00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #ifndef EIGEN_MATRIX_EXPONENTIAL
00012 #define EIGEN_MATRIX_EXPONENTIAL
00013
00014 #include "StemFunction.h"
00015
00016 namespace Eigen {
00017
00018 #if defined(_MSC_VER) || defined(__FreeBSD__)
00019 template <typename Scalar> Scalar log2(Scalar v) { using std::log; return log(v)/log(Scalar(2)); }
00020 #endif
00021
00022
00028 template <typename MatrixType>
00029 class MatrixExponential {
00030
00031 public:
00032
00040 MatrixExponential(const MatrixType &M);
00041
00046 template <typename ResultType>
00047 void compute(ResultType &result);
00048
00049 private:
00050
00051
00052 MatrixExponential(const MatrixExponential&);
00053 MatrixExponential& operator=(const MatrixExponential&);
00054
00062 void pade3(const MatrixType &A);
00063
00071 void pade5(const MatrixType &A);
00072
00080 void pade7(const MatrixType &A);
00081
00089 void pade9(const MatrixType &A);
00090
00098 void pade13(const MatrixType &A);
00099
00109 void pade17(const MatrixType &A);
00110
00124 void computeUV(double);
00125
00130 void computeUV(float);
00131
00136 void computeUV(long double);
00137
00138 typedef typename internal::traits<MatrixType>::Scalar Scalar;
00139 typedef typename NumTraits<Scalar>::Real RealScalar;
00140 typedef typename std::complex<RealScalar> ComplexScalar;
00141
00143 typename internal::nested<MatrixType>::type m_M;
00144
00146 MatrixType m_U;
00147
00149 MatrixType m_V;
00150
00152 MatrixType m_tmp1;
00153
00155 MatrixType m_tmp2;
00156
00158 MatrixType m_Id;
00159
00161 int m_squarings;
00162
00164 RealScalar m_l1norm;
00165 };
00166
00167 template <typename MatrixType>
00168 MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
00169 m_M(M),
00170 m_U(M.rows(),M.cols()),
00171 m_V(M.rows(),M.cols()),
00172 m_tmp1(M.rows(),M.cols()),
00173 m_tmp2(M.rows(),M.cols()),
00174 m_Id(MatrixType::Identity(M.rows(), M.cols())),
00175 m_squarings(0),
00176 m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff())
00177 {
00178
00179 }
00180
00181 template <typename MatrixType>
00182 template <typename ResultType>
00183 void MatrixExponential<MatrixType>::compute(ResultType &result)
00184 {
00185 #if LDBL_MANT_DIG > 112 // rarely happens
00186 if(sizeof(RealScalar) > 14) {
00187 result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp);
00188 return;
00189 }
00190 #endif
00191 computeUV(RealScalar());
00192 m_tmp1 = m_U + m_V;
00193 m_tmp2 = -m_U + m_V;
00194 result = m_tmp2.partialPivLu().solve(m_tmp1);
00195 for (int i=0; i<m_squarings; i++)
00196 result *= result;
00197 }
00198
00199 template <typename MatrixType>
00200 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
00201 {
00202 const RealScalar b[] = {120., 60., 12., 1.};
00203 m_tmp1.noalias() = A * A;
00204 m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
00205 m_U.noalias() = A * m_tmp2;
00206 m_V = b[2]*m_tmp1 + b[0]*m_Id;
00207 }
00208
00209 template <typename MatrixType>
00210 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
00211 {
00212 const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.};
00213 MatrixType A2 = A * A;
00214 m_tmp1.noalias() = A2 * A2;
00215 m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
00216 m_U.noalias() = A * m_tmp2;
00217 m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
00218 }
00219
00220 template <typename MatrixType>
00221 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
00222 {
00223 const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
00224 MatrixType A2 = A * A;
00225 MatrixType A4 = A2 * A2;
00226 m_tmp1.noalias() = A4 * A2;
00227 m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00228 m_U.noalias() = A * m_tmp2;
00229 m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00230 }
00231
00232 template <typename MatrixType>
00233 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
00234 {
00235 const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
00236 2162160., 110880., 3960., 90., 1.};
00237 MatrixType A2 = A * A;
00238 MatrixType A4 = A2 * A2;
00239 MatrixType A6 = A4 * A2;
00240 m_tmp1.noalias() = A6 * A2;
00241 m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00242 m_U.noalias() = A * m_tmp2;
00243 m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00244 }
00245
00246 template <typename MatrixType>
00247 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
00248 {
00249 const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
00250 1187353796428800., 129060195264000., 10559470521600., 670442572800.,
00251 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
00252 MatrixType A2 = A * A;
00253 MatrixType A4 = A2 * A2;
00254 m_tmp1.noalias() = A4 * A2;
00255 m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2;
00256 m_tmp2.noalias() = m_tmp1 * m_V;
00257 m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00258 m_U.noalias() = A * m_tmp2;
00259 m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
00260 m_V.noalias() = m_tmp1 * m_tmp2;
00261 m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00262 }
00263
00264 #if LDBL_MANT_DIG > 64
00265 template <typename MatrixType>
00266 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A)
00267 {
00268 const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
00269 100610229646136770560000.L, 15720348382208870400000.L,
00270 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
00271 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
