00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_MATRIX_FUNCTION
00011 #define EIGEN_MATRIX_FUNCTION
00012
00013 #include "StemFunction.h"
00014 #include "MatrixFunctionAtomic.h"
00015
00016
00017 namespace Eigen {
00018
00034 template <typename MatrixType,
00035 typename AtomicType,
00036 int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
00037 class MatrixFunction
00038 {
00039 public:
00040
00049 MatrixFunction(const MatrixType& A, AtomicType& atomic);
00050
00059 template <typename ResultType>
00060 void compute(ResultType &result);
00061 };
00062
00063
00067 template <typename MatrixType, typename AtomicType>
00068 class MatrixFunction<MatrixType, AtomicType, 0>
00069 {
00070 private:
00071
00072 typedef internal::traits<MatrixType> Traits;
00073 typedef typename Traits::Scalar Scalar;
00074 static const int Rows = Traits::RowsAtCompileTime;
00075 static const int Cols = Traits::ColsAtCompileTime;
00076 static const int Options = MatrixType::Options;
00077 static const int MaxRows = Traits::MaxRowsAtCompileTime;
00078 static const int MaxCols = Traits::MaxColsAtCompileTime;
00079
00080 typedef std::complex<Scalar> ComplexScalar;
00081 typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
00082
00083 public:
00084
00090 MatrixFunction(const MatrixType& A, AtomicType& atomic) : m_A(A), m_atomic(atomic) { }
00091
00101 template <typename ResultType>
00102 void compute(ResultType& result)
00103 {
00104 ComplexMatrix CA = m_A.template cast<ComplexScalar>();
00105 ComplexMatrix Cresult;
00106 MatrixFunction<ComplexMatrix, AtomicType> mf(CA, m_atomic);
00107 mf.compute(Cresult);
00108 result = Cresult.real();
00109 }
00110
00111 private:
00112 typename internal::nested<MatrixType>::type m_A;
00113 AtomicType& m_atomic;
00115 MatrixFunction& operator=(const MatrixFunction&);
00116 };
00117
00118
00122 template <typename MatrixType, typename AtomicType>
00123 class MatrixFunction<MatrixType, AtomicType, 1>
00124 {
00125 private:
00126
00127 typedef internal::traits<MatrixType> Traits;
00128 typedef typename MatrixType::Scalar Scalar;
00129 typedef typename MatrixType::Index Index;
00130 static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
00131 static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
00132 static const int Options = MatrixType::Options;
00133 typedef typename NumTraits<Scalar>::Real RealScalar;
00134 typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
00135 typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType;
00136 typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType;
00137 typedef std::list<Scalar> Cluster;
00138 typedef std::list<Cluster> ListOfClusters;
00139 typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
00140
00141 public:
00142
00143 MatrixFunction(const MatrixType& A, AtomicType& atomic);
00144 template <typename ResultType> void compute(ResultType& result);
00145
00146 private:
00147
00148 void computeSchurDecomposition();
00149 void partitionEigenvalues();
00150 typename ListOfClusters::iterator findCluster(Scalar key);
00151 void computeClusterSize();
00152 void computeBlockStart();
00153 void constructPermutation();
00154 void permuteSchur();
00155 void swapEntriesInSchur(Index index);
00156 void computeBlockAtomic();
00157 Block<MatrixType> block(MatrixType& A, Index i, Index j);
00158 void computeOffDiagonal();
00159 DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C);
00160
00161 typename internal::nested<MatrixType>::type m_A;
00162 AtomicType& m_atomic;
00163 MatrixType m_T;
00164 MatrixType m_U;
00165 MatrixType m_fT;
00166 ListOfClusters m_clusters;
00167 DynamicIntVectorType m_eivalToCluster;
00168 DynamicIntVectorType m_clusterSize;
00169 DynamicIntVectorType m_blockStart;
00170 IntVectorType m_permutation;
00178 static const RealScalar separation() { return static_cast<RealScalar>(0.1); }
00179
00180 MatrixFunction& operator=(const MatrixFunction&);
00181 };
00182
00188 template <typename MatrixType, typename AtomicType>
00189 MatrixFunction<MatrixType,AtomicType,1>::MatrixFunction(const MatrixType& A, AtomicType& atomic)
00190 : m_A(A), m_atomic(atomic)
00191 {
00192
00193 }
00194
00200 template <typename MatrixType, typename AtomicType>
00201 template <typename ResultType>
00202 void MatrixFunction<MatrixType,AtomicType,1>::compute(ResultType& result)
00203 {
00204 computeSchurDecomposition();
00205 partitionEigenvalues();
00206 computeClusterSize();
00207 computeBlockStart();
00208 constructPermutation();
00209 permuteSchur();
00210 computeBlockAtomic();
00211 computeOffDiagonal();
00212 result = m_U * m_fT * m_U.adjoint();
00213 }
00214
00216 template <typename MatrixType, typename AtomicType>
00217 void MatrixFunction<MatrixType,AtomicType,1>::computeSchurDecomposition()
00218 {
