00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #ifndef EIGEN_QUATERNION_H
00012 #define EIGEN_QUATERNION_H
00013 namespace Eigen {
00014
00015
00016
00017
00018
00019
00020
00021 namespace internal {
00022 template<typename Other,
00023 int OtherRows=Other::RowsAtCompileTime,
00024 int OtherCols=Other::ColsAtCompileTime>
00025 struct quaternionbase_assign_impl;
00026 }
00027
00034 template<class Derived>
00035 class QuaternionBase : public RotationBase<Derived, 3>
00036 {
00037 typedef RotationBase<Derived, 3> Base;
00038 public:
00039 using Base::operator*;
00040 using Base::derived;
00041
00042 typedef typename internal::traits<Derived>::Scalar Scalar;
00043 typedef typename NumTraits<Scalar>::Real RealScalar;
00044 typedef typename internal::traits<Derived>::Coefficients Coefficients;
00045 enum {
00046 Flags = Eigen::internal::traits<Derived>::Flags
00047 };
00048
00049
00051 typedef Matrix<Scalar,3,1> Vector3;
00053 typedef Matrix<Scalar,3,3> Matrix3;
00055 typedef AngleAxis<Scalar> AngleAxisType;
00056
00057
00058
00060 inline Scalar x() const { return this->derived().coeffs().coeff(0); }
00062 inline Scalar y() const { return this->derived().coeffs().coeff(1); }
00064 inline Scalar z() const { return this->derived().coeffs().coeff(2); }
00066 inline Scalar w() const { return this->derived().coeffs().coeff(3); }
00067
00069 inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
00071 inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
00073 inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
00075 inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
00076
00078 inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
00079
00081 inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
00082
00084 inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
00085
00087 inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
00088
00089 EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
00090 template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
00091
00092
00093
00094
00095
00096
00097
00098
00099 Derived& operator=(const AngleAxisType& aa);
00100 template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
00101
00105 static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
00106
00109 inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
00110
00114 inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
00115
00119 inline Scalar norm() const { return coeffs().norm(); }
00120
00123 inline void normalize() { coeffs().normalize(); }
00126 inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
00127
00133 template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
00134
00135 template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
00136
00138 Matrix3 toRotationMatrix() const;
00139
00141 template<typename Derived1, typename Derived2>
00142 Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
00143
00144 template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
00145 template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
00146
00148 Quaternion<Scalar> inverse() const;
00149
00151 Quaternion<Scalar> conjugate() const;
00152
00157 template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
00158
00163 template<class OtherDerived>
00164 bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
00165 { return coeffs().isApprox(other.coeffs(), prec); }
00166
00168 EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
00169
00175 template<typename NewScalarType>
00176 inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
00177 {
00178 return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
00179 }
00180
00181 #ifdef EIGEN_QUATERNIONBASE_PLUGIN
00182 # include EIGEN_QUATERNIONBASE_PLUGIN
00183 #endif
00184 };
00185
00186
00187
00188
00189
00212 namespace internal {
00213 template<typename _Scalar,int _Options>
00214 struct traits<Quaternion<_Scalar,_Options> >
00215 {
00216 typedef Quaternion<_Scalar,_Options> PlainObject;
00217 typedef _Scalar Scalar;
00218 typedef Matrix<_Scalar,4,1,_Options> Coefficients;
00219 enum{
00220 IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
00221 Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
00222 };
00223 };
00224 }
00225
00226 template<typename _Scalar, int _Options>
00227 class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
00228 {
00229 typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
00230 enum { IsAligned = internal::traits<Quaternion>::IsAligned };
00231
00232 public:
00233 typedef _Scalar Scalar;
00234
00235 EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
00236 using Base::operator*=;
00237
00238 typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
00239 typedef typename Base::AngleAxisType AngleAxisType;
00240
00242 inline Quaternion() {}
00243
00251 inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){}
00252
00254 inline Quaternion(const Scalar* data) : m_coeffs(data) {}
00255
00257 template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
00258
00260 explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
00261
00266 template<typename Derived>
00267 explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
00268
00270 template<typename OtherScalar, int OtherOptions>
00271 explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
00272 { m_coeffs = other.coeffs().template cast<Scalar>(); }
00273
00274 template<typename Derived1, typename Derived2>
00275 static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
00276
00277 inline Coefficients& coeffs() { return m_coeffs;}
00278 inline const Coefficients& coeffs() const { return m_coeffs;}
00279
00280 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
00281
