Program Listing for File catch_amalgamated.hpp

Return to documentation for file (include/catch_amalgamated.hpp)

//              Copyright Catch2 Authors
// Distributed under the Boost Software License, Version 1.0.
//   (See accompanying file LICENSE.txt or copy at
//        https://www.boost.org/LICENSE_1_0.txt)

// SPDX-License-Identifier: BSL-1.0

//  Catch v3.5.4
//  Generated: 2024-04-10 12:03:45.785902
//  ----------------------------------------------------------
//  This file is an amalgamation of multiple different files.
//  You probably shouldn't edit it directly.
//  ----------------------------------------------------------
#ifndef CATCH_AMALGAMATED_HPP_INCLUDED
#define CATCH_AMALGAMATED_HPP_INCLUDED


#ifndef CATCH_ALL_HPP_INCLUDED
#define CATCH_ALL_HPP_INCLUDED



#ifndef CATCH_BENCHMARK_ALL_HPP_INCLUDED
#define CATCH_BENCHMARK_ALL_HPP_INCLUDED



// Adapted from donated nonius code.

#ifndef CATCH_BENCHMARK_HPP_INCLUDED
#define CATCH_BENCHMARK_HPP_INCLUDED



#ifndef CATCH_COMPILER_CAPABILITIES_HPP_INCLUDED
#define CATCH_COMPILER_CAPABILITIES_HPP_INCLUDED

// Detect a number of compiler features - by compiler
// The following features are defined:
//
// CATCH_CONFIG_WINDOWS_SEH : is Windows SEH supported?
// CATCH_CONFIG_POSIX_SIGNALS : are POSIX signals supported?
// CATCH_CONFIG_DISABLE_EXCEPTIONS : Are exceptions enabled?
// ****************
// Note to maintainers: if new toggles are added please document them
// in configuration.md, too
// ****************

// In general each macro has a _NO_<feature name> form
// (e.g. CATCH_CONFIG_NO_POSIX_SIGNALS) which disables the feature.
// Many features, at point of detection, define an _INTERNAL_ macro, so they
// can be combined, en-mass, with the _NO_ forms later.



#ifndef CATCH_PLATFORM_HPP_INCLUDED
#define CATCH_PLATFORM_HPP_INCLUDED

// See e.g.:
// https://opensource.apple.com/source/CarbonHeaders/CarbonHeaders-18.1/TargetConditionals.h.auto.html
#ifdef __APPLE__
#  ifndef __has_extension
#    define __has_extension(x) 0
#  endif
#  include <TargetConditionals.h>
#  if (defined(TARGET_OS_OSX) && TARGET_OS_OSX == 1) || \
      (defined(TARGET_OS_MAC) && TARGET_OS_MAC == 1)
#    define CATCH_PLATFORM_MAC
#  elif (defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE == 1)
#    define CATCH_PLATFORM_IPHONE
#  endif

#elif defined(linux) || defined(__linux) || defined(__linux__)
#  define CATCH_PLATFORM_LINUX

#elif defined(WIN32) || defined(__WIN32__) || defined(_WIN32) || defined(_MSC_VER) || defined(__MINGW32__)
#  define CATCH_PLATFORM_WINDOWS

#  if defined( WINAPI_FAMILY ) && ( WINAPI_FAMILY == WINAPI_FAMILY_APP )
#      define CATCH_PLATFORM_WINDOWS_UWP
#  endif

#elif defined(__ORBIS__) || defined(__PROSPERO__)
#  define CATCH_PLATFORM_PLAYSTATION

#endif

#endif // CATCH_PLATFORM_HPP_INCLUDED

#ifdef __cplusplus

#  if (__cplusplus >= 201703L) || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#    define CATCH_CPP17_OR_GREATER
#  endif

#  if (__cplusplus >= 202002L) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L)
#    define CATCH_CPP20_OR_GREATER
#  endif

#endif

// Only GCC compiler should be used in this block, so other compilers trying to
// mask themselves as GCC should be ignored.
#if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && !defined(__CUDACC__) && !defined(__LCC__) && !defined(__NVCOMPILER)
#    define CATCH_INTERNAL_START_WARNINGS_SUPPRESSION _Pragma( "GCC diagnostic push" )
#    define CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION  _Pragma( "GCC diagnostic pop" )

// This only works on GCC 9+. so we have to also add a global suppression of Wparentheses
// for older versions of GCC.
#    define CATCH_INTERNAL_SUPPRESS_PARENTHESES_WARNINGS \
         _Pragma( "GCC diagnostic ignored \"-Wparentheses\"" )

#    define CATCH_INTERNAL_SUPPRESS_UNUSED_RESULT \
         _Pragma( "GCC diagnostic ignored \"-Wunused-result\"" )

#    define CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS \
         _Pragma( "GCC diagnostic ignored \"-Wunused-variable\"" )

#    define CATCH_INTERNAL_SUPPRESS_USELESS_CAST_WARNINGS \
         _Pragma( "GCC diagnostic ignored \"-Wuseless-cast\"" )

#    define CATCH_INTERNAL_SUPPRESS_SHADOW_WARNINGS \
         _Pragma( "GCC diagnostic ignored \"-Wshadow\"" )

#    define CATCH_INTERNAL_IGNORE_BUT_WARN(...) (void)__builtin_constant_p(__VA_ARGS__)

#endif

#if defined(__NVCOMPILER)
#    define CATCH_INTERNAL_START_WARNINGS_SUPPRESSION _Pragma( "diag push" )
#    define CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION  _Pragma( "diag pop" )
#    define CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS _Pragma( "diag_suppress declared_but_not_referenced" )
#endif

#if defined(__CUDACC__) && !defined(__clang__)
#  ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
// New pragmas introduced in CUDA 11.5+
#    define CATCH_INTERNAL_START_WARNINGS_SUPPRESSION _Pragma( "nv_diagnostic push" )
#    define CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION  _Pragma( "nv_diagnostic pop" )
#    define CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS _Pragma( "nv_diag_suppress 177" )
#  else
#    define CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS _Pragma( "diag_suppress 177" )
#  endif
#endif

// clang-cl defines _MSC_VER as well as __clang__, which could cause the
// start/stop internal suppression macros to be double defined.
#if defined(__clang__) && !defined(_MSC_VER)

#    define CATCH_INTERNAL_START_WARNINGS_SUPPRESSION _Pragma( "clang diagnostic push" )
#    define CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION  _Pragma( "clang diagnostic pop" )

#endif // __clang__ && !_MSC_VER

#if defined(__clang__)

// As of this writing, IBM XL's implementation of __builtin_constant_p has a bug
// which results in calls to destructors being emitted for each temporary,
// without a matching initialization. In practice, this can result in something
// like `std::string::~string` being called on an uninitialized value.
//
// For example, this code will likely segfault under IBM XL:
// ```
// REQUIRE(std::string("12") + "34" == "1234")
// ```
//
// Similarly, NVHPC's implementation of `__builtin_constant_p` has a bug which
// results in calls to the immediately evaluated lambda expressions to be
// reported as unevaluated lambdas.
// https://developer.nvidia.com/nvidia_bug/3321845.
//
// Therefore, `CATCH_INTERNAL_IGNORE_BUT_WARN` is not implemented.
#  if !defined(__ibmxl__) && !defined(__CUDACC__) && !defined( __NVCOMPILER )
#    define CATCH_INTERNAL_IGNORE_BUT_WARN(...) (void)__builtin_constant_p(__VA_ARGS__) /* NOLINT(cppcoreguidelines-pro-type-vararg, hicpp-vararg) */
#  endif


#    define CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
         _Pragma( "clang diagnostic ignored \"-Wexit-time-destructors\"" ) \
         _Pragma( "clang diagnostic ignored \"-Wglobal-constructors\"")

#    define CATCH_INTERNAL_SUPPRESS_PARENTHESES_WARNINGS \
         _Pragma( "clang diagnostic ignored \"-Wparentheses\"" )

#    define CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS \
         _Pragma( "clang diagnostic ignored \"-Wunused-variable\"" )

#    define CATCH_INTERNAL_SUPPRESS_ZERO_VARIADIC_WARNINGS \
         _Pragma( "clang diagnostic ignored \"-Wgnu-zero-variadic-macro-arguments\"" )

#    define CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS \
         _Pragma( "clang diagnostic ignored \"-Wunused-template\"" )

#    define CATCH_INTERNAL_SUPPRESS_COMMA_WARNINGS \
        _Pragma( "clang diagnostic ignored \"-Wcomma\"" )

#    define CATCH_INTERNAL_SUPPRESS_SHADOW_WARNINGS \
        _Pragma( "clang diagnostic ignored \"-Wshadow\"" )

#endif // __clang__


// We know some environments not to support full POSIX signals
#if defined( CATCH_PLATFORM_WINDOWS ) ||                                       \
    defined( CATCH_PLATFORM_PLAYSTATION ) ||                                   \
    defined( __CYGWIN__ ) ||                                                   \
    defined( __QNX__ ) ||                                                      \
    defined( __EMSCRIPTEN__ ) ||                                               \
    defined( __DJGPP__ ) ||                                                    \
    defined( __OS400__ )
#    define CATCH_INTERNAL_CONFIG_NO_POSIX_SIGNALS
#else
#    define CATCH_INTERNAL_CONFIG_POSIX_SIGNALS
#endif

// Assume that some platforms do not support getenv.
#if defined( CATCH_PLATFORM_WINDOWS_UWP ) ||                                   \
    defined( CATCH_PLATFORM_PLAYSTATION ) ||                                   \
    defined( _GAMING_XBOX )
#    define CATCH_INTERNAL_CONFIG_NO_GETENV
#else
#    define CATCH_INTERNAL_CONFIG_GETENV
#endif

// Android somehow still does not support std::to_string
#if defined(__ANDROID__)
#    define CATCH_INTERNAL_CONFIG_NO_CPP11_TO_STRING
#endif

// Not all Windows environments support SEH properly
#if defined(__MINGW32__)
#    define CATCH_INTERNAL_CONFIG_NO_WINDOWS_SEH
#endif

// PS4
#if defined(__ORBIS__)
#    define CATCH_INTERNAL_CONFIG_NO_NEW_CAPTURE
#endif

// Cygwin
#ifdef __CYGWIN__

// Required for some versions of Cygwin to declare gettimeofday
// see: http://stackoverflow.com/questions/36901803/gettimeofday-not-declared-in-this-scope-cygwin
#   define _BSD_SOURCE
// some versions of cygwin (most) do not support std::to_string. Use the libstd check.
// https://gcc.gnu.org/onlinedocs/gcc-4.8.2/libstdc++/api/a01053_source.html line 2812-2813
# if !((__cplusplus >= 201103L) && defined(_GLIBCXX_USE_C99) \
           && !defined(_GLIBCXX_HAVE_BROKEN_VSWPRINTF))

#    define CATCH_INTERNAL_CONFIG_NO_CPP11_TO_STRING

# endif
#endif // __CYGWIN__

// Visual C++
#if defined(_MSC_VER)

// We want to defer to nvcc-specific warning suppression if we are compiled
// with nvcc masquerading for MSVC.
#    if !defined( __CUDACC__ )
#        define CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
            __pragma( warning( push ) )
#        define CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
            __pragma( warning( pop ) )
#    endif

// Universal Windows platform does not support SEH
// Or console colours (or console at all...)
#  if defined(CATCH_PLATFORM_WINDOWS_UWP)
#    define CATCH_INTERNAL_CONFIG_NO_COLOUR_WIN32
#  else
#    define CATCH_INTERNAL_CONFIG_WINDOWS_SEH
#  endif

// MSVC traditional preprocessor needs some workaround for __VA_ARGS__
// _MSVC_TRADITIONAL == 0 means new conformant preprocessor
// _MSVC_TRADITIONAL == 1 means old traditional non-conformant preprocessor
#  if !defined(__clang__) // Handle Clang masquerading for msvc
#    if !defined(_MSVC_TRADITIONAL) || (defined(_MSVC_TRADITIONAL) && _MSVC_TRADITIONAL)
#      define CATCH_INTERNAL_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#    endif // MSVC_TRADITIONAL
#  endif // __clang__

#endif // _MSC_VER

#if defined(_REENTRANT) || defined(_MSC_VER)
// Enable async processing, as -pthread is specified or no additional linking is required
# define CATCH_INTERNAL_CONFIG_USE_ASYNC
#endif // _MSC_VER

// Check if we are compiled with -fno-exceptions or equivalent
#if defined(__EXCEPTIONS) || defined(__cpp_exceptions) || defined(_CPPUNWIND)
#  define CATCH_INTERNAL_CONFIG_EXCEPTIONS_ENABLED
#endif


// Embarcadero C++Build
#if defined(__BORLANDC__)
    #define CATCH_INTERNAL_CONFIG_POLYFILL_ISNAN
#endif


// RTX is a special version of Windows that is real time.
// This means that it is detected as Windows, but does not provide
// the same set of capabilities as real Windows does.
#if defined(UNDER_RTSS) || defined(RTX64_BUILD)
    #define CATCH_INTERNAL_CONFIG_NO_WINDOWS_SEH
    #define CATCH_INTERNAL_CONFIG_NO_ASYNC
    #define CATCH_INTERNAL_CONFIG_NO_COLOUR_WIN32
#endif

#if !defined(_GLIBCXX_USE_C99_MATH_TR1)
#define CATCH_INTERNAL_CONFIG_GLOBAL_NEXTAFTER
#endif

// Various stdlib support checks that require __has_include
#if defined(__has_include)
  // Check if string_view is available and usable
  #if __has_include(<string_view>) && defined(CATCH_CPP17_OR_GREATER)
  #    define CATCH_INTERNAL_CONFIG_CPP17_STRING_VIEW
  #endif

  // Check if optional is available and usable
  #  if __has_include(<optional>) && defined(CATCH_CPP17_OR_GREATER)
  #    define CATCH_INTERNAL_CONFIG_CPP17_OPTIONAL
  #  endif // __has_include(<optional>) && defined(CATCH_CPP17_OR_GREATER)

  // Check if byte is available and usable
  #  if __has_include(<cstddef>) && defined(CATCH_CPP17_OR_GREATER)
  #    include <cstddef>
  #    if defined(__cpp_lib_byte) && (__cpp_lib_byte > 0)
  #      define CATCH_INTERNAL_CONFIG_CPP17_BYTE
  #    endif
  #  endif // __has_include(<cstddef>) && defined(CATCH_CPP17_OR_GREATER)

  // Check if variant is available and usable
  #  if __has_include(<variant>) && defined(CATCH_CPP17_OR_GREATER)
  #    if defined(__clang__) && (__clang_major__ < 8)
         // work around clang bug with libstdc++ https://bugs.llvm.org/show_bug.cgi?id=31852
         // fix should be in clang 8, workaround in libstdc++ 8.2
  #      include <ciso646>
  #      if defined(__GLIBCXX__) && defined(_GLIBCXX_RELEASE) && (_GLIBCXX_RELEASE < 9)
  #        define CATCH_CONFIG_NO_CPP17_VARIANT
  #      else
  #        define CATCH_INTERNAL_CONFIG_CPP17_VARIANT
  #      endif // defined(__GLIBCXX__) && defined(_GLIBCXX_RELEASE) && (_GLIBCXX_RELEASE < 9)
  #    else
  #      define CATCH_INTERNAL_CONFIG_CPP17_VARIANT
  #    endif // defined(__clang__) && (__clang_major__ < 8)
  #  endif // __has_include(<variant>) && defined(CATCH_CPP17_OR_GREATER)
#endif // defined(__has_include)


