Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012 namespace Eigen {
00013
00040 template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
00041 {
00042 typedef _Scalar Scalar;
00043 };
00044
00045 template<typename _Scalar>
00046 class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
00047 {
00048 typedef RotationBase<AngleAxis<_Scalar>,3> Base;
00049
00050 public:
00051
00052 using Base::operator*;
00053
00054 enum { Dim = 3 };
00056 typedef _Scalar Scalar;
00057 typedef Matrix<Scalar,3,3> Matrix3;
00058 typedef Matrix<Scalar,3,1> Vector3;
00059 typedef Quaternion<Scalar> QuaternionType;
00060
00061 protected:
00062
00063 Vector3 m_axis;
00064 Scalar m_angle;
00065
00066 public:
00067
00069 AngleAxis() {}
00072 template<typename Derived>
00073 inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
00075 inline AngleAxis(const QuaternionType& q) { *this = q; }
00077 template<typename Derived>
00078 inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
00079
00080 Scalar angle() const { return m_angle; }
00081 Scalar& angle() { return m_angle; }
00082
00083 const Vector3& axis() const { return m_axis; }
00084 Vector3& axis() { return m_axis; }
00085
00087 inline QuaternionType operator* (const AngleAxis& other) const
00088 { return QuaternionType(*this) * QuaternionType(other); }
00089
00091 inline QuaternionType operator* (const QuaternionType& other) const
00092 { return QuaternionType(*this) * other; }
00093
00095 friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
00096 { return a * QuaternionType(b); }
00097
00099 inline Matrix3 operator* (const Matrix3& other) const
00100 { return toRotationMatrix() * other; }
00101
00103 inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
00104 { return a * b.toRotationMatrix(); }
00105
00107 inline Vector3 operator* (const Vector3& other) const
00108 { return toRotationMatrix() * other; }
00109
00111 AngleAxis inverse() const
00112 { return AngleAxis(-m_angle, m_axis); }
00113
00114 AngleAxis& operator=(const QuaternionType& q);
00115 template<typename Derived>
00116 AngleAxis& operator=(const MatrixBase<Derived>& m);
00117
00118 template<typename Derived>
00119 AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
00120 Matrix3 toRotationMatrix(void) const;
00121
00127 template<typename NewScalarType>
00128 inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
00129 { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
00130
00132 template<typename OtherScalarType>
00133 inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
00134 {
00135 m_axis = other.axis().template cast<Scalar>();
00136 m_angle = Scalar(other.angle());
00137 }
00138
00143 bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
00144 { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
00145 };
00146
00149 typedef AngleAxis<float> AngleAxisf;
00152 typedef AngleAxis<double> AngleAxisd;
00153
00157 template<typename Scalar>
00158 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
00159 {
00160 Scalar n2 = q.vec().squaredNorm();
00161 if (n2 < precision<Scalar>()*precision<Scalar>())
00162 {
00163 m_angle = 0;
00164 m_axis << 1, 0, 0;
00165 }
00166 else
00167 {
00168 m_angle = 2*std::acos(q.w());
00169 m_axis = q.vec() / ei_sqrt(n2);
00170 }
00171 return *this;
00172 }
00173
00176 template<typename Scalar>
00177 template<typename Derived>
00178 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
00179 {
00180
00181
00182 return *this = QuaternionType(mat);
00183 }
00184
00187 template<typename Scalar>
00188 typename AngleAxis<Scalar>::Matrix3
00189 AngleAxis<Scalar>::toRotationMatrix(void) const
00190 {
00191 Matrix3 res;
00192 Vector3 sin_axis = ei_sin(m_angle) * m_axis;
00193 Scalar c = ei_cos(m_angle);
00194 Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
00195
00196 Scalar tmp;
00197 tmp = cos1_axis.x() * m_axis.y();
00198 res.coeffRef(0,1) = tmp - sin_axis.z();
00199 res.coeffRef(1,0) = tmp + sin_axis.z();
00200
00201 tmp = cos1_axis.x() * m_axis.z();
00202 res.coeffRef(0,2) = tmp + sin_axis.y();
00203 res.coeffRef(2,0) = tmp - sin_axis.y();
00204
00205 tmp = cos1_axis.y() * m_axis.z();
00206 res.coeffRef(1,2) = tmp - sin_axis.x();
00207 res.coeffRef(2,1) = tmp + sin_axis.x();
00208
00209 res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;
00210
00211 return res;
00212 }
00213
00214 }