Memory.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
00006 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
00007 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
00008 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
00009 //
00010 // This Source Code Form is subject to the terms of the Mozilla
00011 // Public License v. 2.0. If a copy of the MPL was not distributed
00012 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00013 
00014 
00015 /*****************************************************************************
00016 *** Platform checks for aligned malloc functions                           ***
00017 *****************************************************************************/
00018 
00019 #ifndef EIGEN_MEMORY_H
00020 #define EIGEN_MEMORY_H
00021 
00022 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
00023 //   http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
00024 // This is true at least since glibc 2.8.
00025 // This leaves the question how to detect 64-bit. According to this document,
00026 //   http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
00027 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
00028 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
00029 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
00030  && defined(__LP64__)
00031   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
00032 #else
00033   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
00034 #endif
00035 
00036 // FreeBSD 6 seems to have 16-byte aligned malloc
00037 //   See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
00038 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
00039 //   See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
00040 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
00041   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
00042 #else
00043   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
00044 #endif
00045 
00046 #if defined(__APPLE__) \
00047  || defined(_WIN64) \
00048  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
00049  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
00050   #define EIGEN_MALLOC_ALREADY_ALIGNED 1
00051 #else
00052   #define EIGEN_MALLOC_ALREADY_ALIGNED 0
00053 #endif
00054 
00055 #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) \
00056  && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
00057   #define EIGEN_HAS_POSIX_MEMALIGN 1
00058 #else
00059   #define EIGEN_HAS_POSIX_MEMALIGN 0
00060 #endif
00061 
00062 #ifdef EIGEN_VECTORIZE_SSE
00063   #define EIGEN_HAS_MM_MALLOC 1
00064 #else
00065   #define EIGEN_HAS_MM_MALLOC 0
00066 #endif
00067 
00068 namespace Eigen {
00069 
00070 namespace internal {
00071 
00072 inline void throw_std_bad_alloc()
00073 {
00074   #ifdef EIGEN_EXCEPTIONS
00075     throw std::bad_alloc();
00076   #else
00077     std::size_t huge = -1;
00078     new int[huge];
00079   #endif
00080 }
00081 
00082 /*****************************************************************************
00083 *** Implementation of handmade aligned functions                           ***
00084 *****************************************************************************/
00085 
00086 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
00087 
00091 inline void* handmade_aligned_malloc(size_t size)
00092 {
00093   void *original = std::malloc(size+16);
00094   if (original == 0) return 0;
00095   void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
00096   *(reinterpret_cast<void**>(aligned) - 1) = original;
00097   return aligned;
00098 }
00099 
00101 inline void handmade_aligned_free(void *ptr)
00102 {
00103   if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
00104 }
00105 
00111 inline void* handmade_aligned_realloc(void* ptr, size_t size, size_t = 0)
00112 {
00113   if (ptr == 0) return handmade_aligned_malloc(size);
00114   void *original = *(reinterpret_cast<void**>(ptr) - 1);
00115   original = std::realloc(original,size+16);
00116   if (original == 0) return 0;
00117   void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
00118   *(reinterpret_cast<void**>(aligned) - 1) = original;
00119   return aligned;
00120 }
00121 
00122 /*****************************************************************************
00123 *** Implementation of generic aligned realloc (when no realloc can be used)***
00124 *****************************************************************************/
00125 
00126 void* aligned_malloc(size_t size);
00127 void  aligned_free(void *ptr);
00128 
00134 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
00135 {
00136   if (ptr==0)
00137     return aligned_malloc(size);
00138 
00139   if (size==0)
00140   {
00141     aligned_free(ptr);
00142     return 0;
00143   }
00144 
00145   void* newptr = aligned_malloc(size);
00146   if (newptr == 0)
00147   {
00148     #ifdef EIGEN_HAS_ERRNO
00149     errno = ENOMEM; // according to the standard
00150     #endif
00151     return 0;
00152   }
00153 
00154   if (ptr != 0)
00155   {
00156     std::memcpy(newptr, ptr, (std::min)(size,old_size));
00157     aligned_free(ptr);
00158   }
