00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012 #ifndef EIGEN_COMPLEX_SCHUR_H
00013 #define EIGEN_COMPLEX_SCHUR_H
00014
00015 #include "./HessenbergDecomposition.h"
00016
00017 namespace Eigen {
00018
00019 namespace internal {
00020 template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
00021 }
00022
00051 template<typename _MatrixType> class ComplexSchur
00052 {
00053 public:
00054 typedef _MatrixType MatrixType;
00055 enum {
00056 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00057 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00058 Options = MatrixType::Options,
00059 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00060 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
00061 };
00062
00064 typedef typename MatrixType::Scalar Scalar;
00065 typedef typename NumTraits<Scalar>::Real RealScalar;
00066 typedef typename MatrixType::Index Index;
00067
00074 typedef std::complex<RealScalar> ComplexScalar;
00075
00081 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
00082
00094 ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
00095 : m_matT(size,size),
00096 m_matU(size,size),
00097 m_hess(size),
00098 m_isInitialized(false),
00099 m_matUisUptodate(false)
00100 {}
00101
00111 ComplexSchur(const MatrixType& matrix, bool computeU = true)
00112 : m_matT(matrix.rows(),matrix.cols()),
00113 m_matU(matrix.rows(),matrix.cols()),
00114 m_hess(matrix.rows()),
00115 m_isInitialized(false),
00116 m_matUisUptodate(false)
00117 {
00118 compute(matrix, computeU);
00119 }
00120
00135 const ComplexMatrixType& matrixU() const
00136 {
00137 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
00138 eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
00139 return m_matU;
00140 }
00141
00159 const ComplexMatrixType& matrixT() const
00160 {
00161 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
00162 return m_matT;
00163 }
00164
00184 ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
00185
00190 ComputationInfo info() const
00191 {
00192 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
00193 return m_info;
00194 }
00195
00200 static const int m_maxIterations = 30;
00201
00202 protected:
00203 ComplexMatrixType m_matT, m_matU;
00204 HessenbergDecomposition<MatrixType> m_hess;
00205 ComputationInfo m_info;
00206 bool m_isInitialized;
00207 bool m_matUisUptodate;
00208
00209 private:
00210 bool subdiagonalEntryIsNeglegible(Index i);
00211 ComplexScalar computeShift(Index iu, Index iter);
00212 void reduceToTriangularForm(bool computeU);
00213 friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
00214 };
00215
00219 template<typename MatrixType>
00220 inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
00221 {
00222 RealScalar d = internal::norm1(m_matT.coeff(i,i)) + internal::norm1(m_matT.coeff(i+1,i+1));
00223 RealScalar sd = internal::norm1(m_matT.coeff(i+1,i));
00224 if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
00225 {
00226 m_matT.coeffRef(i+1,i) = ComplexScalar(0);
00227 return true;
00228 }
00229 return false;
00230 }
00231
00232
00234 template<typename MatrixType>
00235 typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
00236 {
00237 if (iter == 10 || iter == 20)
00238 {
00239
00240 return internal::abs(internal::real(m_matT.coeff(iu,iu-1))) + internal::abs(internal::real(m_matT.coeff(iu-1,iu-2)));
00241 }
00242
00243
00244
00245 Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
00246 RealScalar normt = t.cwiseAbs().sum();
00247 t /= normt;
00248
00249 ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
00250 ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
00251 ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
00252 ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
00253 ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
00254 ComplexScalar eival1 = (trace + disc) / RealScalar(2);
00255 ComplexScalar eival2 = (trace - disc) / RealScalar(2);
00256
00257 if(internal::norm1(eival1) > internal::norm1(eival2))
00258 eival2 = det / eival1;
00259 else
00260 eival1 = det / eival2;
00261
00262
00263 if(internal::norm1(eival1-t.coeff(1,1)) < internal::norm1(eival2-t.coeff(1,1)))
00264 return normt * eival1;
00265 else
00266 return normt * eival2;
00267 }
00268
00269
00270 template<typename MatrixType>
00271 ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
00272 {
00273 m_matUisUptodate = false;
00274 eigen_assert(matrix.cols() == matrix.rows());
00275
00276 if(matrix.cols() == 1)
00277 {
00278 m_matT = matrix.template cast<ComplexScalar>();
00279 if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
00280 m_info = Success;
00281 m_isInitialized = true;
00282 m_matUisUptodate = computeU;
00283 return *this;
00284 }
00285
00286 internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
00287 reduceToTriangularForm(computeU);
00288 return *this;
00289 }
00290
00291 namespace internal {
00292
00293
00294 template<typename MatrixType, bool IsComplex>
00295 struct complex_schur_reduce_to_hessenberg
00296 {
00297
00298 static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
00299 {
00300 _this.m_hess.compute(matrix);
00301 _this.m_matT = _this.m_hess.matrixH();
00302 if(computeU) _this.m_matU = _this.m_hess.matrixQ();
00303 }
00304 };
00305
00306 template<typename MatrixType>
00307 struct complex_schur_reduce_to_hessenberg<MatrixType, false>
00308 {
00309 static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
00310 {
00311 typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
00312 typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
00313
00314
00315 _this.m_hess.compute(matrix);
00316 _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
00317 if(computeU)
00318 {
00319
00320 MatrixType Q = _this.m_hess.matrixQ();
00321 _this.m_matU = Q.template cast<ComplexScalar>();
00322 }
00323 }
00324 };
00325
00326 }
00327
00328
00329 template<typename MatrixType>
00330 void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
00331 {
00332
00333
00334
00335
00336 Index iu = m_matT.cols() - 1;
00337 Index il;
00338 Index iter = 0;
00339 Index totalIter = 0;
00340
00341 while(true)
00342 {
00343
00344 while(iu > 0)
00345 {
00346 if(!subdiagonalEntryIsNeglegible(iu-1)) break;
00347 iter = 0;
00348 --iu;
00349 }
00350
00351
00352 if(iu==0) break;
00353
00354
00355 iter++;
00356 totalIter++;
00357 if(totalIter > m_maxIterations * m_matT.cols()) break;
00358
00359
00360 il = iu-1;
00361 while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
00362 {
00363 --il;
00364 }
00365
00366
00367
00368
00369
00370 ComplexScalar shift = computeShift(iu, iter);
00371 JacobiRotation<ComplexScalar> rot;
00372 rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
00373 m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
00374 m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
00375 if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
00376
00377 for(Index i=il+1 ; i<iu ; i++)
00378 {
00379 rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
00380 m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
00381 m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
00382 m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
00383 if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
00384 }
00385 }
00386
00387 if(totalIter <= m_maxIterations * m_matT.cols())
00388 m_info = Success;
00389 else
00390 m_info = NoConvergence;
00391
00392 m_isInitialized = true;
00393 m_matUisUptodate = computeU;
00394 }
00395
00396 }
00397
00398 #endif // EIGEN_COMPLEX_SCHUR_H