distances.h
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2011, Willow Garage, Inc.
00006  *  Copyright (c) 2012-, Open Perception, Inc.
00007  *
00008  *  All rights reserved.
00009  *
00010  *  Redistribution and use in source and binary forms, with or without
00011  *  modification, are permitted provided that the following conditions
00012  *  are met:
00013  *
00014  *   * Redistributions of source code must retain the above copyright
00015  *     notice, this list of conditions and the following disclaimer.
00016  *   * Redistributions in binary form must reproduce the above
00017  *     copyright notice, this list of conditions and the following
00018  *     disclaimer in the documentation and/or other materials provided
00019  *     with the distribution.
00020  *   * Neither the name of the copyright holder(s) nor the names of its
00021  *     contributors may be used to endorse or promote products derived
00022  *     from this software without specific prior written permission.
00023  *
00024  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00025  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00026  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00027  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00028  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00029  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00030  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00031  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00032  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00033  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00034  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00035  *  POSSIBILITY OF SUCH DAMAGE.
00036  *
00037  * $Id$
00038  *
00039  */
00040 #ifndef PCL_REGISTRATION_DISTANCES_H
00041 #define PCL_REGISTRATION_DISTANCES_H
00042 
00043 #include <pcl/registration/eigen.h>
00044 #include <vector>
00045 
00046 namespace pcl
00047 {
00048   namespace distances
00049   {
00050 
00055     inline double 
00056     computeMedian (double *fvec, int m)
00057     {
00058       // Copy the values to vectors for faster sorting
00059       std::vector<double> data (m);
00060       memcpy (&data[0], fvec, sizeof (double) * m);
00061       
00062       std::nth_element(data.begin(), data.begin() + (data.size () >> 1), data.end());
00063       return (data[data.size () >> 1]);
00064     }
00065 
00071     inline double
00072     huber (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt, double sigma) 
00073     {
00074       Eigen::Array4f diff = (p_tgt.array () - p_src.array ()).abs ();
00075       double norm = 0.0;
00076       for (int i = 0; i < 3; ++i)
00077       {
00078         if (diff[i] < sigma)
00079           norm += diff[i] * diff[i];
00080         else
00081           norm += 2.0 * sigma * diff[i] - sigma * sigma;
00082       }
00083       return (norm);
00084     }
00085 
00090     inline double
00091     huber (double diff, double sigma) 
00092     {
00093       double norm = 0.0;
00094       if (diff < sigma)
00095         norm += diff * diff;
00096       else
00097         norm += 2.0 * sigma * diff - sigma * sigma;
00098       return (norm);
00099     }
00100 
00107     inline double
00108     gedikli (double val, double clipping, double slope = 4) 
00109     {
00110       return (1.0 / (1.0 + pow (fabs(val) / clipping, slope)));
00111     }
00112 
00117     inline double
00118     l1 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt) 
00119     {
00120       return ((p_src.array () - p_tgt.array ()).abs ().sum ());
00121     }
00122 
00127     inline double
00128     l2 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt) 
00129     {
00130       return ((p_src - p_tgt).norm ());
00131     }
00132 
00137     inline double
00138     l2Sqr (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt) 
00139     {
00140       return ((p_src - p_tgt).squaredNorm ());
00141     }
00142   }
00143 }
00144 
00145 #endif


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:23:22