#if defined(CATCH_INTERNAL_CONFIG_WINDOWS_SEH) && !defined(CATCH_CONFIG_NO_WINDOWS_SEH) && !defined(CATCH_CONFIG_WINDOWS_SEH) && !defined(CATCH_INTERNAL_CONFIG_NO_WINDOWS_SEH)
#   define CATCH_CONFIG_WINDOWS_SEH
#endif
// This is set by default, because we assume that unix compilers are posix-signal-compatible by default.
#if defined(CATCH_INTERNAL_CONFIG_POSIX_SIGNALS) && !defined(CATCH_INTERNAL_CONFIG_NO_POSIX_SIGNALS) && !defined(CATCH_CONFIG_NO_POSIX_SIGNALS) && !defined(CATCH_CONFIG_POSIX_SIGNALS)
#   define CATCH_CONFIG_POSIX_SIGNALS
#endif

#if defined(CATCH_INTERNAL_CONFIG_GETENV) && !defined(CATCH_INTERNAL_CONFIG_NO_GETENV) && !defined(CATCH_CONFIG_NO_GETENV) && !defined(CATCH_CONFIG_GETENV)
#   define CATCH_CONFIG_GETENV
#endif

#if !defined(CATCH_INTERNAL_CONFIG_NO_CPP11_TO_STRING) && !defined(CATCH_CONFIG_NO_CPP11_TO_STRING) && !defined(CATCH_CONFIG_CPP11_TO_STRING)
#    define CATCH_CONFIG_CPP11_TO_STRING
#endif

#if defined(CATCH_INTERNAL_CONFIG_CPP17_OPTIONAL) && !defined(CATCH_CONFIG_NO_CPP17_OPTIONAL) && !defined(CATCH_CONFIG_CPP17_OPTIONAL)
#  define CATCH_CONFIG_CPP17_OPTIONAL
#endif

#if defined(CATCH_INTERNAL_CONFIG_CPP17_STRING_VIEW) && !defined(CATCH_CONFIG_NO_CPP17_STRING_VIEW) && !defined(CATCH_CONFIG_CPP17_STRING_VIEW)
#  define CATCH_CONFIG_CPP17_STRING_VIEW
#endif

#if defined(CATCH_INTERNAL_CONFIG_CPP17_VARIANT) && !defined(CATCH_CONFIG_NO_CPP17_VARIANT) && !defined(CATCH_CONFIG_CPP17_VARIANT)
#  define CATCH_CONFIG_CPP17_VARIANT
#endif

#if defined(CATCH_INTERNAL_CONFIG_CPP17_BYTE) && !defined(CATCH_CONFIG_NO_CPP17_BYTE) && !defined(CATCH_CONFIG_CPP17_BYTE)
#  define CATCH_CONFIG_CPP17_BYTE
#endif


#if defined(CATCH_CONFIG_EXPERIMENTAL_REDIRECT)
#  define CATCH_INTERNAL_CONFIG_NEW_CAPTURE
#endif

#if defined(CATCH_INTERNAL_CONFIG_NEW_CAPTURE) && !defined(CATCH_INTERNAL_CONFIG_NO_NEW_CAPTURE) && !defined(CATCH_CONFIG_NO_NEW_CAPTURE) && !defined(CATCH_CONFIG_NEW_CAPTURE)
#  define CATCH_CONFIG_NEW_CAPTURE
#endif

#if !defined( CATCH_INTERNAL_CONFIG_EXCEPTIONS_ENABLED ) && \
    !defined( CATCH_CONFIG_DISABLE_EXCEPTIONS ) &&          \
    !defined( CATCH_CONFIG_NO_DISABLE_EXCEPTIONS )
#  define CATCH_CONFIG_DISABLE_EXCEPTIONS
#endif

#if defined(CATCH_INTERNAL_CONFIG_POLYFILL_ISNAN) && !defined(CATCH_CONFIG_NO_POLYFILL_ISNAN) && !defined(CATCH_CONFIG_POLYFILL_ISNAN)
#  define CATCH_CONFIG_POLYFILL_ISNAN
#endif

#if defined(CATCH_INTERNAL_CONFIG_USE_ASYNC)  && !defined(CATCH_INTERNAL_CONFIG_NO_ASYNC) && !defined(CATCH_CONFIG_NO_USE_ASYNC) && !defined(CATCH_CONFIG_USE_ASYNC)
#  define CATCH_CONFIG_USE_ASYNC
#endif

#if defined(CATCH_INTERNAL_CONFIG_GLOBAL_NEXTAFTER) && !defined(CATCH_CONFIG_NO_GLOBAL_NEXTAFTER) && !defined(CATCH_CONFIG_GLOBAL_NEXTAFTER)
#  define CATCH_CONFIG_GLOBAL_NEXTAFTER
#endif


// Even if we do not think the compiler has that warning, we still have
// to provide a macro that can be used by the code.
#if !defined(CATCH_INTERNAL_START_WARNINGS_SUPPRESSION)
#   define CATCH_INTERNAL_START_WARNINGS_SUPPRESSION
#endif
#if !defined(CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION)
#   define CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_PARENTHESES_WARNINGS)
#   define CATCH_INTERNAL_SUPPRESS_PARENTHESES_WARNINGS
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS)
#   define CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_UNUSED_RESULT)
#   define CATCH_INTERNAL_SUPPRESS_UNUSED_RESULT
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS)
#   define CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_USELESS_CAST_WARNINGS)
#   define CATCH_INTERNAL_SUPPRESS_USELESS_CAST_WARNINGS
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_ZERO_VARIADIC_WARNINGS)
#   define CATCH_INTERNAL_SUPPRESS_ZERO_VARIADIC_WARNINGS
#endif
#if !defined( CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS )
#    define CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS
#endif
#if !defined( CATCH_INTERNAL_SUPPRESS_COMMA_WARNINGS )
#    define CATCH_INTERNAL_SUPPRESS_COMMA_WARNINGS
#endif
#if !defined( CATCH_INTERNAL_SUPPRESS_SHADOW_WARNINGS )
#    define CATCH_INTERNAL_SUPPRESS_SHADOW_WARNINGS
#endif


// The goal of this macro is to avoid evaluation of the arguments, but
// still have the compiler warn on problems inside...
#if !defined(CATCH_INTERNAL_IGNORE_BUT_WARN)
#   define CATCH_INTERNAL_IGNORE_BUT_WARN(...)
#endif

#if defined(__APPLE__) && defined(__apple_build_version__) && (__clang_major__ < 10)
#   undef CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS
#elif defined(__clang__) && (__clang_major__ < 5)
#   undef CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS
#endif


#if defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
#define CATCH_TRY if ((true))
#define CATCH_CATCH_ALL if ((false))
#define CATCH_CATCH_ANON(type) if ((false))
#else
#define CATCH_TRY try
#define CATCH_CATCH_ALL catch (...)
#define CATCH_CATCH_ANON(type) catch (type)
#endif

#if defined(CATCH_INTERNAL_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR) && !defined(CATCH_CONFIG_NO_TRADITIONAL_MSVC_PREPROCESSOR) && !defined(CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR)
#define CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#endif

#if defined( CATCH_PLATFORM_WINDOWS ) &&       \
    !defined( CATCH_CONFIG_COLOUR_WIN32 ) && \
    !defined( CATCH_CONFIG_NO_COLOUR_WIN32 ) && \
    !defined( CATCH_INTERNAL_CONFIG_NO_COLOUR_WIN32 )
#    define CATCH_CONFIG_COLOUR_WIN32
#endif

#if defined( CATCH_CONFIG_SHARED_LIBRARY ) && defined( _MSC_VER ) && \
    !defined( CATCH_CONFIG_STATIC )
#    ifdef Catch2_EXPORTS
#        define CATCH_EXPORT //__declspec( dllexport ) // not needed
#    else
#        define CATCH_EXPORT __declspec( dllimport )
#    endif
#else
#    define CATCH_EXPORT
#endif

#endif // CATCH_COMPILER_CAPABILITIES_HPP_INCLUDED


#ifndef CATCH_CONTEXT_HPP_INCLUDED
#define CATCH_CONTEXT_HPP_INCLUDED


namespace Catch {

    class IResultCapture;
    class IConfig;

    class Context {
        IConfig const* m_config = nullptr;
        IResultCapture* m_resultCapture = nullptr;

        CATCH_EXPORT static Context* currentContext;
        friend Context& getCurrentMutableContext();
        friend Context const& getCurrentContext();
        static void createContext();
        friend void cleanUpContext();

    public:
        IResultCapture* getResultCapture() const { return m_resultCapture; }
        IConfig const* getConfig() const { return m_config; }
        void setResultCapture( IResultCapture* resultCapture );
        void setConfig( IConfig const* config );
    };

    Context& getCurrentMutableContext();

    inline Context const& getCurrentContext() {
        // We duplicate the logic from `getCurrentMutableContext` here,
        // to avoid paying the call overhead in debug mode.
        if ( !Context::currentContext ) { Context::createContext(); }
        // NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn)
        return *Context::currentContext;
    }

    void cleanUpContext();

    class SimplePcg32;
    SimplePcg32& sharedRng();
}

#endif // CATCH_CONTEXT_HPP_INCLUDED


#ifndef CATCH_MOVE_AND_FORWARD_HPP_INCLUDED
#define CATCH_MOVE_AND_FORWARD_HPP_INCLUDED

#include <type_traits>

#define CATCH_MOVE(...) static_cast<std::remove_reference_t<decltype(__VA_ARGS__)>&&>(__VA_ARGS__)

#define CATCH_FORWARD(...) static_cast<decltype(__VA_ARGS__)&&>(__VA_ARGS__)

#endif // CATCH_MOVE_AND_FORWARD_HPP_INCLUDED


#ifndef CATCH_TEST_FAILURE_EXCEPTION_HPP_INCLUDED
#define CATCH_TEST_FAILURE_EXCEPTION_HPP_INCLUDED

namespace Catch {

    struct TestFailureException{};
    struct TestSkipException {};

    [[noreturn]] void throw_test_failure_exception();

    [[noreturn]] void throw_test_skip_exception();

} // namespace Catch

#endif // CATCH_TEST_FAILURE_EXCEPTION_HPP_INCLUDED


#ifndef CATCH_UNIQUE_NAME_HPP_INCLUDED
#define CATCH_UNIQUE_NAME_HPP_INCLUDED




#ifndef CATCH_CONFIG_COUNTER_HPP_INCLUDED
#define CATCH_CONFIG_COUNTER_HPP_INCLUDED


#if ( !defined(__JETBRAINS_IDE__) || __JETBRAINS_IDE__ >= 20170300L )
    #define CATCH_INTERNAL_CONFIG_COUNTER
#endif

#if defined( CATCH_INTERNAL_CONFIG_COUNTER ) && \
    !defined( CATCH_CONFIG_NO_COUNTER ) && \
    !defined( CATCH_CONFIG_COUNTER )
#    define CATCH_CONFIG_COUNTER
#endif


#endif // CATCH_CONFIG_COUNTER_HPP_INCLUDED
#define INTERNAL_CATCH_UNIQUE_NAME_LINE2( name, line ) name##line
#define INTERNAL_CATCH_UNIQUE_NAME_LINE( name, line ) INTERNAL_CATCH_UNIQUE_NAME_LINE2( name, line )
#ifdef CATCH_CONFIG_COUNTER
#  define INTERNAL_CATCH_UNIQUE_NAME( name ) INTERNAL_CATCH_UNIQUE_NAME_LINE( name, __COUNTER__ )
#else
#  define INTERNAL_CATCH_UNIQUE_NAME( name ) INTERNAL_CATCH_UNIQUE_NAME_LINE( name, __LINE__ )
#endif

#endif // CATCH_UNIQUE_NAME_HPP_INCLUDED


#ifndef CATCH_INTERFACES_CAPTURE_HPP_INCLUDED
#define CATCH_INTERFACES_CAPTURE_HPP_INCLUDED

#include <string>
#include <chrono>



#ifndef CATCH_STRINGREF_HPP_INCLUDED
#define CATCH_STRINGREF_HPP_INCLUDED

#include <cstddef>
#include <string>
#include <iosfwd>
#include <cassert>

#include <cstring>

namespace Catch {

    class StringRef {
    public:
        using size_type = std::size_t;
        using const_iterator = const char*;

        static constexpr size_type npos{ static_cast<size_type>( -1 ) };

    private:
        static constexpr char const* const s_empty = "";

        char const* m_start = s_empty;
        size_type m_size = 0;

    public: // construction
        constexpr StringRef() noexcept = default;

        StringRef( char const* rawChars ) noexcept;

        constexpr StringRef( char const* rawChars, size_type size ) noexcept
        :   m_start( rawChars ),
            m_size( size )
        {}

        StringRef( std::string const& stdString ) noexcept
        :   m_start( stdString.c_str() ),
            m_size( stdString.size() )
        {}

        explicit operator std::string() const {
            return std::string(m_start, m_size);
        }

    public: // operators
        auto operator == ( StringRef other ) const noexcept -> bool {
            return m_size == other.m_size
                && (std::memcmp( m_start, other.m_start, m_size ) == 0);
        }
        auto operator != (StringRef other) const noexcept -> bool {
            return !(*this == other);
        }

        constexpr auto operator[] ( size_type index ) const noexcept -> char {
            assert(index < m_size);
            return m_start[index];
        }

        bool operator<(StringRef rhs) const noexcept;

    public: // named queries
        constexpr auto empty() const noexcept -> bool {
            return m_size == 0;
        }
        constexpr auto size() const noexcept -> size_type {
            return m_size;
        }

        // Returns a substring of [start, start + length).
        // If start + length > size(), then the substring is [start, size()).
        // If start > size(), then the substring is empty.
        constexpr StringRef substr(size_type start, size_type length) const noexcept {
            if (start < m_size) {
                const auto shortened_size = m_size - start;
                return StringRef(m_start + start, (shortened_size < length) ? shortened_size : length);
            } else {
                return StringRef();
            }
        }

        // Returns the current start pointer. May not be null-terminated.
        constexpr char const* data() const noexcept {
            return m_start;
        }

        constexpr const_iterator begin() const { return m_start; }
        constexpr const_iterator end() const { return m_start + m_size; }


        friend std::string& operator += (std::string& lhs, StringRef rhs);
        friend std::ostream& operator << (std::ostream& os, StringRef str);
        friend std::string operator+(StringRef lhs, StringRef rhs);

        int compare( StringRef rhs ) const;
    };


    constexpr auto operator ""_sr( char const* rawChars, std::size_t size ) noexcept -> StringRef {
        return StringRef( rawChars, size );
    }
} // namespace Catch

constexpr auto operator ""_catch_sr( char const* rawChars, std::size_t size ) noexcept -> Catch::StringRef {
    return Catch::StringRef( rawChars, size );
}

