Program Listing for File earcut.hpp
↰ Return to documentation for file (include/mapbox/earcut.hpp
)
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <limits>
#include <memory>
#include <vector>
namespace mapbox
{
namespace util
{
template <std::size_t I, typename T>
struct nth
{
inline static typename std::tuple_element<I, T>::type get(const T& t)
{
return std::get<I>(t);
};
};
}
namespace detail
{
template <typename N = uint32_t>
class Earcut
{
public:
std::vector<N> indices;
std::size_t vertices = 0;
template <typename Polygon>
void operator()(const Polygon& points);
private:
struct Node
{
Node(N index, double x_, double y_) : i(index), x(x_), y(y_)
{
}
Node(const Node&) = delete;
Node& operator=(const Node&) = delete;
Node(Node&&) = delete;
Node& operator=(Node&&) = delete;
const N i;
const double x;
const double y;
// previous and next vertice nodes in a polygon ring
Node* prev = nullptr;
Node* next = nullptr;
// z-order curve value
int32_t z = 0;
// previous and next nodes in z-order
Node* prevZ = nullptr;
Node* nextZ = nullptr;
// indicates whether this is a steiner point
bool steiner = false;
};
template <typename Ring>
Node* linkedList(const Ring& points, const bool clockwise);
Node* filterPoints(Node* start, Node* end = nullptr);
void earcutLinked(Node* ear, int pass = 0);
bool isEar(Node* ear);
bool isEarHashed(Node* ear);
Node* cureLocalIntersections(Node* start);
void splitEarcut(Node* start);
template <typename Polygon>
Node* eliminateHoles(const Polygon& points, Node* outerNode);
void eliminateHole(Node* hole, Node* outerNode);
Node* findHoleBridge(Node* hole, Node* outerNode);
void indexCurve(Node* start);
Node* sortLinked(Node* list);
int32_t zOrder(const double x_, const double y_);
Node* getLeftmost(Node* start);
bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
bool isValidDiagonal(Node* a, Node* b);
double area(const Node* p, const Node* q, const Node* r) const;
bool equals(const Node* p1, const Node* p2);
bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
bool intersectsPolygon(const Node* a, const Node* b);
bool locallyInside(const Node* a, const Node* b);
bool middleInside(const Node* a, const Node* b);
Node* splitPolygon(Node* a, Node* b);
template <typename Point>
Node* insertNode(std::size_t i, const Point& p, Node* last);
void removeNode(Node* p);
bool hashing;
double minX, maxX;
double minY, maxY;
double inv_size = 0;
template <typename T, typename Alloc = std::allocator<T>>
class ObjectPool
{
public:
ObjectPool()
{
}
ObjectPool(std::size_t blockSize_)
{
reset(blockSize_);
}
~ObjectPool()
{
clear();
}
template <typename... Args>
T* construct(Args&&... args)
{
if (currentIndex >= blockSize)
{
currentBlock = alloc_traits::allocate(alloc, blockSize);
allocations.emplace_back(currentBlock);
currentIndex = 0;
}
T* object = ¤tBlock[currentIndex++];
alloc_traits::construct(alloc, object, std::forward<Args>(args)...);
return object;
}
void reset(std::size_t newBlockSize)
{
for (auto allocation : allocations)
{
alloc_traits::deallocate(alloc, allocation, blockSize);
}
allocations.clear();
blockSize = std::max<std::size_t>(1, newBlockSize);
currentBlock = nullptr;
currentIndex = blockSize;
}
void clear()
{
reset(blockSize);
}
private:
T* currentBlock = nullptr;
std::size_t currentIndex = 1;
std::size_t blockSize = 1;
std::vector<T*> allocations;
Alloc alloc;
typedef typename std::allocator_traits<Alloc> alloc_traits;
};
ObjectPool<Node> nodes;
};
template <typename N>
template <typename Polygon>
void Earcut<N>::operator()(const Polygon& points)
{
// reset
indices.clear();
vertices = 0;
if (points.empty())
return;
double x;
double y;
int threshold = 80;
std::size_t len = 0;
for (size_t i = 0; threshold >= 0 && i < points.size(); i++)
{
threshold -= static_cast<int>(points[i].size());
len += points[i].size();
}
//estimate size of nodes and indices
nodes.reset(len * 3 / 2);
indices.reserve(len + points[0].size());
Node* outerNode = linkedList(points[0], true);
if (!outerNode || outerNode->prev == outerNode->next)
return;
if (points.size() > 1)
outerNode = eliminateHoles(points, outerNode);
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
hashing = threshold < 0;
if (hashing)
{
Node* p = outerNode->next;
minX = maxX = outerNode->x;
minY = maxY = outerNode->y;
do
{
x = p->x;
y = p->y;
minX = std::min<double>(minX, x);
minY = std::min<double>(minY, y);
maxX = std::max<double>(maxX, x);
maxY = std::max<double>(maxY, y);
p = p->next;
} while (p != outerNode);