00159 
00160   return newptr;
00161 }
00162 
00163 /*****************************************************************************
00164 *** Implementation of portable aligned versions of malloc/free/realloc     ***
00165 *****************************************************************************/
00166 
00167 #ifdef EIGEN_NO_MALLOC
00168 inline void check_that_malloc_is_allowed()
00169 {
00170   eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
00171 }
00172 #elif defined EIGEN_RUNTIME_NO_MALLOC
00173 inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
00174 {
00175   static bool value = true;
00176   if (update == 1)
00177     value = new_value;
00178   return value;
00179 }
00180 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
00181 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
00182 inline void check_that_malloc_is_allowed()
00183 {
00184   eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
00185 }
00186 #else 
00187 inline void check_that_malloc_is_allowed()
00188 {}
00189 #endif
00190 
00194 inline void* aligned_malloc(size_t size)
00195 {
00196   check_that_malloc_is_allowed();
00197 
00198   void *result;
00199   #if !EIGEN_ALIGN
00200     result = std::malloc(size);
00201   #elif EIGEN_MALLOC_ALREADY_ALIGNED
00202     result = std::malloc(size);
00203   #elif EIGEN_HAS_POSIX_MEMALIGN
00204     if(posix_memalign(&result, 16, size)) result = 0;
00205   #elif EIGEN_HAS_MM_MALLOC
00206     result = _mm_malloc(size, 16);
00207 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
00208     result = _aligned_malloc(size, 16);
00209   #else
00210     result = handmade_aligned_malloc(size);
00211   #endif
00212 
00213   if(!result && size)
00214     throw_std_bad_alloc();
00215 
00216   return result;
00217 }
00218 
00220 inline void aligned_free(void *ptr)
00221 {
00222   #if !EIGEN_ALIGN
00223     std::free(ptr);
00224   #elif EIGEN_MALLOC_ALREADY_ALIGNED
00225     std::free(ptr);
00226   #elif EIGEN_HAS_POSIX_MEMALIGN
00227     std::free(ptr);
00228   #elif EIGEN_HAS_MM_MALLOC
00229     _mm_free(ptr);
00230   #elif defined(_MSC_VER)
00231     _aligned_free(ptr);
00232   #else
00233     handmade_aligned_free(ptr);
00234   #endif
00235 }
00236 
00242 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
00243 {
00244   EIGEN_UNUSED_VARIABLE(old_size);
00245 
00246   void *result;
00247 #if !EIGEN_ALIGN
00248   result = std::realloc(ptr,new_size);
00249 #elif EIGEN_MALLOC_ALREADY_ALIGNED
00250   result = std::realloc(ptr,new_size);
00251 #elif EIGEN_HAS_POSIX_MEMALIGN
00252   result = generic_aligned_realloc(ptr,new_size,old_size);
00253 #elif EIGEN_HAS_MM_MALLOC
00254   // The defined(_mm_free) is just here to verify that this MSVC version
00255   // implements _mm_malloc/_mm_free based on the corresponding _aligned_
00256   // functions. This may not always be the case and we just try to be safe.
00257   #if defined(_MSC_VER) && defined(_mm_free)
00258     result = _aligned_realloc(ptr,new_size,16);
00259   #else
00260     result = generic_aligned_realloc(ptr,new_size,old_size);
00261   #endif
00262 #elif defined(_MSC_VER)
00263   result = _aligned_realloc(ptr,new_size,16);
00264 #else
00265   result = handmade_aligned_realloc(ptr,new_size,old_size);
00266 #endif
00267 
00268   if (!result && new_size)
00269     throw_std_bad_alloc();
00270 
00271   return result;
00272 }
00273 
00274 /*****************************************************************************
00275 *** Implementation of conditionally aligned functions                      ***
00276 *****************************************************************************/
00277 
00281 template<bool Align> inline void* conditional_aligned_malloc(size_t size)
00282 {
00283   return aligned_malloc(size);
00284 }
00285 
00286 template<> inline void* conditional_aligned_malloc<false>(size_t size)
00287 {
00288   check_that_malloc_is_allowed();
00289 
00290   void *result = std::malloc(size);
00291   if(!result && size)
00292     throw_std_bad_alloc();
00293   return result;
00294 }
00295 
00297 template<bool Align> inline void conditional_aligned_free(void *ptr)
00298 {
00299   aligned_free(ptr);
00300 }
00301 
00302 template<> inline void conditional_aligned_free<false>(void *ptr)
00303 {
00304   std::free(ptr);
00305 }
00306 
00307 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
00308 {
00309   return aligned_realloc(ptr, new_size, old_size);
00310 }
00311 
00312 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
00313 {
00314   return std::realloc(ptr, new_size);
00315 }
00316 
00317 /*****************************************************************************
00318 *** Construction/destruction of array elements                             ***
00319 *****************************************************************************/
00320 
00324 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
00325 {
00326   for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
00327   return ptr;
00328 }
00329 
00333 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
00334 {
00335   // always destruct an array starting from the end.
