += nr;
00100 }
00101 }
00102
00103
00104 for(Index j2=k2; j2<(std::min)(k2+rows,packet_cols); j2+=nr)
00105 {
00106
00107
00108 for(Index k=k2; k<j2; k++)
00109 {
00110 blockB[count+0] = conj(rhs(j2+0,k));
00111 blockB[count+1] = conj(rhs(j2+1,k));
00112 if (nr==4)
00113 {
00114 blockB[count+2] = conj(rhs(j2+2,k));
00115 blockB[count+3] = conj(rhs(j2+3,k));
00116 }
00117 count += nr;
00118 }
00119
00120 Index h = 0;
00121 for(Index k=j2; k<j2+nr; k++)
00122 {
00123
00124 for (Index w=0 ; w<h; ++w)
00125 blockB[count+w] = rhs(k,j2+w);
00126
00127 blockB[count+h] = real(rhs(k,k));
00128
00129
00130 for (Index w=h+1 ; w<nr; ++w)
00131 blockB[count+w] = conj(rhs(j2+w,k));
00132 count += nr;
00133 ++h;
00134 }
00135
00136 for(Index k=j2+nr; k<end_k; k++)
00137 {
00138 blockB[count+0] = rhs(k,j2+0);
00139 blockB[count+1] = rhs(k,j2+1);
00140 if (nr==4)
00141 {
00142 blockB[count+2] = rhs(k,j2+2);
00143 blockB[count+3] = rhs(k,j2+3);
00144 }
00145 count += nr;
00146 }
00147 }
00148
00149
00150 for(Index j2=k2+rows; j2<packet_cols; j2+=nr)
00151 {
00152 for(Index k=k2; k<end_k; k++)
00153 {
00154 blockB[count+0] = conj(rhs(j2+0,k));
00155 blockB[count+1] = conj(rhs(j2+1,k));
00156 if (nr==4)
00157 {
00158 blockB[count+2] = conj(rhs(j2+2,k));
00159 blockB[count+3] = conj(rhs(j2+3,k));
00160 }
00161 count += nr;
00162 }
00163 }
00164
00165
00166 for(Index j2=packet_cols; j2<cols; ++j2)
00167 {
00168
00169 Index half = (std::min)(end_k,j2);
00170 for(Index k=k2; k<half; k++)
00171 {
00172 blockB[count] = conj(rhs(j2,k));
00173 count += 1;
00174 }
00175
00176 if(half==j2 && half<k2+rows)
00177 {
00178 blockB[count] = real(rhs(j2,j2));
00179 count += 1;
00180 }
00181 else
00182 half--;
00183
00184
00185 for(Index k=half+1; k<k2+rows; k++)
00186 {
00187 blockB[count] = rhs(k,j2);
00188 count += 1;
00189 }
00190 }
00191 }
00192 };
00193
00194
00195
00196
00197 template <typename Scalar, typename Index,
00198 int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
00199 int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs,
00200 int ResStorageOrder>
00201 struct product_selfadjoint_matrix;
00202
00203 template <typename Scalar, typename Index,
00204 int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
00205 int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs>
00206 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,LhsSelfAdjoint,ConjugateLhs, RhsStorageOrder,RhsSelfAdjoint,ConjugateRhs,RowMajor>
00207 {
00208
00209 static EIGEN_STRONG_INLINE void run(
00210 Index rows, Index cols,
00211 const Scalar* lhs, Index lhsStride,
00212 const Scalar* rhs, Index rhsStride,
00213 Scalar* res, Index resStride,
00214 Scalar alpha)
00215 {
00216 product_selfadjoint_matrix<Scalar, Index,
00217 EIGEN_LOGICAL_XOR(RhsSelfAdjoint,RhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
00218 RhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs),
00219 EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
00220 LhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs),
00221 ColMajor>
00222 ::run(cols, rows, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha);
00223 }
00224 };
00225
00226 template <typename Scalar, typename Index,
00227 int LhsStorageOrder, bool ConjugateLhs,
00228 int RhsStorageOrder, bool ConjugateRhs>
00229 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>
00230 {
00231
00232 static EIGEN_DONT_INLINE void run(
00233 Index rows, Index cols,
00234 const Scalar* _lhs, Index lhsStride,
00235 const Scalar* _rhs, Index rhsStride,
00236 Scalar* res, Index resStride,
00237 Scalar alpha)
00238 {
00239 Index size = rows;
00240
00241 const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
00242 const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
00243
00244 typedef gebp_traits<Scalar,Scalar> Traits;
00245
00246 Index kc = size;
00247 Index mc = rows;
00248 Index nc = cols;
00249 computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
00250
00251 kc = (std::min)(kc,mc);
00252
00253 std::size_t sizeW = kc*Traits::WorkSpaceFactor;
00254 std::size_t sizeB = sizeW + kc*cols;
00255 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
00256 ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
00257 Scalar* blockB = allocatedBlockB + sizeW;
00258
00259 gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
00260 symm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
00261 gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
00262 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder==RowMajor?ColMajor:RowMajor, true> pack_lhs_transposed;
00263
00264 for(Index k2=0; k2<size; k2+=kc)
00265 {
00266 const Index actual_kc = (std::min)(k2+kc,size)-k2;
00267