#endif // CATCH_STRINGREF_HPP_INCLUDED


#ifndef CATCH_RESULT_TYPE_HPP_INCLUDED
#define CATCH_RESULT_TYPE_HPP_INCLUDED

namespace Catch {

    // ResultWas::OfType enum
    struct ResultWas { enum OfType {
        Unknown = -1,
        Ok = 0,
        Info = 1,
        Warning = 2,
        // TODO: Should explicit skip be considered "not OK" (cf. isOk)? I.e., should it have the failure bit?
        ExplicitSkip = 4,

        FailureBit = 0x10,

        ExpressionFailed = FailureBit | 1,
        ExplicitFailure = FailureBit | 2,

        Exception = 0x100 | FailureBit,

        ThrewException = Exception | 1,
        DidntThrowException = Exception | 2,

        FatalErrorCondition = 0x200 | FailureBit

    }; };

    bool isOk( ResultWas::OfType resultType );
    bool isJustInfo( int flags );


    // ResultDisposition::Flags enum
    struct ResultDisposition { enum Flags {
        Normal = 0x01,

        ContinueOnFailure = 0x02,   // Failures fail test, but execution continues
        FalseTest = 0x04,           // Prefix expression with !
        SuppressFail = 0x08         // Failures are reported but do not fail the test
    }; };

    ResultDisposition::Flags operator | ( ResultDisposition::Flags lhs, ResultDisposition::Flags rhs );

    bool shouldContinueOnFailure( int flags );
    inline bool isFalseTest( int flags ) { return ( flags & ResultDisposition::FalseTest ) != 0; }
    bool shouldSuppressFailure( int flags );

} // end namespace Catch

#endif // CATCH_RESULT_TYPE_HPP_INCLUDED


#ifndef CATCH_UNIQUE_PTR_HPP_INCLUDED
#define CATCH_UNIQUE_PTR_HPP_INCLUDED

#include <cassert>
#include <type_traits>


namespace Catch {
namespace Detail {
    template <typename T>
    class unique_ptr {
        T* m_ptr;
    public:
        constexpr unique_ptr(std::nullptr_t = nullptr):
            m_ptr{}
        {}
        explicit constexpr unique_ptr(T* ptr):
            m_ptr(ptr)
        {}

        template <typename U, typename = std::enable_if_t<std::is_base_of<T, U>::value>>
        unique_ptr(unique_ptr<U>&& from):
            m_ptr(from.release())
        {}

        template <typename U, typename = std::enable_if_t<std::is_base_of<T, U>::value>>
        unique_ptr& operator=(unique_ptr<U>&& from) {
            reset(from.release());

            return *this;
        }

        unique_ptr(unique_ptr const&) = delete;
        unique_ptr& operator=(unique_ptr const&) = delete;

        unique_ptr(unique_ptr&& rhs) noexcept:
            m_ptr(rhs.m_ptr) {
            rhs.m_ptr = nullptr;
        }
        unique_ptr& operator=(unique_ptr&& rhs) noexcept {
            reset(rhs.release());

            return *this;
        }

        ~unique_ptr() {
            delete m_ptr;
        }

        T& operator*() {
            assert(m_ptr);
            return *m_ptr;
        }
        T const& operator*() const {
            assert(m_ptr);
            return *m_ptr;
        }
        T* operator->() noexcept {
            assert(m_ptr);
            return m_ptr;
        }
        T const* operator->() const noexcept {
            assert(m_ptr);
            return m_ptr;
        }

        T* get() { return m_ptr; }
        T const* get() const { return m_ptr; }

        void reset(T* ptr = nullptr) {
            delete m_ptr;
            m_ptr = ptr;
        }

        T* release() {
            auto temp = m_ptr;
            m_ptr = nullptr;
            return temp;
        }

        explicit operator bool() const {
            return m_ptr;
        }

        friend void swap(unique_ptr& lhs, unique_ptr& rhs) {
            auto temp = lhs.m_ptr;
            lhs.m_ptr = rhs.m_ptr;
            rhs.m_ptr = temp;
        }
    };

    template <typename T>
    class unique_ptr<T[]>;

    template <typename T, typename... Args>
    unique_ptr<T> make_unique(Args&&... args) {
        return unique_ptr<T>(new T(CATCH_FORWARD(args)...));
    }


} // end namespace Detail
} // end namespace Catch

#endif // CATCH_UNIQUE_PTR_HPP_INCLUDED


#ifndef CATCH_BENCHMARK_STATS_FWD_HPP_INCLUDED
#define CATCH_BENCHMARK_STATS_FWD_HPP_INCLUDED



// Adapted from donated nonius code.

#ifndef CATCH_CLOCK_HPP_INCLUDED
#define CATCH_CLOCK_HPP_INCLUDED

#include <chrono>

namespace Catch {
    namespace Benchmark {
        using IDuration = std::chrono::nanoseconds;
        using FDuration = std::chrono::duration<double, std::nano>;

        template <typename Clock>
        using TimePoint = typename Clock::time_point;

        using default_clock = std::chrono::steady_clock;
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_CLOCK_HPP_INCLUDED

namespace Catch {

    // We cannot forward declare the type with default template argument
    // multiple times, so it is split out into a separate header so that
    // we can prevent multiple declarations in dependees
    template <typename Duration = Benchmark::FDuration>
    struct BenchmarkStats;

} // end namespace Catch

#endif // CATCH_BENCHMARK_STATS_FWD_HPP_INCLUDED

namespace Catch {

    class AssertionResult;
    struct AssertionInfo;
    struct SectionInfo;
    struct SectionEndInfo;
    struct MessageInfo;
    struct MessageBuilder;
    struct Counts;
    struct AssertionReaction;
    struct SourceLineInfo;

    class ITransientExpression;
    class IGeneratorTracker;

    struct BenchmarkInfo;

    namespace Generators {
        class GeneratorUntypedBase;
        using GeneratorBasePtr = Catch::Detail::unique_ptr<GeneratorUntypedBase>;
    }


    class IResultCapture {
    public:
        virtual ~IResultCapture();

        virtual void notifyAssertionStarted( AssertionInfo const& info ) = 0;
        virtual bool sectionStarted( StringRef sectionName,
                                     SourceLineInfo const& sectionLineInfo,
                                     Counts& assertions ) = 0;
        virtual void sectionEnded( SectionEndInfo&& endInfo ) = 0;
        virtual void sectionEndedEarly( SectionEndInfo&& endInfo ) = 0;

        virtual IGeneratorTracker*
        acquireGeneratorTracker( StringRef generatorName,
                                 SourceLineInfo const& lineInfo ) = 0;
        virtual IGeneratorTracker*
        createGeneratorTracker( StringRef generatorName,
                                SourceLineInfo lineInfo,
                                Generators::GeneratorBasePtr&& generator ) = 0;

        virtual void benchmarkPreparing( StringRef name ) = 0;
        virtual void benchmarkStarting( BenchmarkInfo const& info ) = 0;
        virtual void benchmarkEnded( BenchmarkStats<> const& stats ) = 0;
        virtual void benchmarkFailed( StringRef error ) = 0;

        virtual void pushScopedMessage( MessageInfo const& message ) = 0;
        virtual void popScopedMessage( MessageInfo const& message ) = 0;

        virtual void emplaceUnscopedMessage( MessageBuilder&& builder ) = 0;

        virtual void handleFatalErrorCondition( StringRef message ) = 0;

        virtual void handleExpr
                (   AssertionInfo const& info,
                    ITransientExpression const& expr,
                    AssertionReaction& reaction ) = 0;
        virtual void handleMessage
                (   AssertionInfo const& info,
                    ResultWas::OfType resultType,
                    StringRef message,
                    AssertionReaction& reaction ) = 0;
        virtual void handleUnexpectedExceptionNotThrown
                (   AssertionInfo const& info,
                    AssertionReaction& reaction ) = 0;
        virtual void handleUnexpectedInflightException
                (   AssertionInfo const& info,
                    std::string&& message,
                    AssertionReaction& reaction ) = 0;
        virtual void handleIncomplete
                (   AssertionInfo const& info ) = 0;
        virtual void handleNonExpr
                (   AssertionInfo const &info,
                    ResultWas::OfType resultType,
                    AssertionReaction &reaction ) = 0;



        virtual bool lastAssertionPassed() = 0;
        virtual void assertionPassed() = 0;

        // Deprecated, do not use:
        virtual std::string getCurrentTestName() const = 0;
        virtual const AssertionResult* getLastResult() const = 0;
        virtual void exceptionEarlyReported() = 0;
    };

    IResultCapture& getResultCapture();
}

#endif // CATCH_INTERFACES_CAPTURE_HPP_INCLUDED


#ifndef CATCH_INTERFACES_CONFIG_HPP_INCLUDED
#define CATCH_INTERFACES_CONFIG_HPP_INCLUDED



#ifndef CATCH_NONCOPYABLE_HPP_INCLUDED
#define CATCH_NONCOPYABLE_HPP_INCLUDED

namespace Catch {
    namespace Detail {

        class NonCopyable {
            NonCopyable( NonCopyable const& ) = delete;
            NonCopyable( NonCopyable&& ) = delete;
            NonCopyable& operator=( NonCopyable const& ) = delete;
            NonCopyable& operator=( NonCopyable&& ) = delete;

        protected:
            NonCopyable() noexcept = default;
        };

    } // namespace Detail
} // namespace Catch

#endif // CATCH_NONCOPYABLE_HPP_INCLUDED

#include <chrono>
#include <iosfwd>
#include <string>
#include <vector>

namespace Catch {

    enum class Verbosity {
        Quiet = 0,
        Normal,
        High
    };

    struct WarnAbout { enum What {
        Nothing = 0x00,
        NoAssertions = 0x01,
        UnmatchedTestSpec = 0x02,
    }; };

    enum class ShowDurations {
        DefaultForReporter,
        Always,
        Never
    };
    enum class TestRunOrder {
        Declared,
        LexicographicallySorted,
        Randomized
    };
    enum class ColourMode : std::uint8_t {
        PlatformDefault,
        ANSI,
        Win32,
        None
    };
    struct WaitForKeypress { enum When {
        Never,
        BeforeStart = 1,
        BeforeExit = 2,
        BeforeStartAndExit = BeforeStart | BeforeExit
    }; };

    class TestSpec;
    class IStream;

    class IConfig : public Detail::NonCopyable {
    public:
        virtual ~IConfig();

        virtual bool allowThrows() const = 0;
        virtual StringRef name() const = 0;
        virtual bool includeSuccessfulResults() const = 0;
        virtual bool shouldDebugBreak() const = 0;
        virtual bool warnAboutMissingAssertions() const = 0;
        virtual bool warnAboutUnmatchedTestSpecs() const = 0;
        virtual bool zeroTestsCountAsSuccess() const = 0;
        virtual int abortAfter() const = 0;
        virtual bool showInvisibles() const = 0;
        virtual ShowDurations showDurations() const = 0;
        virtual double minDuration() const = 0;
        virtual TestSpec const& testSpec() const = 0;
        virtual bool hasTestFilters() const = 0;
        virtual std::vector<std::string> const& getTestsOrTags() const = 0;
        virtual TestRunOrder runOrder() const = 0;
        virtual uint32_t rngSeed() const = 0;
        virtual unsigned int shardCount() const = 0;
        virtual unsigned int shardIndex() const = 0;
        virtual ColourMode defaultColourMode() const = 0;
        virtual std::vector<std::string> const& getSectionsToRun() const = 0;
        virtual Verbosity verbosity() const = 0;

        virtual bool skipBenchmarks() const = 0;
        virtual bool benchmarkNoAnalysis() const = 0;
        virtual unsigned int benchmarkSamples() const = 0;
        virtual double benchmarkConfidenceInterval() const = 0;
        virtual unsigned int benchmarkResamples() const = 0;
        virtual std::chrono::milliseconds benchmarkWarmupTime() const = 0;
    };
}

#endif // CATCH_INTERFACES_CONFIG_HPP_INCLUDED


#ifndef CATCH_INTERFACES_REGISTRY_HUB_HPP_INCLUDED
#define CATCH_INTERFACES_REGISTRY_HUB_HPP_INCLUDED


#include <string>

namespace Catch {

    class TestCaseHandle;
    struct TestCaseInfo;
    class ITestCaseRegistry;
    class IExceptionTranslatorRegistry;
    class IExceptionTranslator;
    class ReporterRegistry;
    class IReporterFactory;
    class ITagAliasRegistry;
    class ITestInvoker;
    class IMutableEnumValuesRegistry;
    struct SourceLineInfo;

    class StartupExceptionRegistry;
    class EventListenerFactory;

    using IReporterFactoryPtr = Detail::unique_ptr<IReporterFactory>;

    class IRegistryHub {
    public:
        virtual ~IRegistryHub(); // = default

        virtual ReporterRegistry const& getReporterRegistry() const = 0;
        virtual ITestCaseRegistry const& getTestCaseRegistry() const = 0;
        virtual ITagAliasRegistry const& getTagAliasRegistry() const = 0;
        virtual IExceptionTranslatorRegistry const& getExceptionTranslatorRegistry() const = 0;


        virtual StartupExceptionRegistry const& getStartupExceptionRegistry() const = 0;
    };

    class IMutableRegistryHub {
    public:
        virtual ~IMutableRegistryHub(); // = default
        virtual void registerReporter( std::string const& name, IReporterFactoryPtr factory ) = 0;
        virtual void registerListener( Detail::unique_ptr<EventListenerFactory> factory ) = 0;
        virtual void registerTest(Detail::unique_ptr<TestCaseInfo>&& testInfo, Detail::unique_ptr<ITestInvoker>&& invoker) = 0;
        virtual void registerTranslator( Detail::unique_ptr<IExceptionTranslator>&& translator ) = 0;
        virtual void registerTagAlias( std::string const& alias, std::string const& tag, SourceLineInfo const& lineInfo ) = 0;
        virtual void registerStartupException() noexcept = 0;
        virtual IMutableEnumValuesRegistry& getMutableEnumValuesRegistry() = 0;
    };

    IRegistryHub const& getRegistryHub();
    IMutableRegistryHub& getMutableRegistryHub();
    void cleanUp();
    std::string translateActiveException();

}

#endif // CATCH_INTERFACES_REGISTRY_HUB_HPP_INCLUDED


#ifndef CATCH_BENCHMARK_STATS_HPP_INCLUDED
#define CATCH_BENCHMARK_STATS_HPP_INCLUDED



// Adapted from donated nonius code.

#ifndef CATCH_ESTIMATE_HPP_INCLUDED
#define CATCH_ESTIMATE_HPP_INCLUDED

namespace Catch {
    namespace Benchmark {
        template <typename Type>
        struct Estimate {
            Type point;
            Type lower_bound;
            Type upper_bound;
            double confidence_interval;
        };
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_ESTIMATE_HPP_INCLUDED


// Adapted from donated nonius code.

#ifndef CATCH_OUTLIER_CLASSIFICATION_HPP_INCLUDED
#define CATCH_OUTLIER_CLASSIFICATION_HPP_INCLUDED

namespace Catch {
    namespace Benchmark {
        struct OutlierClassification {
            int samples_seen = 0;
            int low_severe = 0;     // more than 3 times IQR below Q1
            int low_mild = 0;       // 1.5 to 3 times IQR below Q1
            int high_mild = 0;      // 1.5 to 3 times IQR above Q3
            int high_severe = 0;    // more than 3 times IQR above Q3

            int total() const {
                return low_severe + low_mild + high_mild + high_severe;
            }
        };
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_OUTLIERS_CLASSIFICATION_HPP_INCLUDED
// The fwd decl & default specialization needs to be seen by VS2017 before
// BenchmarkStats itself, or VS2017 will report compilation error.