// minX, minY and size are later used to transform coords into integers for z-order calculation
inv_size = std::max<double>(maxX - minX, maxY - minY);
inv_size = inv_size != .0 ? (1. / inv_size) : .0;
}
earcutLinked(outerNode);
nodes.clear();
}
// create a circular doubly linked list from polygon points in the specified winding order
template <typename N>
template <typename Ring>
typename Earcut<N>::Node* Earcut<N>::linkedList(const Ring& points, const bool clockwise)
{
using Point = typename Ring::value_type;
double sum = 0;
const std::size_t len = points.size();
std::size_t i, j;
Node* last = nullptr;
// calculate original winding order of a polygon ring
for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++)
{
const auto& p1 = points[i];
const auto& p2 = points[j];
const double p20 = util::nth<0, Point>::get(p2);
const double p10 = util::nth<0, Point>::get(p1);
const double p11 = util::nth<1, Point>::get(p1);
const double p21 = util::nth<1, Point>::get(p2);
sum += (p20 - p10) * (p11 + p21);
}
// link points into circular doubly-linked list in the specified winding order
if (clockwise == (sum > 0))
{
for (i = 0; i < len; i++)
last = insertNode(vertices + i, points[i], last);
}
else
{
for (i = len; i-- > 0;)
last = insertNode(vertices + i, points[i], last);
}
if (last && equals(last, last->next))
{
removeNode(last);
last = last->next;
}
vertices += len;
return last;
}
// eliminate colinear or duplicate points
template <typename N>
typename Earcut<N>::Node* Earcut<N>::filterPoints(Node* start, Node* end)
{
if (!end)
end = start;
Node* p = start;
bool again;
do
{
again = false;
if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0))
{
removeNode(p);
p = end = p->prev;
if (p == p->next)
break;
again = true;
}
else
{
p = p->next;
}
} while (again || p != end);
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
template <typename N>
void Earcut<N>::earcutLinked(Node* ear, int pass)
{
if (!ear)
return;
// interlink polygon nodes in z-order
if (!pass && hashing)
indexCurve(ear);
Node* stop = ear;
Node* prev;
Node* next;
int iterations = 0;
// iterate through ears, slicing them one by one
while (ear->prev != ear->next)
{
iterations++;
prev = ear->prev;
next = ear->next;
if (hashing ? isEarHashed(ear) : isEar(ear))
{
// cut off the triangle
indices.emplace_back(prev->i);
indices.emplace_back(ear->i);
indices.emplace_back(next->i);
removeNode(ear);
// skipping the next vertice leads to less sliver triangles
ear = next->next;
stop = next->next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if (ear == stop)
{
// try filtering points and slicing again
if (!pass)
earcutLinked(filterPoints(ear), 1);
// if this didn't work, try curing all small self-intersections locally
else if (pass == 1)
{
ear = cureLocalIntersections(ear);
earcutLinked(ear, 2);
// as a last resort, try splitting the remaining polygon into two
}
else if (pass == 2)
splitEarcut(ear);
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
template <typename N>
bool Earcut<N>::isEar(Node* ear)
{
const Node* a = ear->prev;
const Node* b = ear;
const Node* c = ear->next;
if (area(a, b, c) >= 0)
return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
Node* p = ear->next->next;
while (p != ear->prev)
{
if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) && area(p->prev, p, p->next) >= 0)
return false;
p = p->next;
}
return true;
}
template <typename N>
bool Earcut<N>::isEarHashed(Node* ear)
{
const Node* a = ear->prev;
const Node* b = ear;
const Node* c = ear->next;
if (area(a, b, c) >= 0)
return false; // reflex, can't be an ear
// triangle bbox; min & max are calculated like this for speed
const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
// z-order range for the current triangle bbox;
const int32_t minZ = zOrder(minTX, minTY);
const int32_t maxZ = zOrder(maxTX, maxTY);
// first look for points inside the triangle in increasing z-order
Node* p = ear->nextZ;
while (p && p->z <= maxZ)
{
if (p != ear->prev && p != ear->next && pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
area(p->prev, p, p->next) >= 0)
return false;
p = p->nextZ;
}
// then look for points in decreasing z-order
p = ear->prevZ;
while (p && p->z >= minZ)
{
if (p != ear->prev && p != ear->next && pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
area(p->prev, p, p->next) >= 0)
return false;
p = p->prevZ;
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
template <typename N>
typename Earcut<N>::Node* Earcut<N>::cureLocalIntersections(Node* start)