00268
00269
00270
00271 pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);
00272
00273
00274
00275
00276
00277 for(Index i2=0; i2<k2; i2+=mc)
00278 {
00279 const Index actual_mc = (std::min)(i2+mc,k2)-i2;
00280
00281 pack_lhs_transposed(blockA, &lhs(k2, i2), lhsStride, actual_kc, actual_mc);
00282
00283 gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
00284 }
00285
00286 {
00287 const Index actual_mc = (std::min)(k2+kc,size)-k2;
00288
00289 pack_lhs(blockA, &lhs(k2,k2), lhsStride, actual_kc, actual_mc);
00290
00291 gebp_kernel(res+k2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
00292 }
00293
00294 for(Index i2=k2+kc; i2<size; i2+=mc)
00295 {
00296 const Index actual_mc = (std::min)(i2+mc,size)-i2;
00297 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder,false>()
00298 (blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
00299
00300 gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
00301 }
00302 }
00303 }
00304 };
00305
00306
00307 template <typename Scalar, typename Index,
00308 int LhsStorageOrder, bool ConjugateLhs,
00309 int RhsStorageOrder, bool ConjugateRhs>
00310 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>
00311 {
00312
00313 static EIGEN_DONT_INLINE void run(
00314 Index rows, Index cols,
00315 const Scalar* _lhs, Index lhsStride,
00316 const Scalar* _rhs, Index rhsStride,
00317 Scalar* res, Index resStride,
00318 Scalar alpha)
00319 {
00320 Index size = cols;
00321
00322 const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
00323
00324 typedef gebp_traits<Scalar,Scalar> Traits;
00325
00326 Index kc = size;
00327 Index mc = rows;
00328 Index nc = cols;
00329 computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
00330 std::size_t sizeW = kc*Traits::WorkSpaceFactor;
00331 std::size_t sizeB = sizeW + kc*cols;
00332 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
00333 ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
00334 Scalar* blockB = allocatedBlockB + sizeW;
00335
00336 gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
00337 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
00338 symm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
00339
00340 for(Index k2=0; k2<size; k2+=kc)
00341 {
00342 const Index actual_kc = (std::min)(k2+kc,size)-k2;
00343
00344 pack_rhs(blockB, _rhs, rhsStride, actual_kc, cols, k2);
00345
00346
00347 for(Index i2=0; i2<rows; i2+=mc)
00348 {
00349 const Index actual_mc = (std::min)(i2+mc,rows)-i2;
00350 pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
00351
00352 gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
00353 }
00354 }
00355 }
00356 };
00357
00358 }
00359
00360
00361
00362
00363
00364 namespace internal {
00365 template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
00366 struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> >
00367 : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs> >
00368 {};
00369 }
00370
00371 template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
00372 struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>
00373 : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs >
00374 {
00375 EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
00376
00377 SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
00378
00379 enum {
00380 LhsIsUpper = (LhsMode&(Upper|Lower))==Upper,
00381 LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
00382 RhsIsUpper = (RhsMode&(Upper|Lower))==Upper,
00383 RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
00384 };
00385
00386 template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
00387 {
00388 eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
00389
00390 typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
00391 typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
00392
00393 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
00394 * RhsBlasTraits::extractScalarFactor(m_rhs);
00395
00396 internal::product_selfadjoint_matrix<Scalar, Index,
00397 EIGEN_LOGICAL_XOR(LhsIsUpper,
00398 internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
00399 NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)),
00400 EIGEN_LOGICAL_XOR(RhsIsUpper,
00401 internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
00402 NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
00403 internal::traits<Dest>::Flags&RowMajorBit ? RowMajor : ColMajor>
00404 ::run(
00405 lhs.rows(), rhs.cols(),
00406 &lhs.coeffRef(0,0), lhs.outerStride(),
00407 &rhs.coeffRef(0,0), rhs.outerStride(),
00408 &dst.coeffRef(0,0), dst.outerStride(),
00409 actualAlpha
00410 );
00411 }
00412 };
00413
00414 }
00415
00416 #endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H