00219 const ComplexSchur<MatrixType> schurOfA(m_A);
00220 m_T = schurOfA.matrixT();
00221 m_U = schurOfA.matrixU();
00222 }
00223
00235 template <typename MatrixType, typename AtomicType>
00236 void MatrixFunction<MatrixType,AtomicType,1>::partitionEigenvalues()
00237 {
00238 const Index rows = m_T.rows();
00239 VectorType diag = m_T.diagonal();
00240
00241 for (Index i=0; i<rows; ++i) {
00242
00243 typename ListOfClusters::iterator qi = findCluster(diag(i));
00244 if (qi == m_clusters.end()) {
00245 Cluster l;
00246 l.push_back(diag(i));
00247 m_clusters.push_back(l);
00248 qi = m_clusters.end();
00249 --qi;
00250 }
00251
00252
00253 for (Index j=i+1; j<rows; ++j) {
00254 if (internal::abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) {
00255 typename ListOfClusters::iterator qj = findCluster(diag(j));
00256 if (qj == m_clusters.end()) {
00257 qi->push_back(diag(j));
00258 } else {
00259 qi->insert(qi->end(), qj->begin(), qj->end());
00260 m_clusters.erase(qj);
00261 }
00262 }
00263 }
00264 }
00265 }
00266
00272 template <typename MatrixType, typename AtomicType>
00273 typename MatrixFunction<MatrixType,AtomicType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,AtomicType,1>::findCluster(Scalar key)
00274 {
00275 typename Cluster::iterator j;
00276 for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) {
00277 j = std::find(i->begin(), i->end(), key);
00278 if (j != i->end())
00279 return i;
00280 }
00281 return m_clusters.end();
00282 }
00283
00285 template <typename MatrixType, typename AtomicType>
00286 void MatrixFunction<MatrixType,AtomicType,1>::computeClusterSize()
00287 {
00288 const Index rows = m_T.rows();
00289 VectorType diag = m_T.diagonal();
00290 const Index numClusters = static_cast<Index>(m_clusters.size());
00291
00292 m_clusterSize.setZero(numClusters);
00293 m_eivalToCluster.resize(rows);
00294 Index clusterIndex = 0;
00295 for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) {
00296 for (Index i = 0; i < diag.rows(); ++i) {
00297 if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) {
00298 ++m_clusterSize[clusterIndex];
00299 m_eivalToCluster[i] = clusterIndex;
00300 }
00301 }
00302 ++clusterIndex;
00303 }
00304 }
00305
00307 template <typename MatrixType, typename AtomicType>
00308 void MatrixFunction<MatrixType,AtomicType,1>::computeBlockStart()
00309 {
00310 m_blockStart.resize(m_clusterSize.rows());
00311 m_blockStart(0) = 0;
00312 for (Index i = 1; i < m_clusterSize.rows(); i++) {
00313 m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1);
00314 }
00315 }
00316
00318 template <typename MatrixType, typename AtomicType>
00319 void MatrixFunction<MatrixType,AtomicType,1>::constructPermutation()
00320 {
00321 DynamicIntVectorType indexNextEntry = m_blockStart;
00322 m_permutation.resize(m_T.rows());
00323 for (Index i = 0; i < m_T.rows(); i++) {
00324 Index cluster = m_eivalToCluster[i];
00325 m_permutation[i] = indexNextEntry[cluster];
00326 ++indexNextEntry[cluster];
00327 }
00328 }
00329
00331 template <typename MatrixType, typename AtomicType>
00332 void MatrixFunction<MatrixType,AtomicType,1>::permuteSchur()
00333 {
00334 IntVectorType p = m_permutation;
00335 for (Index i = 0; i < p.rows() - 1; i++) {
00336 Index j;
00337 for (j = i; j < p.rows(); j++) {
00338 if (p(j) == i) break;
00339 }
00340 eigen_assert(p(j) == i);
00341 for (Index k = j-1; k >= i; k--) {
00342 swapEntriesInSchur(k);
00343 std::swap(p.coeffRef(k), p.coeffRef(k+1));
00344 }
00345 }
00346 }
00347
00349 template <typename MatrixType, typename AtomicType>
00350 void MatrixFunction<MatrixType,AtomicType,1>::swapEntriesInSchur(Index index)
00351 {
00352 JacobiRotation<Scalar> rotation;
00353 rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
00354 m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
00355 m_T.applyOnTheRight(index, index+1, rotation);
00356 m_U.applyOnTheRight(index, index+1, rotation);
00357 }
00358
00365 template <typename MatrixType, typename AtomicType>
00366 void MatrixFunction<MatrixType,AtomicType,1>::computeBlockAtomic()
00367 {
00368 m_fT.resize(m_T.rows(), m_T.cols());
00369 m_fT.setZero();
00370 for (Index i = 0; i < m_clusterSize.rows(); ++i) {
00371 block(m_fT, i, i) = m_atomic.compute(block(m_T, i, i));
00372 }
00373 }
00374
00376 template <typename MatrixType, typename AtomicType>
00377 Block<MatrixType> MatrixFunction<MatrixType,AtomicType,1>::block(MatrixType& A, Index i, Index j)
00378 {
00379 return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j));
00380 }
00381
00389 template <typename MatrixType, typename AtomicType>
00390 void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal()
00391 {
00392 for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) {
00393 for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) {
00394