00336   if(ptr)
00337     while(size) ptr[--size].~T();
00338 }
00339 
00340 /*****************************************************************************
00341 *** Implementation of aligned new/delete-like functions                    ***
00342 *****************************************************************************/
00343 
00344 template<typename T>
00345 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
00346 {
00347   if(size > size_t(-1) / sizeof(T))
00348     throw_std_bad_alloc();
00349 }
00350 
00355 template<typename T> inline T* aligned_new(size_t size)
00356 {
00357   check_size_for_overflow<T>(size);
00358   T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
00359   return construct_elements_of_array(result, size);
00360 }
00361 
00362 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
00363 {
00364   check_size_for_overflow<T>(size);
00365   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
00366   return construct_elements_of_array(result, size);
00367 }
00368 
00372 template<typename T> inline void aligned_delete(T *ptr, size_t size)
00373 {
00374   destruct_elements_of_array<T>(ptr, size);
00375   aligned_free(ptr);
00376 }
00377 
00381 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
00382 {
00383   destruct_elements_of_array<T>(ptr, size);
00384   conditional_aligned_free<Align>(ptr);
00385 }
00386 
00387 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
00388 {
00389   check_size_for_overflow<T>(new_size);
00390   check_size_for_overflow<T>(old_size);
00391   if(new_size < old_size)
00392     destruct_elements_of_array(pts+new_size, old_size-new_size);
00393   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
00394   if(new_size > old_size)
00395     construct_elements_of_array(result+old_size, new_size-old_size);
00396   return result;
00397 }
00398 
00399 
00400 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
00401 {
00402   check_size_for_overflow<T>(size);
00403   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
00404   if(NumTraits<T>::RequireInitialization)
00405     construct_elements_of_array(result, size);
00406   return result;
00407 }
00408 
00409 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
00410 {
00411   check_size_for_overflow<T>(new_size);
00412   check_size_for_overflow<T>(old_size);
00413   if(NumTraits<T>::RequireInitialization && (new_size < old_size))
00414     destruct_elements_of_array(pts+new_size, old_size-new_size);
00415   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
00416   if(NumTraits<T>::RequireInitialization && (new_size > old_size))
00417     construct_elements_of_array(result+old_size, new_size-old_size);
00418   return result;
00419 }
00420 
00421 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
00422 {
00423   if(NumTraits<T>::RequireInitialization)
00424     destruct_elements_of_array<T>(ptr, size);
00425   conditional_aligned_free<Align>(ptr);
00426 }
00427 
00428 /****************************************************************************/
00429 
00446 template<typename Scalar, typename Index>
00447 static inline Index first_aligned(const Scalar* array, Index size)
00448 {
00449   typedef typename packet_traits<Scalar>::type Packet;
00450   enum { PacketSize = packet_traits<Scalar>::size,
00451          PacketAlignedMask = PacketSize-1
00452   };
00453 
00454   if(PacketSize==1)
00455   {
00456     // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
00457     // of the array have the same alignment.
00458     return 0;
00459   }
00460   else if(size_t(array) & (sizeof(Scalar)-1))
00461   {
00462     // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
00463     // Consequently, no element of the array is well aligned.
00464     return size;
00465   }
00466   else
00467   {
00468     return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
00469                            & PacketAlignedMask, size);
00470   }
00471 }
00472 
00473 
00474 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
00475 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
00476 template<typename T, bool UseMemcpy> struct smart_copy_helper;
00477 
00478 template<typename T> void smart_copy(const T* start, const T* end, T* target)
00479 {
00480   smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
00481 }
00482 
00483 template<typename T> struct smart_copy_helper<T,true> {
00484   static inline void run(const T* start, const T* end, T* target)
00485   { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
00486 };
00487 
00488 template<typename T> struct smart_copy_helper<T,false> {
00489   static inline void run(const T* start, const T* end, T* target)
00490   { std::copy(start, end, target); }
00491 };
00492 
00493 
00494 /*****************************************************************************
00495 *** Implementation of runtime stack allocation (falling back to malloc)    ***
00496 *****************************************************************************/
00497 
00498 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
00499 // to the appropriate stack allocation function
00500 #ifndef EIGEN_ALLOCA
00501   #if (defined __linux__)
00502     #define EIGEN_ALLOCA alloca
00503   #elif defined(_MSC_VER)
00504     #define EIGEN_ALLOCA _alloca
00505   #endif
00506 #endif
00507 
00508 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
00509 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
00510 template<typename T> class aligned_stack_memory_handler
00511 {
00512   public:
00513     /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
00514      * Note that \a ptr can be 0 regardless of the other parameters.