#include <string>
#include <vector>

namespace Catch {

    struct BenchmarkInfo {
        std::string name;
        double estimatedDuration;
        int iterations;
        unsigned int samples;
        unsigned int resamples;
        double clockResolution;
        double clockCost;
    };

    // We need to keep template parameter for backwards compatibility,
    // but we also do not want to use the template paraneter.
    template <class Dummy>
    struct BenchmarkStats {
        BenchmarkInfo info;

        std::vector<Benchmark::FDuration> samples;
        Benchmark::Estimate<Benchmark::FDuration> mean;
        Benchmark::Estimate<Benchmark::FDuration> standardDeviation;
        Benchmark::OutlierClassification outliers;
        double outlierVariance;
    };


} // end namespace Catch

#endif // CATCH_BENCHMARK_STATS_HPP_INCLUDED


// Adapted from donated nonius code.

#ifndef CATCH_ENVIRONMENT_HPP_INCLUDED
#define CATCH_ENVIRONMENT_HPP_INCLUDED


namespace Catch {
    namespace Benchmark {
        struct EnvironmentEstimate {
            FDuration mean;
            OutlierClassification outliers;
        };
        struct Environment {
            EnvironmentEstimate clock_resolution;
            EnvironmentEstimate clock_cost;
        };
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_ENVIRONMENT_HPP_INCLUDED


// Adapted from donated nonius code.

#ifndef CATCH_EXECUTION_PLAN_HPP_INCLUDED
#define CATCH_EXECUTION_PLAN_HPP_INCLUDED



// Adapted from donated nonius code.

#ifndef CATCH_BENCHMARK_FUNCTION_HPP_INCLUDED
#define CATCH_BENCHMARK_FUNCTION_HPP_INCLUDED



// Adapted from donated nonius code.

#ifndef CATCH_CHRONOMETER_HPP_INCLUDED
#define CATCH_CHRONOMETER_HPP_INCLUDED



// Adapted from donated nonius code.

#ifndef CATCH_OPTIMIZER_HPP_INCLUDED
#define CATCH_OPTIMIZER_HPP_INCLUDED

#if defined(_MSC_VER) || defined(__IAR_SYSTEMS_ICC__)
#   include <atomic> // atomic_thread_fence
#endif


#include <type_traits>

namespace Catch {
    namespace Benchmark {
#if defined(__GNUC__) || defined(__clang__)
        template <typename T>
        inline void keep_memory(T* p) {
            asm volatile("" : : "g"(p) : "memory");
        }
        inline void keep_memory() {
            asm volatile("" : : : "memory");
        }

        namespace Detail {
            inline void optimizer_barrier() { keep_memory(); }
        } // namespace Detail
#elif defined(_MSC_VER) || defined(__IAR_SYSTEMS_ICC__)

#if defined(_MSVC_VER)
#pragma optimize("", off)
#elif defined(__IAR_SYSTEMS_ICC__)
// For IAR the pragma only affects the following function
#pragma optimize=disable
#endif
        template <typename T>
        inline void keep_memory(T* p) {
            // thanks @milleniumbug
            *reinterpret_cast<char volatile*>(p) = *reinterpret_cast<char const volatile*>(p);
        }
        // TODO equivalent keep_memory()
#if defined(_MSVC_VER)
#pragma optimize("", on)
#endif

        namespace Detail {
            inline void optimizer_barrier() {
                std::atomic_thread_fence(std::memory_order_seq_cst);
            }
        } // namespace Detail

#endif

        template <typename T>
        inline void deoptimize_value(T&& x) {
            keep_memory(&x);
        }

        template <typename Fn, typename... Args>
        inline auto invoke_deoptimized(Fn&& fn, Args&&... args) -> std::enable_if_t<!std::is_same<void, decltype(fn(args...))>::value> {
            deoptimize_value(CATCH_FORWARD(fn) (CATCH_FORWARD(args)...));
        }

        template <typename Fn, typename... Args>
        inline auto invoke_deoptimized(Fn&& fn, Args&&... args) -> std::enable_if_t<std::is_same<void, decltype(fn(args...))>::value> {
            CATCH_FORWARD((fn)) (CATCH_FORWARD(args)...);
        }
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_OPTIMIZER_HPP_INCLUDED


#ifndef CATCH_META_HPP_INCLUDED
#define CATCH_META_HPP_INCLUDED

#include <type_traits>

namespace Catch {
    template <typename>
    struct true_given : std::true_type {};

    struct is_callable_tester {
        template <typename Fun, typename... Args>
        static true_given<decltype(std::declval<Fun>()(std::declval<Args>()...))> test(int);
        template <typename...>
        static std::false_type test(...);
    };

    template <typename T>
    struct is_callable;

    template <typename Fun, typename... Args>
    struct is_callable<Fun(Args...)> : decltype(is_callable_tester::test<Fun, Args...>(0)) {};


#if defined(__cpp_lib_is_invocable) && __cpp_lib_is_invocable >= 201703
    // std::result_of is deprecated in C++17 and removed in C++20. Hence, it is
    // replaced with std::invoke_result here.
    template <typename Func, typename... U>
    using FunctionReturnType = std::remove_reference_t<std::remove_cv_t<std::invoke_result_t<Func, U...>>>;
#else
    template <typename Func, typename... U>
    using FunctionReturnType = std::remove_reference_t<std::remove_cv_t<std::result_of_t<Func(U...)>>>;
#endif

} // namespace Catch

namespace mpl_{
    struct na;
}

#endif // CATCH_META_HPP_INCLUDED

namespace Catch {
    namespace Benchmark {
        namespace Detail {
            struct ChronometerConcept {
                virtual void start() = 0;
                virtual void finish() = 0;
                virtual ~ChronometerConcept(); // = default;

                ChronometerConcept() = default;
                ChronometerConcept(ChronometerConcept const&) = default;
                ChronometerConcept& operator=(ChronometerConcept const&) = default;
            };
            template <typename Clock>
            struct ChronometerModel final : public ChronometerConcept {
                void start() override { started = Clock::now(); }
                void finish() override { finished = Clock::now(); }

                IDuration elapsed() const {
                    return std::chrono::duration_cast<std::chrono::nanoseconds>(
                        finished - started );
                }

                TimePoint<Clock> started;
                TimePoint<Clock> finished;
            };
        } // namespace Detail

        struct Chronometer {
        public:
            template <typename Fun>
            void measure(Fun&& fun) { measure(CATCH_FORWARD(fun), is_callable<Fun(int)>()); }

            int runs() const { return repeats; }

            Chronometer(Detail::ChronometerConcept& meter, int repeats_)
                : impl(&meter)
                , repeats(repeats_) {}

        private:
            template <typename Fun>
            void measure(Fun&& fun, std::false_type) {
                measure([&fun](int) { return fun(); }, std::true_type());
            }

            template <typename Fun>
            void measure(Fun&& fun, std::true_type) {
                Detail::optimizer_barrier();
                impl->start();
                for (int i = 0; i < repeats; ++i) invoke_deoptimized(fun, i);
                impl->finish();
                Detail::optimizer_barrier();
            }

            Detail::ChronometerConcept* impl;
            int repeats;
        };
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_CHRONOMETER_HPP_INCLUDED

#include <type_traits>

namespace Catch {
    namespace Benchmark {
        namespace Detail {
            template <typename T, typename U>
            struct is_related
                : std::is_same<std::decay_t<T>, std::decay_t<U>> {};

            struct BenchmarkFunction {
            private:
                struct callable {
                    virtual void call(Chronometer meter) const = 0;
                    virtual Catch::Detail::unique_ptr<callable> clone() const = 0;
                    virtual ~callable(); // = default;

                    callable() = default;
                    callable(callable const&) = default;
                    callable& operator=(callable const&) = default;
                };
                template <typename Fun>
                struct model : public callable {
                    model(Fun&& fun_) : fun(CATCH_MOVE(fun_)) {}
                    model(Fun const& fun_) : fun(fun_) {}

                    Catch::Detail::unique_ptr<callable> clone() const override {
                        return Catch::Detail::make_unique<model<Fun>>( *this );
                    }

                    void call(Chronometer meter) const override {
                        call(meter, is_callable<Fun(Chronometer)>());
                    }
                    void call(Chronometer meter, std::true_type) const {
                        fun(meter);
                    }
                    void call(Chronometer meter, std::false_type) const {
                        meter.measure(fun);
                    }

                    Fun fun;
                };

                struct do_nothing { void operator()() const {} };

                template <typename T>
                BenchmarkFunction(model<T>* c) : f(c) {}

            public:
                BenchmarkFunction()
                    : f(new model<do_nothing>{ {} }) {}

                template <typename Fun,
                    std::enable_if_t<!is_related<Fun, BenchmarkFunction>::value, int> = 0>
                    BenchmarkFunction(Fun&& fun)
                    : f(new model<std::decay_t<Fun>>(CATCH_FORWARD(fun))) {}

                BenchmarkFunction( BenchmarkFunction&& that ) noexcept:
                    f( CATCH_MOVE( that.f ) ) {}

                BenchmarkFunction(BenchmarkFunction const& that)
                    : f(that.f->clone()) {}

                BenchmarkFunction&
                operator=( BenchmarkFunction&& that ) noexcept {
                    f = CATCH_MOVE( that.f );
                    return *this;
                }

                BenchmarkFunction& operator=(BenchmarkFunction const& that) {
                    f = that.f->clone();
                    return *this;
                }

                void operator()(Chronometer meter) const { f->call(meter); }

            private:
                Catch::Detail::unique_ptr<callable> f;
            };
        } // namespace Detail
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_BENCHMARK_FUNCTION_HPP_INCLUDED


// Adapted from donated nonius code.

#ifndef CATCH_REPEAT_HPP_INCLUDED
#define CATCH_REPEAT_HPP_INCLUDED

#include <type_traits>

namespace Catch {
    namespace Benchmark {
        namespace Detail {
            template <typename Fun>
            struct repeater {
                void operator()(int k) const {
                    for (int i = 0; i < k; ++i) {
                        fun();
                    }
                }
                Fun fun;
            };
            template <typename Fun>
            repeater<std::decay_t<Fun>> repeat(Fun&& fun) {
                return { CATCH_FORWARD(fun) };
            }
        } // namespace Detail
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_REPEAT_HPP_INCLUDED


// Adapted from donated nonius code.

#ifndef CATCH_RUN_FOR_AT_LEAST_HPP_INCLUDED
#define CATCH_RUN_FOR_AT_LEAST_HPP_INCLUDED



// Adapted from donated nonius code.

#ifndef CATCH_MEASURE_HPP_INCLUDED
#define CATCH_MEASURE_HPP_INCLUDED



// Adapted from donated nonius code.

#ifndef CATCH_COMPLETE_INVOKE_HPP_INCLUDED
#define CATCH_COMPLETE_INVOKE_HPP_INCLUDED


namespace Catch {
    namespace Benchmark {
        namespace Detail {
            template <typename T>
            struct CompleteType { using type = T; };
            template <>
            struct CompleteType<void> { struct type {}; };

            template <typename T>
            using CompleteType_t = typename CompleteType<T>::type;

            template <typename Result>
            struct CompleteInvoker {
                template <typename Fun, typename... Args>
                static Result invoke(Fun&& fun, Args&&... args) {
                    return CATCH_FORWARD(fun)(CATCH_FORWARD(args)...);
                }
            };
            template <>
            struct CompleteInvoker<void> {
                template <typename Fun, typename... Args>
                static CompleteType_t<void> invoke(Fun&& fun, Args&&... args) {
                    CATCH_FORWARD(fun)(CATCH_FORWARD(args)...);
                    return {};
                }
            };

            // invoke and not return void :(
            template <typename Fun, typename... Args>
            CompleteType_t<FunctionReturnType<Fun, Args...>> complete_invoke(Fun&& fun, Args&&... args) {
                return CompleteInvoker<FunctionReturnType<Fun, Args...>>::invoke(CATCH_FORWARD(fun), CATCH_FORWARD(args)...);
            }

        } // namespace Detail

        template <typename Fun>
        Detail::CompleteType_t<FunctionReturnType<Fun>> user_code(Fun&& fun) {
            return Detail::complete_invoke(CATCH_FORWARD(fun));
        }
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_COMPLETE_INVOKE_HPP_INCLUDED


// Adapted from donated nonius code.

#ifndef CATCH_TIMING_HPP_INCLUDED
#define CATCH_TIMING_HPP_INCLUDED


#include <type_traits>

namespace Catch {
    namespace Benchmark {
        template <typename Result>
        struct Timing {
            IDuration elapsed;
            Result result;
            int iterations;
        };
        template <typename Func, typename... Args>
        using TimingOf = Timing<Detail::CompleteType_t<FunctionReturnType<Func, Args...>>>;
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_TIMING_HPP_INCLUDED

namespace Catch {
    namespace Benchmark {
        namespace Detail {
            template <typename Clock, typename Fun, typename... Args>
            TimingOf<Fun, Args...> measure(Fun&& fun, Args&&... args) {
                auto start = Clock::now();
                auto&& r = Detail::complete_invoke(fun, CATCH_FORWARD(args)...);
                auto end = Clock::now();
                auto delta = end - start;
                return { delta, CATCH_FORWARD(r), 1 };
            }
        } // namespace Detail
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_MEASURE_HPP_INCLUDED

#include <type_traits>

namespace Catch {
    namespace Benchmark {
        namespace Detail {
            template <typename Clock, typename Fun>
            TimingOf<Fun, int> measure_one(Fun&& fun, int iters, std::false_type) {
                return Detail::measure<Clock>(fun, iters);
            }
            template <typename Clock, typename Fun>
            TimingOf<Fun, Chronometer> measure_one(Fun&& fun, int iters, std::true_type) {
                Detail::ChronometerModel<Clock> meter;
                auto&& result = Detail::complete_invoke(fun, Chronometer(meter, iters));

                return { meter.elapsed(), CATCH_MOVE(result), iters };
            }

            template <typename Clock, typename Fun>
            using run_for_at_least_argument_t = std::conditional_t<is_callable<Fun(Chronometer)>::value, Chronometer, int>;


            [[noreturn]]
            void throw_optimized_away_error();

            template <typename Clock, typename Fun>
            TimingOf<Fun, run_for_at_least_argument_t<Clock, Fun>>
                run_for_at_least(IDuration how_long,
                                 const int initial_iterations,
                                 Fun&& fun) {
                auto iters = initial_iterations;
                while (iters < (1 << 30)) {
                    auto&& Timing = measure_one<Clock>(fun, iters, is_callable<Fun(Chronometer)>());

                    if (Timing.elapsed >= how_long) {
                        return { Timing.elapsed, CATCH_MOVE(Timing.result), iters };
                    }
                    iters *= 2;
                }
                throw_optimized_away_error();
            }
        } // namespace Detail
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_RUN_FOR_AT_LEAST_HPP_INCLUDED

#include <vector>

namespace Catch {
    namespace Benchmark {
        struct ExecutionPlan {
            int iterations_per_sample;
            FDuration estimated_duration;
            Detail::BenchmarkFunction benchmark;
            FDuration warmup_time;
            int warmup_iterations;

            template <typename Clock>
            std::vector<FDuration> run(const IConfig &cfg, Environment env) const {
                // warmup a bit
                Detail::run_for_at_least<Clock>(
                    std::chrono::duration_cast<IDuration>( warmup_time ),
                    warmup_iterations,
                    Detail::repeat( []() { return Clock::now(); } )
                );

                std::vector<FDuration> times;
                const auto num_samples = cfg.benchmarkSamples();
                times.reserve( num_samples );
                for ( size_t i = 0; i < num_samples; ++i ) {
                    Detail::ChronometerModel<Clock> model;
                    this->benchmark( Chronometer( model, iterations_per_sample ) );
                    auto sample_time = model.elapsed() - env.clock_cost.mean;
                    if ( sample_time < FDuration::zero() ) {
                        sample_time = FDuration::zero();
                    }
                    times.push_back(sample_time / iterations_per_sample);
                }
                return times;
            }
        };
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_EXECUTION_PLAN_HPP_INCLUDED


// Adapted from donated nonius code.