{
Node* p = start;
do
{
Node* a = p->prev;
Node* b = p->next->next;
// a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a))
{
indices.emplace_back(a->i);
indices.emplace_back(p->i);
indices.emplace_back(b->i);
// remove two nodes involved
removeNode(p);
removeNode(p->next);
p = start = b;
}
p = p->next;
} while (p != start);
return p;
}
// try splitting polygon into two and triangulate them independently
template <typename N>
void Earcut<N>::splitEarcut(Node* start)
{
// look for a valid diagonal that divides the polygon into two
Node* a = start;
do
{
Node* b = a->next->next;
while (b != a->prev)
{
if (a->i != b->i && isValidDiagonal(a, b))
{
// split the polygon in two by the diagonal
Node* c = splitPolygon(a, b);
// filter colinear points around the cuts
a = filterPoints(a, a->next);
c = filterPoints(c, c->next);
// run earcut on each half
earcutLinked(a);
earcutLinked(c);
return;
}
b = b->next;
}
a = a->next;
} while (a != start);
}
// link every hole into the outer loop, producing a single-ring polygon without holes
template <typename N>
template <typename Polygon>
typename Earcut<N>::Node* Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode)
{
const size_t len = points.size();
std::vector<Node*> queue;
for (size_t i = 1; i < len; i++)
{
Node* list = linkedList(points[i], false);
if (list)
{
if (list == list->next)
list->steiner = true;
queue.push_back(getLeftmost(list));
}
}
std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) { return a->x < b->x; });
// process holes from left to right
for (size_t i = 0; i < queue.size(); i++)
{
eliminateHole(queue[i], outerNode);
outerNode = filterPoints(outerNode, outerNode->next);
}
return outerNode;
}
// find a bridge between vertices that connects hole with an outer ring and and link it
template <typename N>
void Earcut<N>::eliminateHole(Node* hole, Node* outerNode)
{
outerNode = findHoleBridge(hole, outerNode);
if (outerNode)
{
Node* b = splitPolygon(outerNode, hole);
filterPoints(b, b->next);
}
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
template <typename N>
typename Earcut<N>::Node* Earcut<N>::findHoleBridge(Node* hole, Node* outerNode)
{
Node* p = outerNode;
double hx = hole->x;
double hy = hole->y;
double qx = -std::numeric_limits<double>::infinity();
Node* m = nullptr;
// find a segment intersected by a ray from the hole's leftmost Vertex to the left;
// segment's endpoint with lesser x will be potential connection Vertex
do
{
if (hy <= p->y && hy >= p->next->y && p->next->y != p->y)
{
double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
if (x <= hx && x > qx)
{
qx = x;
if (x == hx)
{
if (hy == p->y)
return p;
if (hy == p->next->y)
return p->next;
}
m = p->x < p->next->x ? p : p->next;
}
}
p = p->next;
} while (p != outerNode);
if (!m)
return 0;
if (hx == qx)
return m->prev;
// look for points inside the triangle of hole Vertex, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
const Node* stop = m;
double tanMin = std::numeric_limits<double>::infinity();
double tanCur = 0;
p = m->next;
double mx = m->x;
double my = m->y;
while (p != stop)
{
if (hx >= p->x && p->x >= mx && hx != p->x &&
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y))
{
tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
if ((tanCur < tanMin || (tanCur == tanMin && p->x > m->x)) && locallyInside(p, hole))
{
m = p;
tanMin = tanCur;
}
}
p = p->next;
}
return m;
}
// interlink polygon nodes in z-order
template <typename N>
void Earcut<N>::indexCurve(Node* start)
{
assert(start);
Node* p = start;
do
{
p->z = p->z ? p->z : zOrder(p->x, p->y);
p->prevZ = p->prev;
p->nextZ = p->next;
p = p->next;
} while (p != start);
p->prevZ->nextZ = nullptr;
p->prevZ = nullptr;
sortLinked(p);
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
template <typename N>
typename Earcut<N>::Node* Earcut<N>::sortLinked(Node* list)
{
assert(list);
Node* p;
Node* q;
Node* e;
Node* tail;
int i, numMerges, pSize, qSize;
int inSize = 1;
for (;;)
{
p = list;
list = nullptr;
tail = nullptr;
numMerges = 0;
while (p)
{
numMerges++;
q = p;
pSize = 0;
for (i = 0; i < inSize; i++)
{
pSize++;
q = q->nextZ;
if (!q)
break;
}
qSize = inSize;
while (pSize > 0 || (qSize > 0 && q))
{
if (pSize == 0)
{
e = q;
q = q->nextZ;
qSize--;
}
else if (qSize == 0 || !q)
{
e = p;
p = p->nextZ;
pSize--;
}
else if (p->z <= q->z)
{
e = p;
p = p->nextZ;
pSize--;
}
else
{
e = q;
q = q->nextZ;
qSize--;
}
if (tail)
tail->nextZ = e;
else
list = e;
e->prevZ = tail;