00515      * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
00516      * In this case, the buffer elements will also be destructed when this handler will be destructed.
00517      * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
00518      **/
00519     aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
00520       : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
00521     {
00522       if(NumTraits<T>::RequireInitialization && m_ptr)
00523         Eigen::internal::construct_elements_of_array(m_ptr, size);
00524     }
00525     ~aligned_stack_memory_handler()
00526     {
00527       if(NumTraits<T>::RequireInitialization && m_ptr)
00528         Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
00529       if(m_deallocate)
00530         Eigen::internal::aligned_free(m_ptr);
00531     }
00532   protected:
00533     T* m_ptr;
00534     size_t m_size;
00535     bool m_deallocate;
00536 };
00537 
00538 } // end namespace internal
00539 
00555 #ifdef EIGEN_ALLOCA
00556 
00557   #ifdef __arm__
00558     #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
00559   #else
00560     #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
00561   #endif
00562 
00563   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
00564     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
00565     TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
00566                : reinterpret_cast<TYPE*>( \
00567                       (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
00568                     : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) );  \
00569     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
00570 
00571 #else
00572 
00573   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
00574     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
00575     TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE));    \
00576     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
00577     
00578 #endif
00579 
00580 
00581 /*****************************************************************************
00582 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF]                ***
00583 *****************************************************************************/
00584 
00585 #if EIGEN_ALIGN
00586   #ifdef EIGEN_EXCEPTIONS
00587     #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00588       void* operator new(size_t size, const std::nothrow_t&) throw() { \
00589         try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
00590         catch (...) { return 0; } \
00591         return 0; \
00592       }
00593   #else
00594     #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00595       void* operator new(size_t size, const std::nothrow_t&) throw() { \
00596         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00597       }
00598   #endif
00599 
00600   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
00601       void *operator new(size_t size) { \
00602         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00603       } \
00604       void *operator new[](size_t size) { \
00605         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00606       } \
00607       void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
00608       void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
00609       /* in-place new and delete. since (at least afaik) there is no actual   */ \
00610       /* memory allocated we can safely let the default implementation handle */ \
00611       /* this particular case. */ \
00612       static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
00613       void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
00614       /* nothrow-new (returns zero instead of std::bad_alloc) */ \
00615       EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00616       void operator delete(void *ptr, const std::nothrow_t&) throw() { \
00617         Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
00618       } \
00619       typedef void eigen_aligned_operator_new_marker_type;
00620 #else
00621   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
00622 #endif
00623 
00624 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
00625 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
00626   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
00627 
00628 /****************************************************************************/
00629 
00646 template<class T>
00647 class aligned_allocator
00648 {
00649 public:
00650     typedef size_t    size_type;
00651     typedef std::ptrdiff_t difference_type;
00652     typedef T*        pointer;
00653     typedef const T*  const_pointer;
00654     typedef T&        reference;
00655     typedef const T&  const_reference;
00656     typedef T         value_type;
00657 
00658     template<class U>
00659     struct rebind
00660     {
00661         typedef aligned_allocator<U> other;
00662     };
00663 
00664     pointer address( reference value ) const
00665     {
00666         return &value;
00667     }
00668 
00669     const_pointer address( const_reference value ) const
00670     {
00671         return &value;
00672     }
00673 
00674     aligned_allocator()
00675     {
00676     }
00677 
00678     aligned_allocator( const aligned_allocator& )
00679     {
00680     }
00681 
00682     template<class U>
00683     aligned_allocator( const aligned_allocator<U>& )
00684     {
00685     }
00686 
00687     ~aligned_allocator()
00688     {
00689     }
00690 
00691     size_type max_size() const
00692     {
00693         return (std::numeric_limits<size_type>::max)();
00694     }
00695 