#ifndef CATCH_ESTIMATE_CLOCK_HPP_INCLUDED
#define CATCH_ESTIMATE_CLOCK_HPP_INCLUDED



// Adapted from donated nonius code.

#ifndef CATCH_STATS_HPP_INCLUDED
#define CATCH_STATS_HPP_INCLUDED


#include <vector>

namespace Catch {
    namespace Benchmark {
        namespace Detail {
            using sample = std::vector<double>;

            double weighted_average_quantile( int k,
                                              int q,
                                              double* first,
                                              double* last );

            OutlierClassification
            classify_outliers( double const* first, double const* last );

            double mean( double const* first, double const* last );

            double normal_cdf( double x );

            double erfc_inv(double x);

            double normal_quantile(double p);

            Estimate<double>
            bootstrap( double confidence_level,
                       double* first,
                       double* last,
                       sample const& resample,
                       double ( *estimator )( double const*, double const* ) );

            struct bootstrap_analysis {
                Estimate<double> mean;
                Estimate<double> standard_deviation;
                double outlier_variance;
            };

            bootstrap_analysis analyse_samples(double confidence_level,
                                               unsigned int n_resamples,
                                               double* first,
                                               double* last);
        } // namespace Detail
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_STATS_HPP_INCLUDED

#include <algorithm>
#include <vector>
#include <cmath>

namespace Catch {
    namespace Benchmark {
        namespace Detail {
            template <typename Clock>
            std::vector<double> resolution(int k) {
                std::vector<TimePoint<Clock>> times;
                times.reserve(static_cast<size_t>(k + 1));
                for ( int i = 0; i < k + 1; ++i ) {
                    times.push_back( Clock::now() );
                }

                std::vector<double> deltas;
                deltas.reserve(static_cast<size_t>(k));
                for ( size_t idx = 1; idx < times.size(); ++idx ) {
                    deltas.push_back( static_cast<double>(
                        ( times[idx] - times[idx - 1] ).count() ) );
                }

                return deltas;
            }

            constexpr auto warmup_iterations = 10000;
            constexpr auto warmup_time = std::chrono::milliseconds(100);
            constexpr auto minimum_ticks = 1000;
            constexpr auto warmup_seed = 10000;
            constexpr auto clock_resolution_estimation_time = std::chrono::milliseconds(500);
            constexpr auto clock_cost_estimation_time_limit = std::chrono::seconds(1);
            constexpr auto clock_cost_estimation_tick_limit = 100000;
            constexpr auto clock_cost_estimation_time = std::chrono::milliseconds(10);
            constexpr auto clock_cost_estimation_iterations = 10000;

            template <typename Clock>
            int warmup() {
                return run_for_at_least<Clock>(warmup_time, warmup_seed, &resolution<Clock>)
                    .iterations;
            }
            template <typename Clock>
            EnvironmentEstimate estimate_clock_resolution(int iterations) {
                auto r = run_for_at_least<Clock>(clock_resolution_estimation_time, iterations, &resolution<Clock>)
                    .result;
                return {
                    FDuration(mean(r.data(), r.data() + r.size())),
                    classify_outliers(r.data(), r.data() + r.size()),
                };
            }
            template <typename Clock>
            EnvironmentEstimate estimate_clock_cost(FDuration resolution) {
                auto time_limit = (std::min)(
                    resolution * clock_cost_estimation_tick_limit,
                    FDuration(clock_cost_estimation_time_limit));
                auto time_clock = [](int k) {
                    return Detail::measure<Clock>([k] {
                        for (int i = 0; i < k; ++i) {
                            volatile auto ignored = Clock::now();
                            (void)ignored;
                        }
                    }).elapsed;
                };
                time_clock(1);
                int iters = clock_cost_estimation_iterations;
                auto&& r = run_for_at_least<Clock>(clock_cost_estimation_time, iters, time_clock);
                std::vector<double> times;
                int nsamples = static_cast<int>(std::ceil(time_limit / r.elapsed));
                times.reserve(static_cast<size_t>(nsamples));
                for ( int s = 0; s < nsamples; ++s ) {
                    times.push_back( static_cast<double>(
                        ( time_clock( r.iterations ) / r.iterations )
                            .count() ) );
                }
                return {
                    FDuration(mean(times.data(), times.data() + times.size())),
                    classify_outliers(times.data(), times.data() + times.size()),
                };
            }

            template <typename Clock>
            Environment measure_environment() {
#if defined(__clang__)
#    pragma clang diagnostic push
#    pragma clang diagnostic ignored "-Wexit-time-destructors"
#endif
                static Catch::Detail::unique_ptr<Environment> env;
#if defined(__clang__)
#    pragma clang diagnostic pop
#endif
                if (env) {
                    return *env;
                }

                auto iters = Detail::warmup<Clock>();
                auto resolution = Detail::estimate_clock_resolution<Clock>(iters);
                auto cost = Detail::estimate_clock_cost<Clock>(resolution.mean);

                env = Catch::Detail::make_unique<Environment>( Environment{resolution, cost} );
                return *env;
            }
        } // namespace Detail
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_ESTIMATE_CLOCK_HPP_INCLUDED


// Adapted from donated nonius code.

#ifndef CATCH_ANALYSE_HPP_INCLUDED
#define CATCH_ANALYSE_HPP_INCLUDED



// Adapted from donated nonius code.

#ifndef CATCH_SAMPLE_ANALYSIS_HPP_INCLUDED
#define CATCH_SAMPLE_ANALYSIS_HPP_INCLUDED


#include <vector>

namespace Catch {
    namespace Benchmark {
        struct SampleAnalysis {
            std::vector<FDuration> samples;
            Estimate<FDuration> mean;
            Estimate<FDuration> standard_deviation;
            OutlierClassification outliers;
            double outlier_variance;
        };
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_SAMPLE_ANALYSIS_HPP_INCLUDED


namespace Catch {
    class IConfig;

    namespace Benchmark {
        namespace Detail {
            SampleAnalysis analyse(const IConfig &cfg, FDuration* first, FDuration* last);
        } // namespace Detail
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_ANALYSE_HPP_INCLUDED

#include <algorithm>
#include <chrono>
#include <exception>
#include <string>
#include <cmath>

namespace Catch {
    namespace Benchmark {
        struct Benchmark {
            Benchmark(std::string&& benchmarkName)
                : name(CATCH_MOVE(benchmarkName)) {}

            template <class FUN>
            Benchmark(std::string&& benchmarkName , FUN &&func)
                : fun(CATCH_MOVE(func)), name(CATCH_MOVE(benchmarkName)) {}

            template <typename Clock>
            ExecutionPlan prepare(const IConfig &cfg, Environment env) const {
                auto min_time = env.clock_resolution.mean * Detail::minimum_ticks;
                auto run_time = std::max(min_time, std::chrono::duration_cast<decltype(min_time)>(cfg.benchmarkWarmupTime()));
                auto&& test = Detail::run_for_at_least<Clock>(std::chrono::duration_cast<IDuration>(run_time), 1, fun);
                int new_iters = static_cast<int>(std::ceil(min_time * test.iterations / test.elapsed));
                return { new_iters, test.elapsed / test.iterations * new_iters * cfg.benchmarkSamples(), fun, std::chrono::duration_cast<FDuration>(cfg.benchmarkWarmupTime()), Detail::warmup_iterations };
            }

            template <typename Clock = default_clock>
            void run() {
                static_assert( Clock::is_steady,
                               "Benchmarking clock should be steady" );
                auto const* cfg = getCurrentContext().getConfig();

                auto env = Detail::measure_environment<Clock>();

                getResultCapture().benchmarkPreparing(name);
                CATCH_TRY{
                    auto plan = user_code([&] {
                        return prepare<Clock>(*cfg, env);
                    });

                    BenchmarkInfo info {
                        CATCH_MOVE(name),
                        plan.estimated_duration.count(),
                        plan.iterations_per_sample,
                        cfg->benchmarkSamples(),
                        cfg->benchmarkResamples(),
                        env.clock_resolution.mean.count(),
                        env.clock_cost.mean.count()
                    };

                    getResultCapture().benchmarkStarting(info);

                    auto samples = user_code([&] {
                        return plan.template run<Clock>(*cfg, env);
                    });

                    auto analysis = Detail::analyse(*cfg, samples.data(), samples.data() + samples.size());
                    BenchmarkStats<> stats{ CATCH_MOVE(info), CATCH_MOVE(analysis.samples), analysis.mean, analysis.standard_deviation, analysis.outliers, analysis.outlier_variance };
                    getResultCapture().benchmarkEnded(stats);
                } CATCH_CATCH_ANON (TestFailureException const&) {
                    getResultCapture().benchmarkFailed("Benchmark failed due to failed assertion"_sr);
                } CATCH_CATCH_ALL{
                    getResultCapture().benchmarkFailed(translateActiveException());
                    // We let the exception go further up so that the
                    // test case is marked as failed.
                    std::rethrow_exception(std::current_exception());
                }
            }

            // sets lambda to be used in fun *and* executes benchmark!
            template <typename Fun, std::enable_if_t<!Detail::is_related<Fun, Benchmark>::value, int> = 0>
                Benchmark & operator=(Fun func) {
                auto const* cfg = getCurrentContext().getConfig();
                if (!cfg->skipBenchmarks()) {
                    fun = Detail::BenchmarkFunction(func);
                    run();
                }
                return *this;
            }

            explicit operator bool() {
                return true;
            }

        private:
            Detail::BenchmarkFunction fun;
            std::string name;
        };
    }
} // namespace Catch

#define INTERNAL_CATCH_GET_1_ARG(arg1, arg2, ...) arg1
#define INTERNAL_CATCH_GET_2_ARG(arg1, arg2, ...) arg2

#define INTERNAL_CATCH_BENCHMARK(BenchmarkName, name, benchmarkIndex)\
    if( Catch::Benchmark::Benchmark BenchmarkName{name} ) \
        BenchmarkName = [&](int benchmarkIndex)

#define INTERNAL_CATCH_BENCHMARK_ADVANCED(BenchmarkName, name)\
    if( Catch::Benchmark::Benchmark BenchmarkName{name} ) \
        BenchmarkName = [&]

#if defined(CATCH_CONFIG_PREFIX_ALL)

#define CATCH_BENCHMARK(...) \
    INTERNAL_CATCH_BENCHMARK(INTERNAL_CATCH_UNIQUE_NAME(CATCH2_INTERNAL_BENCHMARK_), INTERNAL_CATCH_GET_1_ARG(__VA_ARGS__,,), INTERNAL_CATCH_GET_2_ARG(__VA_ARGS__,,))
#define CATCH_BENCHMARK_ADVANCED(name) \
    INTERNAL_CATCH_BENCHMARK_ADVANCED(INTERNAL_CATCH_UNIQUE_NAME(CATCH2_INTERNAL_BENCHMARK_), name)

#else

#define BENCHMARK(...) \
    INTERNAL_CATCH_BENCHMARK(INTERNAL_CATCH_UNIQUE_NAME(CATCH2_INTERNAL_BENCHMARK_), INTERNAL_CATCH_GET_1_ARG(__VA_ARGS__,,), INTERNAL_CATCH_GET_2_ARG(__VA_ARGS__,,))
#define BENCHMARK_ADVANCED(name) \
    INTERNAL_CATCH_BENCHMARK_ADVANCED(INTERNAL_CATCH_UNIQUE_NAME(CATCH2_INTERNAL_BENCHMARK_), name)

#endif

#endif // CATCH_BENCHMARK_HPP_INCLUDED


// Adapted from donated nonius code.

#ifndef CATCH_CONSTRUCTOR_HPP_INCLUDED
#define CATCH_CONSTRUCTOR_HPP_INCLUDED


#include <type_traits>

namespace Catch {
    namespace Benchmark {
        namespace Detail {
            template <typename T, bool Destruct>
            struct ObjectStorage
            {
                ObjectStorage() = default;

                ObjectStorage(const ObjectStorage& other)
                {
                    new(&data) T(other.stored_object());
                }

                ObjectStorage(ObjectStorage&& other)
                {
                    new(data) T(CATCH_MOVE(other.stored_object()));
                }

                ~ObjectStorage() { destruct_on_exit<T>(); }

                template <typename... Args>
                void construct(Args&&... args)
                {
                    new (data) T(CATCH_FORWARD(args)...);
                }

                template <bool AllowManualDestruction = !Destruct>
                std::enable_if_t<AllowManualDestruction> destruct()
                {
                    stored_object().~T();
                }

            private:
                // If this is a constructor benchmark, destruct the underlying object
                template <typename U>
                void destruct_on_exit(std::enable_if_t<Destruct, U>* = nullptr) { destruct<true>(); }
                // Otherwise, don't
                template <typename U>
                void destruct_on_exit(std::enable_if_t<!Destruct, U>* = nullptr) { }

#if defined( __GNUC__ ) && __GNUC__ <= 6
#    pragma GCC diagnostic push
#    pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
                T& stored_object() { return *reinterpret_cast<T*>( data ); }

                T const& stored_object() const {
                    return *reinterpret_cast<T const*>( data );
                }
#if defined( __GNUC__ ) && __GNUC__ <= 6
#    pragma GCC diagnostic pop
#endif

                alignas( T ) unsigned char data[sizeof( T )]{};
            };
        } // namespace Detail

        template <typename T>
        using storage_for = Detail::ObjectStorage<T, true>;

        template <typename T>
        using destructable_object = Detail::ObjectStorage<T, false>;
    } // namespace Benchmark
} // namespace Catch

#endif // CATCH_CONSTRUCTOR_HPP_INCLUDED

#endif // CATCH_BENCHMARK_ALL_HPP_INCLUDED


#ifndef CATCH_APPROX_HPP_INCLUDED
#define CATCH_APPROX_HPP_INCLUDED



#ifndef CATCH_TOSTRING_HPP_INCLUDED
#define CATCH_TOSTRING_HPP_INCLUDED


#include <vector>
#include <cstddef>
#include <type_traits>
#include <string>




#ifndef CATCH_CONFIG_WCHAR_HPP_INCLUDED
#define CATCH_CONFIG_WCHAR_HPP_INCLUDED


// We assume that WCHAR should be enabled by default, and only disabled
// for a shortlist (so far only DJGPP) of compilers.

