.. _program_listing_file__tmp_ws_src_hpp-fcl_include_hpp_fcl_internal_BV_splitter.h: Program Listing for File BV_splitter.h ====================================== |exhale_lsh| :ref:`Return to documentation for file ` (``/tmp/ws/src/hpp-fcl/include/hpp/fcl/internal/BV_splitter.h``) .. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS .. code-block:: cpp /* * Software License Agreement (BSD License) * * Copyright (c) 2011-2014, Willow Garage, Inc. * Copyright (c) 2014-2015, Open Source Robotics Foundation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Open Source Robotics Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef HPP_FCL_BV_SPLITTER_H #define HPP_FCL_BV_SPLITTER_H #include #include #include #include #include namespace hpp { namespace fcl { enum SplitMethodType { SPLIT_METHOD_MEAN, SPLIT_METHOD_MEDIAN, SPLIT_METHOD_BV_CENTER }; template class BVSplitter { public: BVSplitter(SplitMethodType method) : split_vector(0, 0, 0), split_method(method) {} virtual ~BVSplitter() {} void set(Vec3f* vertices_, Triangle* tri_indices_, BVHModelType type_) { vertices = vertices_; tri_indices = tri_indices_; type = type_; } void computeRule(const BV& bv, unsigned int* primitive_indices, unsigned int num_primitives) { switch (split_method) { case SPLIT_METHOD_MEAN: computeRule_mean(bv, primitive_indices, num_primitives); break; case SPLIT_METHOD_MEDIAN: computeRule_median(bv, primitive_indices, num_primitives); break; case SPLIT_METHOD_BV_CENTER: computeRule_bvcenter(bv, primitive_indices, num_primitives); break; default: std::cerr << "Split method not supported" << std::endl; } } bool apply(const Vec3f& q) const { return q[split_axis] > split_value; } void clear() { vertices = NULL; tri_indices = NULL; type = BVH_MODEL_UNKNOWN; } protected: int split_axis; Vec3f split_vector; FCL_REAL split_value; Vec3f* vertices; Triangle* tri_indices; BVHModelType type; SplitMethodType split_method; void computeRule_bvcenter(const BV& bv, unsigned int*, unsigned int) { Vec3f center = bv.center(); int axis = 2; if (bv.width() >= bv.height() && bv.width() >= bv.depth()) axis = 0; else if (bv.height() >= bv.width() && bv.height() >= bv.depth()) axis = 1; split_axis = axis; split_value = center[axis]; } void computeRule_mean(const BV& bv, unsigned int* primitive_indices, unsigned int num_primitives) { int axis = 2; if (bv.width() >= bv.height() && bv.width() >= bv.depth()) axis = 0; else if (bv.height() >= bv.width() && bv.height() >= bv.depth()) axis = 1; split_axis = axis; FCL_REAL sum = 0; if (type == BVH_MODEL_TRIANGLES) { for (unsigned int i = 0; i < num_primitives; ++i) { const Triangle& t = tri_indices[primitive_indices[i]]; sum += (vertices[t[0]][split_axis] + vertices[t[1]][split_axis] + vertices[t[2]][split_axis]); } sum /= 3; } else if (type == BVH_MODEL_POINTCLOUD) { for (unsigned int i = 0; i < num_primitives; ++i) { sum += vertices[primitive_indices[i]][split_axis]; } } split_value = sum / num_primitives; } void computeRule_median(const BV& bv, unsigned int* primitive_indices, unsigned int num_primitives) { int axis = 2; if (bv.width() >= bv.height() && bv.width() >= bv.depth()) axis = 0; else if (bv.height() >= bv.width() && bv.height() >= bv.depth()) axis = 1; split_axis = axis; std::vector proj((size_t)num_primitives); if (type == BVH_MODEL_TRIANGLES) { for (unsigned int i = 0; i < num_primitives; ++i) { const Triangle& t = tri_indices[primitive_indices[i]]; proj[i] = (vertices[t[0]][split_axis] + vertices[t[1]][split_axis] + vertices[t[2]][split_axis]) / 3; } } else if (type == BVH_MODEL_POINTCLOUD) { for (unsigned int i = 0; i < num_primitives; ++i) proj[i] = vertices[primitive_indices[i]][split_axis]; } std::sort(proj.begin(), proj.end()); if (num_primitives % 2 == 1) { split_value = proj[(num_primitives - 1) / 2]; } else { split_value = (proj[num_primitives / 2] + proj[num_primitives / 2 - 1]) / 2; } } }; template <> bool HPP_FCL_DLLAPI BVSplitter::apply(const Vec3f& q) const; template <> bool HPP_FCL_DLLAPI BVSplitter::apply(const Vec3f& q) const; template <> bool HPP_FCL_DLLAPI BVSplitter::apply(const Vec3f& q) const; template <> bool HPP_FCL_DLLAPI BVSplitter::apply(const Vec3f& q) const; template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_bvcenter( const OBB& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_mean( const OBB& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_median( const OBB& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_bvcenter( const RSS& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_mean( const RSS& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_median( const RSS& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_bvcenter( const kIOS& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_mean( const kIOS& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_median( const kIOS& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_bvcenter( const OBBRSS& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_mean( const OBBRSS& bv, unsigned int* primitive_indices, unsigned int num_primitives); template <> void HPP_FCL_DLLAPI BVSplitter::computeRule_median( const OBBRSS& bv, unsigned int* primitive_indices, unsigned int num_primitives); } // namespace fcl } // namespace hpp #endif