00696     pointer allocate( size_type num, const void* hint = 0 )
00697     {
00698         EIGEN_UNUSED_VARIABLE(hint);
00699         internal::check_size_for_overflow<T>(num);
00700         return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
00701     }
00702 
00703     void construct( pointer p, const T& value )
00704     {
00705         ::new( p ) T( value );
00706     }
00707 
00708     // Support for c++11
00709 #if (__cplusplus >= 201103L)
00710     template<typename... Args>
00711     void  construct(pointer p, Args&&... args)
00712     {
00713       ::new(p) T(std::forward<Args>(args)...);
00714     }
00715 #endif
00716 
00717     void destroy( pointer p )
00718     {
00719         p->~T();
00720     }
00721 
00722     void deallocate( pointer p, size_type /*num*/ )
00723     {
00724         internal::aligned_free( p );
00725     }
00726 
00727     bool operator!=(const aligned_allocator<T>& ) const
00728     { return false; }
00729 
00730     bool operator==(const aligned_allocator<T>& ) const
00731     { return true; }
00732 };
00733 
00734 //---------- Cache sizes ----------
00735 
00736 #if !defined(EIGEN_NO_CPUID)
00737 #  if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
00738 #    if defined(__PIC__) && defined(__i386__)
00739        // Case for x86 with PIC
00740 #      define EIGEN_CPUID(abcd,func,id) \
00741          __asm__ __volatile__ ("xchgl %%ebx, %%esi;cpuid; xchgl %%ebx,%%esi": "=a" (abcd[0]), "=S" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
00742 #    else
00743        // Case for x86_64 or x86 w/o PIC
00744 #      define EIGEN_CPUID(abcd,func,id) \
00745          __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id) );
00746 #    endif
00747 #  elif defined(_MSC_VER)
00748 #    if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
00749 #      define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
00750 #    endif
00751 #  endif
00752 #endif
00753 
00754 namespace internal {
00755 
00756 #ifdef EIGEN_CPUID
00757 
00758 inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
00759 {
00760   return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
00761 }
00762 
00763 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
00764 {
00765   int abcd[4];
00766   l1 = l2 = l3 = 0;
00767   int cache_id = 0;
00768   int cache_type = 0;
00769   do {
00770     abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00771     EIGEN_CPUID(abcd,0x4,cache_id);
00772     cache_type  = (abcd[0] & 0x0F) >> 0;
00773     if(cache_type==1||cache_type==3) // data or unified cache
00774     {
00775       int cache_level = (abcd[0] & 0xE0) >> 5;  // A[7:5]
00776       int ways        = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
00777       int partitions  = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
00778       int line_size   = (abcd[1] & 0x00000FFF) >>  0; // B[11:0]
00779       int sets        = (abcd[2]);                    // C[31:0]
00780 
00781       int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
00782 
00783       switch(cache_level)
00784       {
00785         case 1: l1 = cache_size; break;
00786         case 2: l2 = cache_size; break;
00787         case 3: l3 = cache_size; break;
00788         default: break;
00789       }
00790     }
00791     cache_id++;
00792   } while(cache_type>0 && cache_id<16);
00793 }
00794 
00795 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
00796 {
00797   int abcd[4];
00798   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00799   l1 = l2 = l3 = 0;
00800   EIGEN_CPUID(abcd,0x00000002,0);
00801   unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
00802   bool check_for_p2_core2 = false;
00803   for(int i=0; i<14; ++i)
00804   {
00805     switch(bytes[i])
00806     {
00807       case 0x0A: l1 = 8; break;   // 0Ah   data L1 cache, 8 KB, 2 ways, 32 byte lines
00808       case 0x0C: l1 = 16; break;  // 0Ch   data L1 cache, 16 KB, 4 ways, 32 byte lines
00809       case 0x0E: l1 = 24; break;  // 0Eh   data L1 cache, 24 KB, 6 ways, 64 byte lines
00810       case 0x10: l1 = 16; break;  // 10h   data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
00811       case 0x15: l1 = 16; break;  // 15h   code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
00812       case 0x2C: l1 = 32; break;  // 2Ch   data L1 cache, 32 KB, 8 ways, 64 byte lines
00813       case 0x30: l1 = 32; break;  // 30h   code L1 cache, 32 KB, 8 ways, 64 byte lines
00814       case 0x60: l1 = 16; break;  // 60h   data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
00815       case 0x66: l1 = 8; break;   // 66h   data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
00816       case 0x67: l1 = 16; break;  // 67h   data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
00817       case 0x68: l1 = 32; break;  // 68h   data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
00818       case 0x1A: l2 = 96; break;   // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
00819       case 0x22: l3 = 512; break;   // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
00820       case 0x23: l3 = 1024; break;   // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
00821       case 0x25: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
00822       case 0x29: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
00823       case 0x39: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
00824       case 0x3A: l2 = 192; break;   // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
00825       case 0x3B: l2 = 128; break;   // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
00826       case 0x3C: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