#if defined(__DJGPP__)
#  define CATCH_INTERNAL_CONFIG_NO_WCHAR
#endif // __DJGPP__

#if !defined( CATCH_INTERNAL_CONFIG_NO_WCHAR ) && \
    !defined( CATCH_CONFIG_NO_WCHAR ) && \
    !defined( CATCH_CONFIG_WCHAR )
#    define CATCH_CONFIG_WCHAR
#endif

#endif // CATCH_CONFIG_WCHAR_HPP_INCLUDED


#ifndef CATCH_REUSABLE_STRING_STREAM_HPP_INCLUDED
#define CATCH_REUSABLE_STRING_STREAM_HPP_INCLUDED


#include <iosfwd>
#include <cstddef>
#include <ostream>
#include <string>

namespace Catch {

    class ReusableStringStream : Detail::NonCopyable {
        std::size_t m_index;
        std::ostream* m_oss;
    public:
        ReusableStringStream();
        ~ReusableStringStream();

        std::string str() const;
        void str(std::string const& str);

#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
// Old versions of GCC do not understand -Wnonnull-compare
#pragma GCC diagnostic ignored "-Wpragmas"
// Streaming a function pointer triggers Waddress and Wnonnull-compare
// on GCC, because it implicitly converts it to bool and then decides
// that the check it uses (a? true : false) is tautological and cannot
// be null...
#pragma GCC diagnostic ignored "-Waddress"
#pragma GCC diagnostic ignored "-Wnonnull-compare"
#endif

        template<typename T>
        auto operator << ( T const& value ) -> ReusableStringStream& {
            *m_oss << value;
            return *this;
        }

#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif
        auto get() -> std::ostream& { return *m_oss; }
    };
}

#endif // CATCH_REUSABLE_STRING_STREAM_HPP_INCLUDED


#ifndef CATCH_VOID_TYPE_HPP_INCLUDED
#define CATCH_VOID_TYPE_HPP_INCLUDED


namespace Catch {
    namespace Detail {

        template <typename...>
        struct make_void { using type = void; };

        template <typename... Ts>
        using void_t = typename make_void<Ts...>::type;

    } // namespace Detail
} // namespace Catch


#endif // CATCH_VOID_TYPE_HPP_INCLUDED


#ifndef CATCH_INTERFACES_ENUM_VALUES_REGISTRY_HPP_INCLUDED
#define CATCH_INTERFACES_ENUM_VALUES_REGISTRY_HPP_INCLUDED


#include <vector>

namespace Catch {

    namespace Detail {
        struct EnumInfo {
            StringRef m_name;
            std::vector<std::pair<int, StringRef>> m_values;

            ~EnumInfo();

            StringRef lookup( int value ) const;
        };
    } // namespace Detail

    class IMutableEnumValuesRegistry {
    public:
        virtual ~IMutableEnumValuesRegistry(); // = default;

        virtual Detail::EnumInfo const& registerEnum( StringRef enumName, StringRef allEnums, std::vector<int> const& values ) = 0;

        template<typename E>
        Detail::EnumInfo const& registerEnum( StringRef enumName, StringRef allEnums, std::initializer_list<E> values ) {
            static_assert(sizeof(int) >= sizeof(E), "Cannot serialize enum to int");
            std::vector<int> intValues;
            intValues.reserve( values.size() );
            for( auto enumValue : values )
                intValues.push_back( static_cast<int>( enumValue ) );
            return registerEnum( enumName, allEnums, intValues );
        }
    };

} // Catch

#endif // CATCH_INTERFACES_ENUM_VALUES_REGISTRY_HPP_INCLUDED

#ifdef CATCH_CONFIG_CPP17_STRING_VIEW
#include <string_view>
#endif

#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4180) // We attempt to stream a function (address) by const&, which MSVC complains about but is harmless
#endif

// We need a dummy global operator<< so we can bring it into Catch namespace later
struct Catch_global_namespace_dummy{};
std::ostream& operator<<(std::ostream&, Catch_global_namespace_dummy);

namespace Catch {
    // Bring in global namespace operator<< for ADL lookup in
    // `IsStreamInsertable` below.
    using ::operator<<;

    namespace Detail {

        inline std::size_t catch_strnlen(const char *str, std::size_t n) {
            auto ret = std::char_traits<char>::find(str, n, '\0');
            if (ret != nullptr) {
                return static_cast<std::size_t>(ret - str);
            }
            return n;
        }

        constexpr StringRef unprintableString = "{?}"_sr;

        std::string convertIntoString( StringRef string, bool escapeInvisibles );

        std::string convertIntoString( StringRef string );

        std::string rawMemoryToString( const void *object, std::size_t size );

        template<typename T>
        std::string rawMemoryToString( const T& object ) {
          return rawMemoryToString( &object, sizeof(object) );
        }

        template<typename T>
        class IsStreamInsertable {
            template<typename Stream, typename U>
            static auto test(int)
                -> decltype(std::declval<Stream&>() << std::declval<U>(), std::true_type());

            template<typename, typename>
            static auto test(...)->std::false_type;

        public:
            static const bool value = decltype(test<std::ostream, const T&>(0))::value;
        };

        template<typename E>
        std::string convertUnknownEnumToString( E e );

        template<typename T>
        std::enable_if_t<
            !std::is_enum<T>::value && !std::is_base_of<std::exception, T>::value,
        std::string> convertUnstreamable( T const& ) {
            return std::string(Detail::unprintableString);
        }
        template<typename T>
        std::enable_if_t<
            !std::is_enum<T>::value && std::is_base_of<std::exception, T>::value,
         std::string> convertUnstreamable(T const& ex) {
            return ex.what();
        }


        template<typename T>
        std::enable_if_t<
            std::is_enum<T>::value,
        std::string> convertUnstreamable( T const& value ) {
            return convertUnknownEnumToString( value );
        }

#if defined(_MANAGED)
        template<typename T>
        std::string clrReferenceToString( T^ ref ) {
            if (ref == nullptr)
                return std::string("null");
            auto bytes = System::Text::Encoding::UTF8->GetBytes(ref->ToString());
            cli::pin_ptr<System::Byte> p = &bytes[0];
            return std::string(reinterpret_cast<char const *>(p), bytes->Length);
        }
#endif

    } // namespace Detail


    template <typename T, typename = void>
    struct StringMaker {
        template <typename Fake = T>
        static
        std::enable_if_t<::Catch::Detail::IsStreamInsertable<Fake>::value, std::string>
            convert(const Fake& value) {
                ReusableStringStream rss;
                // NB: call using the function-like syntax to avoid ambiguity with
                // user-defined templated operator<< under clang.
                rss.operator<<(value);
                return rss.str();
        }

        template <typename Fake = T>
        static
        std::enable_if_t<!::Catch::Detail::IsStreamInsertable<Fake>::value, std::string>
            convert( const Fake& value ) {
#if !defined(CATCH_CONFIG_FALLBACK_STRINGIFIER)
            return Detail::convertUnstreamable(value);
#else
            return CATCH_CONFIG_FALLBACK_STRINGIFIER(value);
#endif
        }
    };

    namespace Detail {

        // This function dispatches all stringification requests inside of Catch.
        // Should be preferably called fully qualified, like ::Catch::Detail::stringify
        template <typename T>
        std::string stringify(const T& e) {
            return ::Catch::StringMaker<std::remove_cv_t<std::remove_reference_t<T>>>::convert(e);
        }

        template<typename E>
        std::string convertUnknownEnumToString( E e ) {
            return ::Catch::Detail::stringify(static_cast<std::underlying_type_t<E>>(e));
        }

#if defined(_MANAGED)
        template <typename T>
        std::string stringify( T^ e ) {
            return ::Catch::StringMaker<T^>::convert(e);
        }
#endif

    } // namespace Detail

    // Some predefined specializations

    template<>
    struct StringMaker<std::string> {
        static std::string convert(const std::string& str);
    };

#ifdef CATCH_CONFIG_CPP17_STRING_VIEW
    template<>
    struct StringMaker<std::string_view> {
        static std::string convert(std::string_view str);
    };
#endif

    template<>
    struct StringMaker<char const *> {
        static std::string convert(char const * str);
    };
    template<>
    struct StringMaker<char *> {
        static std::string convert(char * str);
    };

#if defined(CATCH_CONFIG_WCHAR)
    template<>
    struct StringMaker<std::wstring> {
        static std::string convert(const std::wstring& wstr);
    };

# ifdef CATCH_CONFIG_CPP17_STRING_VIEW
    template<>
    struct StringMaker<std::wstring_view> {
        static std::string convert(std::wstring_view str);
    };
# endif

    template<>
    struct StringMaker<wchar_t const *> {
        static std::string convert(wchar_t const * str);
    };
    template<>
    struct StringMaker<wchar_t *> {
        static std::string convert(wchar_t * str);
    };
#endif // CATCH_CONFIG_WCHAR

    template<size_t SZ>
    struct StringMaker<char[SZ]> {
        static std::string convert(char const* str) {
            return Detail::convertIntoString(
                StringRef( str, Detail::catch_strnlen( str, SZ ) ) );
        }
    };
    template<size_t SZ>
    struct StringMaker<signed char[SZ]> {
        static std::string convert(signed char const* str) {
            auto reinterpreted = reinterpret_cast<char const*>(str);
            return Detail::convertIntoString(
                StringRef(reinterpreted, Detail::catch_strnlen(reinterpreted, SZ)));
        }
    };
    template<size_t SZ>
    struct StringMaker<unsigned char[SZ]> {
        static std::string convert(unsigned char const* str) {
            auto reinterpreted = reinterpret_cast<char const*>(str);
            return Detail::convertIntoString(
                StringRef(reinterpreted, Detail::catch_strnlen(reinterpreted, SZ)));
        }
    };

#if defined(CATCH_CONFIG_CPP17_BYTE)
    template<>
    struct StringMaker<std::byte> {
        static std::string convert(std::byte value);
    };
#endif // defined(CATCH_CONFIG_CPP17_BYTE)
    template<>
    struct StringMaker<int> {
        static std::string convert(int value);
    };
    template<>
    struct StringMaker<long> {
        static std::string convert(long value);
    };
    template<>
    struct StringMaker<long long> {
        static std::string convert(long long value);
    };
    template<>
    struct StringMaker<unsigned int> {
        static std::string convert(unsigned int value);
    };
    template<>
    struct StringMaker<unsigned long> {
        static std::string convert(unsigned long value);
    };
    template<>
    struct StringMaker<unsigned long long> {
        static std::string convert(unsigned long long value);
    };

    template<>
    struct StringMaker<bool> {
        static std::string convert(bool b) {
            using namespace std::string_literals;
            return b ? "true"s : "false"s;
        }
    };

    template<>
    struct StringMaker<char> {
        static std::string convert(char c);
    };
    template<>
    struct StringMaker<signed char> {
        static std::string convert(signed char value);
    };
    template<>
    struct StringMaker<unsigned char> {
        static std::string convert(unsigned char value);
    };

    template<>
    struct StringMaker<std::nullptr_t> {
        static std::string convert(std::nullptr_t) {
            using namespace std::string_literals;
            return "nullptr"s;
        }
    };

    template<>
    struct StringMaker<float> {
        static std::string convert(float value);
        CATCH_EXPORT static int precision;
    };

    template<>
    struct StringMaker<double> {
        static std::string convert(double value);
        CATCH_EXPORT static int precision;
    };

    template <typename T>
    struct StringMaker<T*> {
        template <typename U>
        static std::string convert(U* p) {
            if (p) {
                return ::Catch::Detail::rawMemoryToString(p);
            } else {
                return "nullptr";
            }
        }
    };

    template <typename R, typename C>
    struct StringMaker<R C::*> {
        static std::string convert(R C::* p) {
            if (p) {
                return ::Catch::Detail::rawMemoryToString(p);
            } else {
                return "nullptr";
            }
        }
    };

#if defined(_MANAGED)
    template <typename T>
    struct StringMaker<T^> {
        static std::string convert( T^ ref ) {
            return ::Catch::Detail::clrReferenceToString(ref);
        }
    };
#endif

    namespace Detail {
        template<typename InputIterator, typename Sentinel = InputIterator>
        std::string rangeToString(InputIterator first, Sentinel last) {
            ReusableStringStream rss;
            rss << "{ ";
            if (first != last) {
                rss << ::Catch::Detail::stringify(*first);
                for (++first; first != last; ++first)
                    rss << ", " << ::Catch::Detail::stringify(*first);
            }
            rss << " }";
            return rss.str();
        }
    }

} // namespace Catch

// Separate std-lib types stringification, so it can be selectively enabled
// This means that we do not bring in their headers

#if defined(CATCH_CONFIG_ENABLE_ALL_STRINGMAKERS)
#  define CATCH_CONFIG_ENABLE_PAIR_STRINGMAKER
#  define CATCH_CONFIG_ENABLE_TUPLE_STRINGMAKER
#  define CATCH_CONFIG_ENABLE_VARIANT_STRINGMAKER
#  define CATCH_CONFIG_ENABLE_OPTIONAL_STRINGMAKER
#endif

// Separate std::pair specialization
#if defined(CATCH_CONFIG_ENABLE_PAIR_STRINGMAKER)
#include <utility>
namespace Catch {
    template<typename T1, typename T2>
    struct StringMaker<std::pair<T1, T2> > {
        static std::string convert(const std::pair<T1, T2>& pair) {
            ReusableStringStream rss;
            rss << "{ "
                << ::Catch::Detail::stringify(pair.first)
                << ", "
                << ::Catch::Detail::stringify(pair.second)
                << " }";
            return rss.str();
        }
    };
}
#endif // CATCH_CONFIG_ENABLE_PAIR_STRINGMAKER

#if defined(CATCH_CONFIG_ENABLE_OPTIONAL_STRINGMAKER) && defined(CATCH_CONFIG_CPP17_OPTIONAL)
#include <optional>
namespace Catch {
    template<typename T>
    struct StringMaker<std::optional<T> > {
        static std::string convert(const std::optional<T>& optional) {
            if (optional.has_value()) {
                return ::Catch::Detail::stringify(*optional);
            } else {
                return "{ }";
            }
        }
    };
    template <>
    struct StringMaker<std::nullopt_t> {
        static std::string convert(const std::nullopt_t&) {
            return "{ }";
        }
    };
}
#endif // CATCH_CONFIG_ENABLE_OPTIONAL_STRINGMAKER

// Separate std::tuple specialization
#if defined(CATCH_CONFIG_ENABLE_TUPLE_STRINGMAKER)
#include <tuple>
namespace Catch {
    namespace Detail {
        template<
            typename Tuple,
            std::size_t N = 0,
            bool = (N < std::tuple_size<Tuple>::value)
            >
            struct TupleElementPrinter {
            static void print(const Tuple& tuple, std::ostream& os) {
                os << (N ? ", " : " ")
                    << ::Catch::Detail::stringify(std::get<N>(tuple));
                TupleElementPrinter<Tuple, N + 1>::print(tuple, os);
            }
        };

        template<
            typename Tuple,
            std::size_t N
        >
            struct TupleElementPrinter<Tuple, N, false> {
            static void print(const Tuple&, std::ostream&) {}
        };

