Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_ANGLEAXIS_H
00011 #define EIGEN_ANGLEAXIS_H
00012
00013 namespace Eigen {
00014
00041 namespace internal {
00042 template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
00043 {
00044 typedef _Scalar Scalar;
00045 };
00046 }
00047
00048 template<typename _Scalar>
00049 class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
00050 {
00051 typedef RotationBase<AngleAxis<_Scalar>,3> Base;
00052
00053 public:
00054
00055 using Base::operator*;
00056
00057 enum { Dim = 3 };
00059 typedef _Scalar Scalar;
00060 typedef Matrix<Scalar,3,3> Matrix3;
00061 typedef Matrix<Scalar,3,1> Vector3;
00062 typedef Quaternion<Scalar> QuaternionType;
00063
00064 protected:
00065
00066 Vector3 m_axis;
00067 Scalar m_angle;
00068
00069 public:
00070
00072 AngleAxis() {}
00078 template<typename Derived>
00079 inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
00081 template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
00083 template<typename Derived>
00084 inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
00085
00086 Scalar angle() const { return m_angle; }
00087 Scalar& angle() { return m_angle; }
00088
00089 const Vector3& axis() const { return m_axis; }
00090 Vector3& axis() { return m_axis; }
00091
00093 inline QuaternionType operator* (const AngleAxis& other) const
00094 { return QuaternionType(*this) * QuaternionType(other); }
00095
00097 inline QuaternionType operator* (const QuaternionType& other) const
00098 { return QuaternionType(*this) * other; }
00099
00101 friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
00102 { return a * QuaternionType(b); }
00103
00105 AngleAxis inverse() const
00106 { return AngleAxis(-m_angle, m_axis); }
00107
00108 template<class QuatDerived>
00109 AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
00110 template<typename Derived>
00111 AngleAxis& operator=(const MatrixBase<Derived>& m);
00112
00113 template<typename Derived>
00114 AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
00115 Matrix3 toRotationMatrix(void) const;
00116
00122 template<typename NewScalarType>
00123 inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
00124 { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
00125
00127 template<typename OtherScalarType>
00128 inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
00129 {
00130 m_axis = other.axis().template cast<Scalar>();
00131 m_angle = Scalar(other.angle());
00132 }
00133
00134 static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); }
00135
00140 bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
00141 { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
00142 };
00143
00146 typedef AngleAxis<float> AngleAxisf;
00149 typedef AngleAxis<double> AngleAxisd;
00150
00157 template<typename Scalar>
00158 template<typename QuatDerived>
00159 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
00160 {
00161 using std::acos;
00162 using std::min;
00163 using std::max;
00164 Scalar n2 = q.vec().squaredNorm();
00165 if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
00166 {
00167 m_angle = 0;
00168 m_axis << 1, 0, 0;
00169 }
00170 else
00171 {
00172 m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
00173 m_axis = q.vec() / internal::sqrt(n2);
00174 }
00175 return *this;
00176 }
00177
00180 template<typename Scalar>
00181 template<typename Derived>
00182 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
00183 {
00184
00185
00186 return *this = QuaternionType(mat);
00187 }
00188
00192 template<typename Scalar>
00193 template<typename Derived>
00194 AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
00195 {
00196 return *this = QuaternionType(mat);
00197 }
00198
00201 template<typename Scalar>
00202 typename AngleAxis<Scalar>::Matrix3
00203 AngleAxis<Scalar>::toRotationMatrix(void) const
00204 {
00205 Matrix3 res;
00206 Vector3 sin_axis = internal::sin(m_angle) * m_axis;
00207 Scalar c = internal::cos(m_angle);
00208 Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
00209
00210 Scalar tmp;
00211 tmp = cos1_axis.x() * m_axis.y();
00212 res.coeffRef(0,1) = tmp - sin_axis.z();
00213 res.coeffRef(1,0) = tmp + sin_axis.z();
00214
00215 tmp = cos1_axis.x() * m_axis.z();
00216 res.coeffRef(0,2) = tmp + sin_axis.y();
00217 res.coeffRef(2,0) = tmp - sin_axis.y();
00218
00219 tmp = cos1_axis.y() * m_axis.z();
00220 res.coeffRef(1,2) = tmp - sin_axis.x();
00221 res.coeffRef(2,1) = tmp + sin_axis.x();
00222
00223 res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
00224
00225 return res;
00226 }
00227
00228 }
00229
00230 #endif // EIGEN_ANGLEAXIS_H