00282 protected:
00283 Coefficients m_coeffs;
00284
00285 #ifndef EIGEN_PARSED_BY_DOXYGEN
00286 static EIGEN_STRONG_INLINE void _check_template_params()
00287 {
00288 EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
00289 INVALID_MATRIX_TEMPLATE_PARAMETERS)
00290 }
00291 #endif
00292 };
00293
00296 typedef Quaternion<float> Quaternionf;
00299 typedef Quaternion<double> Quaterniond;
00300
00301
00302
00303
00304
00305 namespace internal {
00306 template<typename _Scalar, int _Options>
00307 struct traits<Map<Quaternion<_Scalar>, _Options> >:
00308 traits<Quaternion<_Scalar, _Options> >
00309 {
00310 typedef _Scalar Scalar;
00311 typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
00312
00313 typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
00314 enum {
00315 IsAligned = TraitsBase::IsAligned,
00316
00317 Flags = TraitsBase::Flags
00318 };
00319 };
00320 }
00321
00322 namespace internal {
00323 template<typename _Scalar, int _Options>
00324 struct traits<Map<const Quaternion<_Scalar>, _Options> >:
00325 traits<Quaternion<_Scalar> >
00326 {
00327 typedef _Scalar Scalar;
00328 typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
00329
00330 typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
00331 enum {
00332 IsAligned = TraitsBase::IsAligned,
00333 Flags = TraitsBase::Flags & ~LvalueBit
00334 };
00335 };
00336 }
00337
00348 template<typename _Scalar, int _Options>
00349 class Map<const Quaternion<_Scalar>, _Options >
00350 : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
00351 {
00352 typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
00353
00354 public:
00355 typedef _Scalar Scalar;
00356 typedef typename internal::traits<Map>::Coefficients Coefficients;
00357 EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
00358 using Base::operator*=;
00359
00366 EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
00367
00368 inline const Coefficients& coeffs() const { return m_coeffs;}
00369
00370 protected:
00371 const Coefficients m_coeffs;
00372 };
00373
00384 template<typename _Scalar, int _Options>
00385 class Map<Quaternion<_Scalar>, _Options >
00386 : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
00387 {
00388 typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
00389
00390 public:
00391 typedef _Scalar Scalar;
00392 typedef typename internal::traits<Map>::Coefficients Coefficients;
00393 EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
00394 using Base::operator*=;
00395
00402 EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
00403
00404 inline Coefficients& coeffs() { return m_coeffs; }
00405 inline const Coefficients& coeffs() const { return m_coeffs; }
00406
00407 protected:
00408 Coefficients m_coeffs;
00409 };
00410
00413 typedef Map<Quaternion<float>, 0> QuaternionMapf;
00416 typedef Map<Quaternion<double>, 0> QuaternionMapd;
00419 typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
00422 typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
00423
00424
00425
00426
00427
00428
00429
00430 namespace internal {
00431 template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
00432 {
00433 static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
00434 return Quaternion<Scalar>
00435 (
00436 a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
00437 a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
00438 a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
00439 a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
00440 );
00441 }
00442 };
00443 }
00444
00446 template <class Derived>
00447 template <class OtherDerived>
00448 EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
00449 QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
00450 {
00451 EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
00452 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
00453 return internal::quat_product<Architecture::Target, Derived, OtherDerived,
00454 typename internal::traits<Derived>::Scalar,
00455 internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
00456 }
00457
00459 template <class Derived>
00460 template <class OtherDerived>
00461 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
00462 {
00463 derived() = derived() * other.derived();
00464 return derived();
00465 }
00466
00474 template <class Derived>
00475 EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
00476 QuaternionBase<Derived>::_transformVector(Vector3 v) const
00477 {
00478
00479
00480
00481
00482
00483 Vector3 uv = this->vec().cross(v);
00484 uv += uv;
00485 return v + this->w() * uv + this->vec().cross(uv);
00486 }
00487
00488 template<class Derived>
00489 EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
00490 {
00491 coeffs() = other.coeffs();
00492 return derived();
00493 }
00494
00495 template<class Derived>
00496 template<class OtherDerived>
00497 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
00498 {
00499 coeffs() = other.coeffs();
00500 return derived();
00501 }
00502
00505 template<class Derived>
00506 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
00507 {
00508 Scalar ha = Scalar(0.5)*aa.angle();
00509 this->w() = internal::cos(ha);
00510 this->vec() = internal::sin(ha) * aa.axis();
00511 return derived();
00512 }
00513
00520 template<class Derived>
00521 template<class MatrixDerived>
00522 inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
00523 {
00524 EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
00525 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
00526 internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
00527 return derived();
00528 }
00529
00533 template<class Derived>
00534 inline typename QuaternionBase<Derived>::Matrix3