    }


    template<typename ...Types>
    struct StringMaker<std::tuple<Types...>> {
        static std::string convert(const std::tuple<Types...>& tuple) {
            ReusableStringStream rss;
            rss << '{';
            Detail::TupleElementPrinter<std::tuple<Types...>>::print(tuple, rss.get());
            rss << " }";
            return rss.str();
        }
    };
}
#endif // CATCH_CONFIG_ENABLE_TUPLE_STRINGMAKER

#if defined(CATCH_CONFIG_ENABLE_VARIANT_STRINGMAKER) && defined(CATCH_CONFIG_CPP17_VARIANT)
#include <variant>
namespace Catch {
    template<>
    struct StringMaker<std::monostate> {
        static std::string convert(const std::monostate&) {
            return "{ }";
        }
    };

    template<typename... Elements>
    struct StringMaker<std::variant<Elements...>> {
        static std::string convert(const std::variant<Elements...>& variant) {
            if (variant.valueless_by_exception()) {
                return "{valueless variant}";
            } else {
                return std::visit(
                    [](const auto& value) {
                        return ::Catch::Detail::stringify(value);
                    },
                    variant
                );
            }
        }
    };
}
#endif // CATCH_CONFIG_ENABLE_VARIANT_STRINGMAKER

namespace Catch {
    // Import begin/ end from std here
    using std::begin;
    using std::end;

    namespace Detail {
        template <typename T, typename = void>
        struct is_range_impl : std::false_type {};

        template <typename T>
        struct is_range_impl<T, void_t<decltype(begin(std::declval<T>()))>> : std::true_type {};
    } // namespace Detail

    template <typename T>
    struct is_range : Detail::is_range_impl<T> {};

#if defined(_MANAGED) // Managed types are never ranges
    template <typename T>
    struct is_range<T^> {
        static const bool value = false;
    };
#endif

    template<typename Range>
    std::string rangeToString( Range const& range ) {
        return ::Catch::Detail::rangeToString( begin( range ), end( range ) );
    }

    // Handle vector<bool> specially
    template<typename Allocator>
    std::string rangeToString( std::vector<bool, Allocator> const& v ) {
        ReusableStringStream rss;
        rss << "{ ";
        bool first = true;
        for( bool b : v ) {
            if( first )
                first = false;
            else
                rss << ", ";
            rss << ::Catch::Detail::stringify( b );
        }
        rss << " }";
        return rss.str();
    }

    template<typename R>
    struct StringMaker<R, std::enable_if_t<is_range<R>::value && !::Catch::Detail::IsStreamInsertable<R>::value>> {
        static std::string convert( R const& range ) {
            return rangeToString( range );
        }
    };

    template <typename T, size_t SZ>
    struct StringMaker<T[SZ]> {
        static std::string convert(T const(&arr)[SZ]) {
            return rangeToString(arr);
        }
    };


} // namespace Catch

// Separate std::chrono::duration specialization
#include <ctime>
#include <ratio>
#include <chrono>


namespace Catch {

template <class Ratio>
struct ratio_string {
    static std::string symbol() {
        Catch::ReusableStringStream rss;
        rss << '[' << Ratio::num << '/'
            << Ratio::den << ']';
        return rss.str();
    }
};

template <>
struct ratio_string<std::atto> {
    static char symbol() { return 'a'; }
};
template <>
struct ratio_string<std::femto> {
    static char symbol() { return 'f'; }
};
template <>
struct ratio_string<std::pico> {
    static char symbol() { return 'p'; }
};
template <>
struct ratio_string<std::nano> {
    static char symbol() { return 'n'; }
};
template <>
struct ratio_string<std::micro> {
    static char symbol() { return 'u'; }
};
template <>
struct ratio_string<std::milli> {
    static char symbol() { return 'm'; }
};

    // std::chrono::duration specializations
    template<typename Value, typename Ratio>
    struct StringMaker<std::chrono::duration<Value, Ratio>> {
        static std::string convert(std::chrono::duration<Value, Ratio> const& duration) {
            ReusableStringStream rss;
            rss << duration.count() << ' ' << ratio_string<Ratio>::symbol() << 's';
            return rss.str();
        }
    };
    template<typename Value>
    struct StringMaker<std::chrono::duration<Value, std::ratio<1>>> {
        static std::string convert(std::chrono::duration<Value, std::ratio<1>> const& duration) {
            ReusableStringStream rss;
            rss << duration.count() << " s";
            return rss.str();
        }
    };
    template<typename Value>
    struct StringMaker<std::chrono::duration<Value, std::ratio<60>>> {
        static std::string convert(std::chrono::duration<Value, std::ratio<60>> const& duration) {
            ReusableStringStream rss;
            rss << duration.count() << " m";
            return rss.str();
        }
    };
    template<typename Value>
    struct StringMaker<std::chrono::duration<Value, std::ratio<3600>>> {
        static std::string convert(std::chrono::duration<Value, std::ratio<3600>> const& duration) {
            ReusableStringStream rss;
            rss << duration.count() << " h";
            return rss.str();
        }
    };

    // std::chrono::time_point specialization
    // Generic time_point cannot be specialized, only std::chrono::time_point<system_clock>
    template<typename Clock, typename Duration>
    struct StringMaker<std::chrono::time_point<Clock, Duration>> {
        static std::string convert(std::chrono::time_point<Clock, Duration> const& time_point) {
            return ::Catch::Detail::stringify(time_point.time_since_epoch()) + " since epoch";
        }
    };
    // std::chrono::time_point<system_clock> specialization
    template<typename Duration>
    struct StringMaker<std::chrono::time_point<std::chrono::system_clock, Duration>> {
        static std::string convert(std::chrono::time_point<std::chrono::system_clock, Duration> const& time_point) {
            auto converted = std::chrono::system_clock::to_time_t(time_point);

#ifdef _MSC_VER
            std::tm timeInfo = {};
            gmtime_s(&timeInfo, &converted);
#else
            std::tm* timeInfo = std::gmtime(&converted);
#endif

            auto const timeStampSize = sizeof("2017-01-16T17:06:45Z");
            char timeStamp[timeStampSize];
            const char * const fmt = "%Y-%m-%dT%H:%M:%SZ";

#ifdef _MSC_VER
            std::strftime(timeStamp, timeStampSize, fmt, &timeInfo);
#else
            std::strftime(timeStamp, timeStampSize, fmt, timeInfo);
#endif
            return std::string(timeStamp, timeStampSize - 1);
        }
    };
}


#define INTERNAL_CATCH_REGISTER_ENUM( enumName, ... ) \
namespace Catch { \
    template<> struct StringMaker<enumName> { \
        static std::string convert( enumName value ) { \
            static const auto& enumInfo = ::Catch::getMutableRegistryHub().getMutableEnumValuesRegistry().registerEnum( #enumName, #__VA_ARGS__, { __VA_ARGS__ } ); \
            return static_cast<std::string>(enumInfo.lookup( static_cast<int>( value ) )); \
        } \
    }; \
}

#define CATCH_REGISTER_ENUM( enumName, ... ) INTERNAL_CATCH_REGISTER_ENUM( enumName, __VA_ARGS__ )

#ifdef _MSC_VER
#pragma warning(pop)
#endif

#endif // CATCH_TOSTRING_HPP_INCLUDED

#include <type_traits>

namespace Catch {

    class Approx {
    private:
        bool equalityComparisonImpl(double other) const;
        // Sets and validates the new margin (margin >= 0)
        void setMargin(double margin);
        // Sets and validates the new epsilon (0 < epsilon < 1)
        void setEpsilon(double epsilon);

    public:
        explicit Approx ( double value );

        static Approx custom();

        Approx operator-() const;

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        Approx operator()( T const& value ) const {
            Approx approx( static_cast<double>(value) );
            approx.m_epsilon = m_epsilon;
            approx.m_margin = m_margin;
            approx.m_scale = m_scale;
            return approx;
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        explicit Approx( T const& value ): Approx(static_cast<double>(value))
        {}


        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        friend bool operator == ( const T& lhs, Approx const& rhs ) {
            auto lhs_v = static_cast<double>(lhs);
            return rhs.equalityComparisonImpl(lhs_v);
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        friend bool operator == ( Approx const& lhs, const T& rhs ) {
            return operator==( rhs, lhs );
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        friend bool operator != ( T const& lhs, Approx const& rhs ) {
            return !operator==( lhs, rhs );
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        friend bool operator != ( Approx const& lhs, T const& rhs ) {
            return !operator==( rhs, lhs );
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        friend bool operator <= ( T const& lhs, Approx const& rhs ) {
            return static_cast<double>(lhs) < rhs.m_value || lhs == rhs;
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        friend bool operator <= ( Approx const& lhs, T const& rhs ) {
            return lhs.m_value < static_cast<double>(rhs) || lhs == rhs;
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        friend bool operator >= ( T const& lhs, Approx const& rhs ) {
            return static_cast<double>(lhs) > rhs.m_value || lhs == rhs;
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        friend bool operator >= ( Approx const& lhs, T const& rhs ) {
            return lhs.m_value > static_cast<double>(rhs) || lhs == rhs;
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        Approx& epsilon( T const& newEpsilon ) {
            const auto epsilonAsDouble = static_cast<double>(newEpsilon);
            setEpsilon(epsilonAsDouble);
            return *this;
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        Approx& margin( T const& newMargin ) {
            const auto marginAsDouble = static_cast<double>(newMargin);
            setMargin(marginAsDouble);
            return *this;
        }

        template <typename T, typename = std::enable_if_t<std::is_constructible<double, T>::value>>
        Approx& scale( T const& newScale ) {
            m_scale = static_cast<double>(newScale);
            return *this;
        }

        std::string toString() const;

    private:
        double m_epsilon;
        double m_margin;
        double m_scale;
        double m_value;
    };

namespace literals {
    Approx operator ""_a(long double val);
    Approx operator ""_a(unsigned long long val);
} // end namespace literals

template<>
struct StringMaker<Catch::Approx> {
    static std::string convert(Catch::Approx const& value);
};

} // end namespace Catch

#endif // CATCH_APPROX_HPP_INCLUDED


#ifndef CATCH_ASSERTION_INFO_HPP_INCLUDED
#define CATCH_ASSERTION_INFO_HPP_INCLUDED



#ifndef CATCH_SOURCE_LINE_INFO_HPP_INCLUDED
#define CATCH_SOURCE_LINE_INFO_HPP_INCLUDED

#include <cstddef>
#include <iosfwd>

namespace Catch {

    struct SourceLineInfo {

        SourceLineInfo() = delete;
        constexpr SourceLineInfo( char const* _file, std::size_t _line ) noexcept:
            file( _file ),
            line( _line )
        {}

        bool operator == ( SourceLineInfo const& other ) const noexcept;
        bool operator < ( SourceLineInfo const& other ) const noexcept;

        char const* file;
        std::size_t line;

        friend std::ostream& operator << (std::ostream& os, SourceLineInfo const& info);
    };
}

#define CATCH_INTERNAL_LINEINFO \
    ::Catch::SourceLineInfo( __FILE__, static_cast<std::size_t>( __LINE__ ) )

#endif // CATCH_SOURCE_LINE_INFO_HPP_INCLUDED

namespace Catch {

    struct AssertionInfo {
        // AssertionInfo() = delete;

        StringRef macroName;
        SourceLineInfo lineInfo;
        StringRef capturedExpression;
        ResultDisposition::Flags resultDisposition;
    };

} // end namespace Catch

#endif // CATCH_ASSERTION_INFO_HPP_INCLUDED


#ifndef CATCH_ASSERTION_RESULT_HPP_INCLUDED
#define CATCH_ASSERTION_RESULT_HPP_INCLUDED



#ifndef CATCH_LAZY_EXPR_HPP_INCLUDED
#define CATCH_LAZY_EXPR_HPP_INCLUDED

#include <iosfwd>

namespace Catch {

    class ITransientExpression;

    class LazyExpression {
        friend class AssertionHandler;
        friend struct AssertionStats;
        friend class RunContext;

        ITransientExpression const* m_transientExpression = nullptr;
        bool m_isNegated;
    public:
        LazyExpression( bool isNegated ):
            m_isNegated(isNegated)
        {}
        LazyExpression(LazyExpression const& other) = default;
        LazyExpression& operator = ( LazyExpression const& ) = delete;

        explicit operator bool() const {
            return m_transientExpression != nullptr;
        }

        friend auto operator << ( std::ostream& os, LazyExpression const& lazyExpr ) -> std::ostream&;
    };

} // namespace Catch

#endif // CATCH_LAZY_EXPR_HPP_INCLUDED

#include <string>

namespace Catch {

    struct AssertionResultData
    {
        AssertionResultData() = delete;

        AssertionResultData( ResultWas::OfType _resultType, LazyExpression const& _lazyExpression );

        std::string message;
        mutable std::string reconstructedExpression;
        LazyExpression lazyExpression;
        ResultWas::OfType resultType;

        std::string reconstructExpression() const;
    };

    class AssertionResult {
    public:
        AssertionResult() = delete;
        AssertionResult( AssertionInfo const& info, AssertionResultData&& data );

        bool isOk() const;
        bool succeeded() const;
        ResultWas::OfType getResultType() const;
        bool hasExpression() const;
        bool hasMessage() const;
        std::string getExpression() const;
        std::string getExpressionInMacro() const;
        bool hasExpandedExpression() const;
        std::string getExpandedExpression() const;
        StringRef getMessage() const;
        SourceLineInfo getSourceInfo() const;
        StringRef getTestMacroName() const;

    //protected:
        AssertionInfo m_info;
        AssertionResultData m_resultData;
    };

} // end namespace Catch

#endif // CATCH_ASSERTION_RESULT_HPP_INCLUDED


#ifndef CATCH_CONFIG_HPP_INCLUDED
#define CATCH_CONFIG_HPP_INCLUDED



#ifndef CATCH_TEST_SPEC_HPP_INCLUDED
#define CATCH_TEST_SPEC_HPP_INCLUDED

#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpadded"
#endif



#ifndef CATCH_WILDCARD_PATTERN_HPP_INCLUDED
#define CATCH_WILDCARD_PATTERN_HPP_INCLUDED



#ifndef CATCH_CASE_SENSITIVE_HPP_INCLUDED
#define CATCH_CASE_SENSITIVE_HPP_INCLUDED

namespace Catch {

    enum class CaseSensitive { Yes, No };

} // namespace Catch

#endif // CATCH_CASE_SENSITIVE_HPP_INCLUDED

#include <string>

namespace Catch
{
    class WildcardPattern {
        enum WildcardPosition {
            NoWildcard = 0,
            WildcardAtStart = 1,
            WildcardAtEnd = 2,
            WildcardAtBothEnds = WildcardAtStart | WildcardAtEnd
        };

    public:

        WildcardPattern( std::string const& pattern, CaseSensitive caseSensitivity );
        bool matches( std::string const& str ) const;

    private:
        std::string normaliseString( std::string const& str ) const;
        CaseSensitive m_caseSensitivity;
        WildcardPosition m_wildcard = NoWildcard;
        std::string m_pattern;
    };
}