00272 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
00273 46512.L, 306.L, 1.L};
00274 MatrixType A2 = A * A;
00275 MatrixType A4 = A2 * A2;
00276 MatrixType A6 = A4 * A2;
00277 m_tmp1.noalias() = A4 * A4;
00278 m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2;
00279 m_tmp2.noalias() = m_tmp1 * m_V;
00280 m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00281 m_U.noalias() = A * m_tmp2;
00282 m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2;
00283 m_V.noalias() = m_tmp1 * m_tmp2;
00284 m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00285 }
00286 #endif
00287
00288 template <typename MatrixType>
00289 void MatrixExponential<MatrixType>::computeUV(float)
00290 {
00291 using std::max;
00292 using std::pow;
00293 using std::ceil;
00294 if (m_l1norm < 4.258730016922831e-001) {
00295 pade3(m_M);
00296 } else if (m_l1norm < 1.880152677804762e+000) {
00297 pade5(m_M);
00298 } else {
00299 const float maxnorm = 3.925724783138660f;
00300 m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
00301 MatrixType A = m_M / pow(Scalar(2), m_squarings);
00302 pade7(A);
00303 }
00304 }
00305
00306 template <typename MatrixType>
00307 void MatrixExponential<MatrixType>::computeUV(double)
00308 {
00309 using std::max;
00310 using std::pow;
00311 using std::ceil;
00312 if (m_l1norm < 1.495585217958292e-002) {
00313 pade3(m_M);
00314 } else if (m_l1norm < 2.539398330063230e-001) {
00315 pade5(m_M);
00316 } else if (m_l1norm < 9.504178996162932e-001) {
00317 pade7(m_M);
00318 } else if (m_l1norm < 2.097847961257068e+000) {
00319 pade9(m_M);
00320 } else {
00321 const double maxnorm = 5.371920351148152;
00322 m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
00323 MatrixType A = m_M / pow(Scalar(2), m_squarings);
00324 pade13(A);
00325 }
00326 }
00327
00328 template <typename MatrixType>
00329 void MatrixExponential<MatrixType>::computeUV(long double)
00330 {
00331 using std::max;
00332 using std::pow;
00333 using std::ceil;
00334 #if LDBL_MANT_DIG == 53 // double precision
00335 computeUV(double());
00336 #elif LDBL_MANT_DIG <= 64 // extended precision
00337 if (m_l1norm < 4.1968497232266989671e-003L) {
00338 pade3(m_M);
00339 } else if (m_l1norm < 1.1848116734693823091e-001L) {
00340 pade5(m_M);
00341 } else if (m_l1norm < 5.5170388480686700274e-001L) {
00342 pade7(m_M);
00343 } else if (m_l1norm < 1.3759868875587845383e+000L) {
00344 pade9(m_M);
00345 } else {
00346 const long double maxnorm = 4.0246098906697353063L;
00347 m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
00348 MatrixType A = m_M / pow(Scalar(2), m_squarings);
00349 pade13(A);
00350 }
00351 #elif LDBL_MANT_DIG <= 106 // double-double
00352 if (m_l1norm < 3.2787892205607026992947488108213e-005L) {
00353 pade3(m_M);
00354 } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) {
00355 pade5(m_M);
00356 } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) {
00357 pade7(m_M);
00358 } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) {
00359 pade9(m_M);
00360 } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) {
00361 pade13(m_M);
00362 } else {
00363 const long double maxnorm = 3.2579440895405400856599663723517L;
00364 m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
00365 MatrixType A = m_M / pow(Scalar(2), m_squarings);
00366 pade17(A);
00367 }
00368 #elif LDBL_MANT_DIG <= 112 // quadruple precison
00369 if (m_l1norm < 1.639394610288918690547467954466970e-005L) {
00370 pade3(m_M);
00371 } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) {
00372 pade5(m_M);
00373 } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) {
00374 pade7(m_M);
00375 } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) {
00376 pade9(m_M);
00377 } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) {
00378 pade13(m_M);
00379 } else {
00380 const long double maxnorm = 2.884233277829519311757165057717815L;
00381 m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
00382 MatrixType A = m_M / pow(Scalar(2), m_squarings);
00383 pade17(A);
00384 }
00385 #else
00386
00387 eigen_assert(false && "Bug in MatrixExponential");
00388 #endif // LDBL_MANT_DIG
00389 }
00390
00403 template<typename Derived> struct MatrixExponentialReturnValue
00404 : public ReturnByValue<MatrixExponentialReturnValue<Derived> >
00405 {
00406 typedef typename Derived::Index Index;
00407 public:
00413 MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
00414
00420 template <typename ResultType>
00421 inline void evalTo(ResultType& result) const
00422 {
00423 const typename Derived::PlainObject srcEvaluated = m_src.eval();
00424 MatrixExponential<typename Derived::PlainObject> me(srcEvaluated);
00425 me.compute(result);
00426 }
00427
00428 Index rows() const { return m_src.rows(); }
00429 Index cols() const { return m_src.cols(); }
00430
00431 protected:
00432 const Derived& m_src;
00433 private:
00434 MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&);
00435 };
00436
00437 namespace internal {
00438 template<typename Derived>
00439 struct traits<MatrixExponentialReturnValue<Derived> >
00440 {
00441 typedef typename Derived::PlainObject ReturnType;
00442 };
00443 }
00444
00445 template <typename Derived>
00446 const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
00447 {
00448 eigen_assert(rows() == cols());
00449 return MatrixExponentialReturnValue<Derived>(derived());
00450 }
00451
00452 }
00453
00454 #endif // EIGEN_MATRIX_EXPONENTIAL