00535 QuaternionBase<Derived>::toRotationMatrix(void) const
00536 {
00537
00538
00539
00540
00541 Matrix3 res;
00542
00543 const Scalar tx = Scalar(2)*this->x();
00544 const Scalar ty = Scalar(2)*this->y();
00545 const Scalar tz = Scalar(2)*this->z();
00546 const Scalar twx = tx*this->w();
00547 const Scalar twy = ty*this->w();
00548 const Scalar twz = tz*this->w();
00549 const Scalar txx = tx*this->x();
00550 const Scalar txy = ty*this->x();
00551 const Scalar txz = tz*this->x();
00552 const Scalar tyy = ty*this->y();
00553 const Scalar tyz = tz*this->y();
00554 const Scalar tzz = tz*this->z();
00555
00556 res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
00557 res.coeffRef(0,1) = txy-twz;
00558 res.coeffRef(0,2) = txz+twy;
00559 res.coeffRef(1,0) = txy+twz;
00560 res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
00561 res.coeffRef(1,2) = tyz-twx;
00562 res.coeffRef(2,0) = txz-twy;
00563 res.coeffRef(2,1) = tyz+twx;
00564 res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
00565
00566 return res;
00567 }
00568
00579 template<class Derived>
00580 template<typename Derived1, typename Derived2>
00581 inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
00582 {
00583 using std::max;
00584 Vector3 v0 = a.normalized();
00585 Vector3 v1 = b.normalized();
00586 Scalar c = v1.dot(v0);
00587
00588
00589
00590
00591
00592
00593
00594
00595
00596 if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
00597 {
00598 c = max<Scalar>(c,-1);
00599 Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
00600 JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
00601 Vector3 axis = svd.matrixV().col(2);
00602
00603 Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
00604 this->w() = internal::sqrt(w2);
00605 this->vec() = axis * internal::sqrt(Scalar(1) - w2);
00606 return derived();
00607 }
00608 Vector3 axis = v0.cross(v1);
00609 Scalar s = internal::sqrt((Scalar(1)+c)*Scalar(2));
00610 Scalar invs = Scalar(1)/s;
00611 this->vec() = axis * invs;
00612 this->w() = s * Scalar(0.5);
00613
00614 return derived();
00615 }
00616
00617
00628 template<typename Scalar, int Options>
00629 template<typename Derived1, typename Derived2>
00630 Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
00631 {
00632 Quaternion quat;
00633 quat.setFromTwoVectors(a, b);
00634 return quat;
00635 }
00636
00637
00644 template <class Derived>
00645 inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
00646 {
00647
00648 Scalar n2 = this->squaredNorm();
00649 if (n2 > 0)
00650 return Quaternion<Scalar>(conjugate().coeffs() / n2);
00651 else
00652 {
00653
00654 return Quaternion<Scalar>(Coefficients::Zero());
00655 }
00656 }
00657
00664 template <class Derived>
00665 inline Quaternion<typename internal::traits<Derived>::Scalar>
00666 QuaternionBase<Derived>::conjugate() const
00667 {
00668 return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
00669 }
00670
00674 template <class Derived>
00675 template <class OtherDerived>
00676 inline typename internal::traits<Derived>::Scalar
00677 QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
00678 {
00679 using std::acos;
00680 double d = internal::abs(this->dot(other));
00681 if (d>=1.0)
00682 return Scalar(0);
00683 return static_cast<Scalar>(2 * acos(d));
00684 }
00685
00689 template <class Derived>
00690 template <class OtherDerived>
00691 Quaternion<typename internal::traits<Derived>::Scalar>
00692 QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
00693 {
00694 using std::acos;
00695 static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
00696 Scalar d = this->dot(other);
00697 Scalar absD = internal::abs(d);
00698
00699 Scalar scale0;
00700 Scalar scale1;
00701
00702 if(absD>=one)
00703 {
00704 scale0 = Scalar(1) - t;
00705 scale1 = t;
00706 }
00707 else
00708 {
00709
00710 Scalar theta = acos(absD);
00711 Scalar sinTheta = internal::sin(theta);
00712
00713 scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta;
00714 scale1 = internal::sin( ( t * theta) ) / sinTheta;
00715 }
00716 if(d<0) scale1 = -scale1;
00717
00718 return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
00719 }
00720
00721 namespace internal {
00722
00723
00724 template<typename Other>
00725 struct quaternionbase_assign_impl<Other,3,3>
00726 {
00727 typedef typename Other::Scalar Scalar;
00728 typedef DenseIndex Index;
00729 template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
00730 {
00731
00732
00733 Scalar t = mat.trace();
00734 if (t > Scalar(0))
00735 {
00736 t = sqrt(t + Scalar(1.0));
00737 q.w() = Scalar(0.5)*t;
00738 t = Scalar(0.5)/t;
00739 q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
00740 q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
00741 q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
00742 }
00743 else
00744 {
00745 DenseIndex i = 0;
00746 if (mat.coeff(1,1) > mat.coeff(0,0))
00747 i = 1;
00748 if (mat.coeff(2,2) > mat.coeff(i,i))
00749 i = 2;
00750 DenseIndex j = (i+1)%3;
00751 DenseIndex k = (j+1)%3;
00752
00753 t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
00754 q.coeffs().coeffRef(i) = Scalar(0.5) * t;
00755 t = Scalar(0.5)/t;
00756 q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
00757 q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
00758 q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
00759 }
00760 }
00761 };
00762
00763
00764 template<typename Other>
00765 struct quaternionbase_assign_impl<Other,4,1>
00766 {
00767 typedef typename Other::Scalar Scalar;
00768 template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
00769 {
00770 q.coeffs() = vec;
00771 }
00772 };
00773
00774 }
00775
00776 }
00777
00778 #endif // EIGEN_QUATERNION_H