tail = e;
}
p = q;
}
tail->nextZ = nullptr;
if (numMerges <= 1)
return list;
inSize *= 2;
}
}
// z-order of a Vertex given coords and size of the data bounding box
template <typename N>
int32_t Earcut<N>::zOrder(const double x_, const double y_)
{
// coords are transformed into non-negative 15-bit integer range
int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size);
int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size);
x = (x | (x << 8)) & 0x00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F;
x = (x | (x << 2)) & 0x33333333;
x = (x | (x << 1)) & 0x55555555;
y = (y | (y << 8)) & 0x00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F;
y = (y | (y << 2)) & 0x33333333;
y = (y | (y << 1)) & 0x55555555;
return x | (y << 1);
}
// find the leftmost node of a polygon ring
template <typename N>
typename Earcut<N>::Node* Earcut<N>::getLeftmost(Node* start)
{
Node* p = start;
Node* leftmost = start;
do
{
if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y))
leftmost = p;
p = p->next;
} while (p != start);
return leftmost;
}
// check if a point lies within a convex triangle
template <typename N>
bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px,
double py) const
{
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
(bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
template <typename N>
bool Earcut<N>::isValidDiagonal(Node* a, Node* b)
{
return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && locallyInside(a, b) &&
locallyInside(b, a) && middleInside(a, b);
}
// signed area of a triangle
template <typename N>
double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const
{
return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
}
// check if two points are equal
template <typename N>
bool Earcut<N>::equals(const Node* p1, const Node* p2)
{
return p1->x == p2->x && p1->y == p2->y;
}
// check if two segments intersect
template <typename N>
bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2)
{
if ((equals(p1, q1) && equals(p2, q2)) || (equals(p1, q2) && equals(p2, q1)))
return true;
return (area(p1, q1, p2) > 0) != (area(p1, q1, q2) > 0) && (area(p2, q2, p1) > 0) != (area(p2, q2, q1) > 0);
}
// check if a polygon diagonal intersects any polygon segments
template <typename N>
bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b)
{
const Node* p = a;
do
{
if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i && intersects(p, p->next, a, b))
return true;
p = p->next;
} while (p != a);
return false;
}
// check if a polygon diagonal is locally inside the polygon
template <typename N>
bool Earcut<N>::locallyInside(const Node* a, const Node* b)
{
return area(a->prev, a, a->next) < 0 ? area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0
: area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
}
// check if the middle Vertex of a polygon diagonal is inside the polygon
template <typename N>
bool Earcut<N>::middleInside(const Node* a, const Node* b)
{
const Node* p = a;
bool inside = false;
double px = (a->x + b->x) / 2;
double py = (a->y + b->y) / 2;
do
{
if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
(px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
inside = !inside;
p = p->next;
} while (p != a);
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
// single ring
template <typename N>
typename Earcut<N>::Node* Earcut<N>::splitPolygon(Node* a, Node* b)
{
Node* a2 = nodes.construct(a->i, a->x, a->y);
Node* b2 = nodes.construct(b->i, b->x, b->y);
Node* an = a->next;
Node* bp = b->prev;
a->next = b;
b->prev = a;
a2->next = an;
an->prev = a2;
b2->next = a2;
a2->prev = b2;
bp->next = b2;
b2->prev = bp;
return b2;
}
// create a node and util::optionally link it with previous one (in a circular doubly linked list)
template <typename N>
template <typename Point>
typename Earcut<N>::Node* Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last)
{
Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
if (!last)
{
p->prev = p;
p->next = p;
}
else
{
assert(last);
p->next = last->next;
p->prev = last;
last->next->prev = p;
last->next = p;
}
return p;
}
template <typename N>
void Earcut<N>::removeNode(Node* p)
{
p->next->prev = p->prev;
p->prev->next = p->next;
if (p->prevZ)
p->prevZ->nextZ = p->nextZ;
if (p->nextZ)
p->nextZ->prevZ = p->prevZ;
}
}
template <typename N = uint32_t, typename Polygon>
std::vector<N> earcut(const Polygon& poly)
{
mapbox::detail::Earcut<N> earcut;
earcut(poly);
return std::move(earcut.indices);
}
}