00395 DynMatrixType A = block(m_T, blockIndex, blockIndex);
00396 DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex);
00397 DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex);
00398 C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex);
00399 for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
00400 C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex);
00401 C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex);
00402 }
00403 block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C);
00404 }
00405 }
00406 }
00407
00431 template <typename MatrixType, typename AtomicType>
00432 typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<MatrixType,AtomicType,1>::solveTriangularSylvester(
00433 const DynMatrixType& A,
00434 const DynMatrixType& B,
00435 const DynMatrixType& C)
00436 {
00437 eigen_assert(A.rows() == A.cols());
00438 eigen_assert(A.isUpperTriangular());
00439 eigen_assert(B.rows() == B.cols());
00440 eigen_assert(B.isUpperTriangular());
00441 eigen_assert(C.rows() == A.rows());
00442 eigen_assert(C.cols() == B.rows());
00443
00444 Index m = A.rows();
00445 Index n = B.rows();
00446 DynMatrixType X(m, n);
00447
00448 for (Index i = m - 1; i >= 0; --i) {
00449 for (Index j = 0; j < n; ++j) {
00450
00451
00452 Scalar AX;
00453 if (i == m - 1) {
00454 AX = 0;
00455 } else {
00456 Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
00457 AX = AXmatrix(0,0);
00458 }
00459
00460
00461 Scalar XB;
00462 if (j == 0) {
00463 XB = 0;
00464 } else {
00465 Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
00466 XB = XBmatrix(0,0);
00467 }
00468
00469 X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
00470 }
00471 }
00472 return X;
00473 }
00474
00487 template<typename Derived> class MatrixFunctionReturnValue
00488 : public ReturnByValue<MatrixFunctionReturnValue<Derived> >
00489 {
00490 public:
00491
00492 typedef typename Derived::Scalar Scalar;
00493 typedef typename Derived::Index Index;
00494 typedef typename internal::stem_function<Scalar>::type StemFunction;
00495
00502 MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
00503
00509 template <typename ResultType>
00510 inline void evalTo(ResultType& result) const
00511 {
00512 typedef typename Derived::PlainObject PlainObject;
00513 typedef internal::traits<PlainObject> Traits;
00514 static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
00515 static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
00516 static const int Options = PlainObject::Options;
00517 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
00518 typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
00519 typedef MatrixFunctionAtomic<DynMatrixType> AtomicType;
00520 AtomicType atomic(m_f);
00521
00522 const PlainObject Aevaluated = m_A.eval();
00523 MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
00524 mf.compute(result);
00525 }
00526
00527 Index rows() const { return m_A.rows(); }
00528 Index cols() const { return m_A.cols(); }
00529
00530 private:
00531 typename internal::nested<Derived>::type m_A;
00532 StemFunction *m_f;
00533
00534 MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&);
00535 };
00536
00537 namespace internal {
00538 template<typename Derived>
00539 struct traits<MatrixFunctionReturnValue<Derived> >
00540 {
00541 typedef typename Derived::PlainObject ReturnType;
00542 };
00543 }
00544
00545
00546
00547
00548
00549 template <typename Derived>
00550 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
00551 {
00552 eigen_assert(rows() == cols());
00553 return MatrixFunctionReturnValue<Derived>(derived(), f);
00554 }
00555
00556 template <typename Derived>
00557 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
00558 {
00559 eigen_assert(rows() == cols());
00560 typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
00561 return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
00562 }
00563
00564 template <typename Derived>
00565 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
00566 {
00567 eigen_assert(rows() == cols());
00568 typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
00569 return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
00570 }
00571
00572 template <typename Derived>
00573 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
00574 {
00575 eigen_assert(rows() == cols());
00576 typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
00577 return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
00578 }
00579
00580 template <typename Derived>
00581 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
00582 {
00583 eigen_assert(rows() == cols());
00584 typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
00585 return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh);
00586 }
00587
00588 }
00589
00590 #endif // EIGEN_MATRIX_FUNCTION