00827       case 0x3D: l2 = 384; break;   // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
00828       case 0x3E: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
00829       case 0x40: l2 = 0; break;   // no integrated L2 cache (P6 core) or L3 cache (P4 core)
00830       case 0x41: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
00831       case 0x42: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
00832       case 0x43: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
00833       case 0x44: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
00834       case 0x45: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
00835       case 0x46: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
00836       case 0x47: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
00837       case 0x48: l2 = 3072; break;   // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
00838       case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
00839       case 0x4A: l3 = 6144; break;   // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
00840       case 0x4B: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
00841       case 0x4C: l3 = 12288; break;   // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
00842       case 0x4D: l3 = 16384; break;   // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
00843       case 0x4E: l2 = 6144; break;   // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
00844       case 0x78: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
00845       case 0x79: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
00846       case 0x7A: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
00847       case 0x7B: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
00848       case 0x7C: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
00849       case 0x7D: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
00850       case 0x7E: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
00851       case 0x7F: l2 = 512; break;   // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
00852       case 0x80: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
00853       case 0x81: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
00854       case 0x82: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
00855       case 0x83: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
00856       case 0x84: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
00857       case 0x85: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
00858       case 0x86: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
00859       case 0x87: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
00860       case 0x88: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
00861       case 0x89: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
00862       case 0x8A: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
00863       case 0x8D: l3 = 3072; break;   // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
00864 
00865       default: break;
00866     }
00867   }
00868   if(check_for_p2_core2 && l2 == l3)
00869     l3 = 0;
00870   l1 *= 1024;
00871   l2 *= 1024;
00872   l3 *= 1024;
00873 }
00874 
00875 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
00876 {
00877   if(max_std_funcs>=4)
00878     queryCacheSizes_intel_direct(l1,l2,l3);
00879   else
00880     queryCacheSizes_intel_codes(l1,l2,l3);
00881 }
00882 
00883 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
00884 {
00885   int abcd[4];
00886   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00887   EIGEN_CPUID(abcd,0x80000005,0);
00888   l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
00889   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00890   EIGEN_CPUID(abcd,0x80000006,0);
00891   l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
00892   l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
00893 }
00894 #endif
00895 
00898 inline void queryCacheSizes(int& l1, int& l2, int& l3)
00899 {
00900   #ifdef EIGEN_CPUID
00901   int abcd[4];
00902 
00903   // identify the CPU vendor
00904   EIGEN_CPUID(abcd,0x0,0);
00905   int max_std_funcs = abcd[1];
00906   if(cpuid_is_vendor(abcd,"GenuineIntel"))
00907     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
00908   else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
00909     queryCacheSizes_amd(l1,l2,l3);
00910   else
00911     // by default let's use Intel's API
00912     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
00913 
00914   // here is the list of other vendors:
00915 //   ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
00916 //   ||cpuid_is_vendor(abcd,"CyrixInstead")
00917 //   ||cpuid_is_vendor(abcd,"CentaurHauls")
00918 //   ||cpuid_is_vendor(abcd,"GenuineTMx86")
00919 //   ||cpuid_is_vendor(abcd,"TransmetaCPU")
00920 //   ||cpuid_is_vendor(abcd,"RiseRiseRise")
00921 //   ||cpuid_is_vendor(abcd,"Geode by NSC")
00922 //   ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
00923 //   ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
00924 //   ||cpuid_is_vendor(abcd,"NexGenDriven")
00925   #else
00926   l1 = l2 = l3 = -1;
00927   #endif
00928 }
00929 
00932 inline int queryL1CacheSize()
00933 {
00934   int l1(-1), l2, l3;
00935   queryCacheSizes(l1,l2,l3);
00936   return l1;
00937 }
00938 
00941 inline int queryTopLevelCacheSize()
00942 {
00943   int l1, l2(-1), l3(-1);
00944   queryCacheSizes(l1,l2,l3);
00945   return (std::max)(l2,l3);
00946 }
00947 
00948 } // end namespace internal
00949 
00950 } // end namespace Eigen
00951 
00952 #endif // EIGEN_MEMORY_H


win_eigen
Author(s): Daniel Stonier
autogenerated on Wed Sep 16 2015 07:11:18