#endif // CATCH_WILDCARD_PATTERN_HPP_INCLUDED

#include <iosfwd>
#include <string>
#include <vector>

namespace Catch {

    class IConfig;
    struct TestCaseInfo;
    class TestCaseHandle;

    class TestSpec {

        class Pattern {
        public:
            explicit Pattern( std::string const& name );
            virtual ~Pattern();
            virtual bool matches( TestCaseInfo const& testCase ) const = 0;
            std::string const& name() const;
        private:
            virtual void serializeTo( std::ostream& out ) const = 0;
            // Writes string that would be reparsed into the pattern
            friend std::ostream& operator<<(std::ostream& out,
                                            Pattern const& pattern) {
                pattern.serializeTo( out );
                return out;
            }

            std::string const m_name;
        };

        class NamePattern : public Pattern {
        public:
            explicit NamePattern( std::string const& name, std::string const& filterString );
            bool matches( TestCaseInfo const& testCase ) const override;
        private:
            void serializeTo( std::ostream& out ) const override;

            WildcardPattern m_wildcardPattern;
        };

        class TagPattern : public Pattern {
        public:
            explicit TagPattern( std::string const& tag, std::string const& filterString );
            bool matches( TestCaseInfo const& testCase ) const override;
        private:
            void serializeTo( std::ostream& out ) const override;

            std::string m_tag;
        };

        struct Filter {
            std::vector<Detail::unique_ptr<Pattern>> m_required;
            std::vector<Detail::unique_ptr<Pattern>> m_forbidden;

            void serializeTo( std::ostream& out ) const;
            friend std::ostream& operator<<(std::ostream& out, Filter const& f) {
                f.serializeTo( out );
                return out;
            }

            bool matches( TestCaseInfo const& testCase ) const;
        };

        static std::string extractFilterName( Filter const& filter );

    public:
        struct FilterMatch {
            std::string name;
            std::vector<TestCaseHandle const*> tests;
        };
        using Matches = std::vector<FilterMatch>;
        using vectorStrings = std::vector<std::string>;

        bool hasFilters() const;
        bool matches( TestCaseInfo const& testCase ) const;
        Matches matchesByFilter( std::vector<TestCaseHandle> const& testCases, IConfig const& config ) const;
        const vectorStrings & getInvalidSpecs() const;

    private:
        std::vector<Filter> m_filters;
        std::vector<std::string> m_invalidSpecs;

        friend class TestSpecParser;
        void serializeTo( std::ostream& out ) const;
        friend std::ostream& operator<<(std::ostream& out,
                                        TestSpec const& spec) {
            spec.serializeTo( out );
            return out;
        }
    };
}

#ifdef __clang__
#pragma clang diagnostic pop
#endif

#endif // CATCH_TEST_SPEC_HPP_INCLUDED


#ifndef CATCH_OPTIONAL_HPP_INCLUDED
#define CATCH_OPTIONAL_HPP_INCLUDED


#include <cassert>

namespace Catch {

    // An optional type
    template<typename T>
    class Optional {
    public:
        Optional(): nullableValue( nullptr ) {}
        ~Optional() { reset(); }

        Optional( T const& _value ):
            nullableValue( new ( storage ) T( _value ) ) {}
        Optional( T&& _value ):
            nullableValue( new ( storage ) T( CATCH_MOVE( _value ) ) ) {}

        Optional& operator=( T const& _value ) {
            reset();
            nullableValue = new ( storage ) T( _value );
            return *this;
        }
        Optional& operator=( T&& _value ) {
            reset();
            nullableValue = new ( storage ) T( CATCH_MOVE( _value ) );
            return *this;
        }

        Optional( Optional const& _other ):
            nullableValue( _other ? new ( storage ) T( *_other ) : nullptr ) {}
        Optional( Optional&& _other ):
            nullableValue( _other ? new ( storage ) T( CATCH_MOVE( *_other ) )
                                  : nullptr ) {}

        Optional& operator=( Optional const& _other ) {
            if ( &_other != this ) {
                reset();
                if ( _other ) { nullableValue = new ( storage ) T( *_other ); }
            }
            return *this;
        }
        Optional& operator=( Optional&& _other ) {
            if ( &_other != this ) {
                reset();
                if ( _other ) {
                    nullableValue = new ( storage ) T( CATCH_MOVE( *_other ) );
                }
            }
            return *this;
        }

        void reset() {
            if ( nullableValue ) { nullableValue->~T(); }
            nullableValue = nullptr;
        }

        T& operator*() {
            assert(nullableValue);
            return *nullableValue;
        }
        T const& operator*() const {
            assert(nullableValue);
            return *nullableValue;
        }
        T* operator->() {
            assert(nullableValue);
            return nullableValue;
        }
        const T* operator->() const {
            assert(nullableValue);
            return nullableValue;
        }

        T valueOr( T const& defaultValue ) const {
            return nullableValue ? *nullableValue : defaultValue;
        }

        bool some() const { return nullableValue != nullptr; }
        bool none() const { return nullableValue == nullptr; }

        bool operator !() const { return nullableValue == nullptr; }
        explicit operator bool() const {
            return some();
        }

        friend bool operator==(Optional const& a, Optional const& b) {
            if (a.none() && b.none()) {
                return true;
            } else if (a.some() && b.some()) {
                return *a == *b;
            } else {
                return false;
            }
        }
        friend bool operator!=(Optional const& a, Optional const& b) {
            return !( a == b );
        }

    private:
        T* nullableValue;
        alignas(alignof(T)) char storage[sizeof(T)];
    };

} // end namespace Catch

#endif // CATCH_OPTIONAL_HPP_INCLUDED


#ifndef CATCH_RANDOM_SEED_GENERATION_HPP_INCLUDED
#define CATCH_RANDOM_SEED_GENERATION_HPP_INCLUDED

#include <cstdint>

namespace Catch {

    enum class GenerateFrom {
        Time,
        RandomDevice,
        Default
    };

    std::uint32_t generateRandomSeed(GenerateFrom from);

} // end namespace Catch

#endif // CATCH_RANDOM_SEED_GENERATION_HPP_INCLUDED


#ifndef CATCH_REPORTER_SPEC_PARSER_HPP_INCLUDED
#define CATCH_REPORTER_SPEC_PARSER_HPP_INCLUDED


#include <map>
#include <string>
#include <vector>

namespace Catch {

    enum class ColourMode : std::uint8_t;

    namespace Detail {
        std::vector<std::string> splitReporterSpec( StringRef reporterSpec );

        Optional<ColourMode> stringToColourMode( StringRef colourMode );
    }

    class ReporterSpec {
        std::string m_name;
        Optional<std::string> m_outputFileName;
        Optional<ColourMode> m_colourMode;
        std::map<std::string, std::string> m_customOptions;

        friend bool operator==( ReporterSpec const& lhs,
                                ReporterSpec const& rhs );
        friend bool operator!=( ReporterSpec const& lhs,
                                ReporterSpec const& rhs ) {
            return !( lhs == rhs );
        }

    public:
        ReporterSpec(
            std::string name,
            Optional<std::string> outputFileName,
            Optional<ColourMode> colourMode,
            std::map<std::string, std::string> customOptions );

        std::string const& name() const { return m_name; }

        Optional<std::string> const& outputFile() const {
            return m_outputFileName;
        }

        Optional<ColourMode> const& colourMode() const { return m_colourMode; }

        std::map<std::string, std::string> const& customOptions() const {
            return m_customOptions;
        }
    };

    Optional<ReporterSpec> parseReporterSpec( StringRef reporterSpec );

}

#endif // CATCH_REPORTER_SPEC_PARSER_HPP_INCLUDED

#include <chrono>
#include <map>
#include <string>
#include <vector>

namespace Catch {

    class IStream;

    struct ProcessedReporterSpec {
        std::string name;
        std::string outputFilename;
        ColourMode colourMode;
        std::map<std::string, std::string> customOptions;
        friend bool operator==( ProcessedReporterSpec const& lhs,
                                ProcessedReporterSpec const& rhs );
        friend bool operator!=( ProcessedReporterSpec const& lhs,
                                ProcessedReporterSpec const& rhs ) {
            return !( lhs == rhs );
        }
    };

    struct ConfigData {

        bool listTests = false;
        bool listTags = false;
        bool listReporters = false;
        bool listListeners = false;

        bool showSuccessfulTests = false;
        bool shouldDebugBreak = false;
        bool noThrow = false;
        bool showHelp = false;
        bool showInvisibles = false;
        bool filenamesAsTags = false;
        bool libIdentify = false;
        bool allowZeroTests = false;

        int abortAfter = -1;
        uint32_t rngSeed = generateRandomSeed(GenerateFrom::Default);

        unsigned int shardCount = 1;
        unsigned int shardIndex = 0;

        bool skipBenchmarks = false;
        bool benchmarkNoAnalysis = false;
        unsigned int benchmarkSamples = 100;
        double benchmarkConfidenceInterval = 0.95;
        unsigned int benchmarkResamples = 100'000;
        std::chrono::milliseconds::rep benchmarkWarmupTime = 100;

        Verbosity verbosity = Verbosity::Normal;
        WarnAbout::What warnings = WarnAbout::Nothing;
        ShowDurations showDurations = ShowDurations::DefaultForReporter;
        double minDuration = -1;
        TestRunOrder runOrder = TestRunOrder::Declared;
        ColourMode defaultColourMode = ColourMode::PlatformDefault;
        WaitForKeypress::When waitForKeypress = WaitForKeypress::Never;

        std::string defaultOutputFilename;
        std::string name;
        std::string processName;
        std::vector<ReporterSpec> reporterSpecifications;

        std::vector<std::string> testsOrTags;
        std::vector<std::string> sectionsToRun;
    };


    class Config : public IConfig {
    public:

        Config() = default;
        Config( ConfigData const& data );
        ~Config() override; // = default in the cpp file

        bool listTests() const;
        bool listTags() const;
        bool listReporters() const;
        bool listListeners() const;

        std::vector<ReporterSpec> const& getReporterSpecs() const;
        std::vector<ProcessedReporterSpec> const&
        getProcessedReporterSpecs() const;

        std::vector<std::string> const& getTestsOrTags() const override;
        std::vector<std::string> const& getSectionsToRun() const override;

        TestSpec const& testSpec() const override;
        bool hasTestFilters() const override;

        bool showHelp() const;

        // IConfig interface
        bool allowThrows() const override;
        StringRef name() const override;
        bool includeSuccessfulResults() const override;
        bool warnAboutMissingAssertions() const override;
        bool warnAboutUnmatchedTestSpecs() const override;
        bool zeroTestsCountAsSuccess() const override;
        ShowDurations showDurations() const override;
        double minDuration() const override;
        TestRunOrder runOrder() const override;
        uint32_t rngSeed() const override;
        unsigned int shardCount() const override;
        unsigned int shardIndex() const override;
        ColourMode defaultColourMode() const override;
        bool shouldDebugBreak() const override;
        int abortAfter() const override;
        bool showInvisibles() const override;
        Verbosity verbosity() const override;
        bool skipBenchmarks() const override;
        bool benchmarkNoAnalysis() const override;
        unsigned int benchmarkSamples() const override;
        double benchmarkConfidenceInterval() const override;
        unsigned int benchmarkResamples() const override;
        std::chrono::milliseconds benchmarkWarmupTime() const override;

    private:
        // Reads Bazel env vars and applies them to the config
        void readBazelEnvVars();

        ConfigData m_data;
        std::vector<ProcessedReporterSpec> m_processedReporterSpecs;
        TestSpec m_testSpec;
        bool m_hasTestFilters = false;
    };
} // end namespace Catch

#endif // CATCH_CONFIG_HPP_INCLUDED


#ifndef CATCH_GET_RANDOM_SEED_HPP_INCLUDED
#define CATCH_GET_RANDOM_SEED_HPP_INCLUDED

#include <cstdint>

namespace Catch {
    std::uint32_t getSeed();
}

#endif // CATCH_GET_RANDOM_SEED_HPP_INCLUDED


#ifndef CATCH_MESSAGE_HPP_INCLUDED
#define CATCH_MESSAGE_HPP_INCLUDED




#ifndef CATCH_CONFIG_PREFIX_MESSAGES_HPP_INCLUDED
#define CATCH_CONFIG_PREFIX_MESSAGES_HPP_INCLUDED


#if defined(CATCH_CONFIG_PREFIX_ALL) && !defined(CATCH_CONFIG_PREFIX_MESSAGES)
    #define CATCH_CONFIG_PREFIX_MESSAGES
#endif

#endif // CATCH_CONFIG_PREFIX_MESSAGES_HPP_INCLUDED


#ifndef CATCH_STREAM_END_STOP_HPP_INCLUDED
#define CATCH_STREAM_END_STOP_HPP_INCLUDED


namespace Catch {

    // Use this in variadic streaming macros to allow
    //    << +StreamEndStop
    // as well as
    //    << stuff +StreamEndStop
    struct StreamEndStop {
        constexpr StringRef operator+() const { return StringRef(); }

        template <typename T>
        constexpr friend T const& operator+( T const& value, StreamEndStop ) {
            return value;
        }
    };

} // namespace Catch

#endif // CATCH_STREAM_END_STOP_HPP_INCLUDED


#ifndef CATCH_MESSAGE_INFO_HPP_INCLUDED
#define CATCH_MESSAGE_INFO_HPP_INCLUDED


#include <string>

namespace Catch {

    struct MessageInfo {
        MessageInfo(    StringRef _macroName,
                        SourceLineInfo const& _lineInfo,
                        ResultWas::OfType _type );

        StringRef macroName;
        std::string message;
        SourceLineInfo lineInfo;
        ResultWas::OfType type;
        unsigned int sequence;

        bool operator == (MessageInfo const& other) const {
            return sequence == other.sequence;
        }
        bool operator < (MessageInfo const& other) const {
            return sequence < other.sequence;
        }
    private:
        static unsigned int globalCount;
    };

} // end namespace Catch

#endif // CATCH_MESSAGE_INFO_HPP_INCLUDED

#include <string>
#include <vector>

namespace Catch {

    struct SourceLineInfo;
    class IResultCapture;

    struct MessageStream {

        template<typename T>
        MessageStream& operator << ( T const& value ) {
            m_stream << value;
            return *this;
        }

        ReusableStringStream m_stream;
    };

    struct MessageBuilder : MessageStream {
        MessageBuilder( StringRef macroName,
                        SourceLineInfo const& lineInfo,
                        ResultWas::OfType type ):
            m_info(macroName, lineInfo, type) {}

        template<typename T>
        MessageBuilder&& operator << ( T const& value ) && {
            m_stream << value;
            return CATCH_MOVE(*this);
        }

        MessageInfo m_info;
    };

    class ScopedMessage {
    public:
        explicit ScopedMessage( MessageBuilder&& builder );
        ScopedMessage( ScopedMessage& duplicate ) = delete;
        ScopedMessage( ScopedMessage&& old ) noexcept;
        ~ScopedMessage();

        MessageInfo m_info;
        bool m_moved = false;
    };

    class Capturer {
        std::vector<MessageInfo> m_messages;
        IResultCapture& m_resultCapture;
        size_t m_captured = 0;
    public:
        Capturer( StringRef macroName, SourceLineInfo const& lineInfo, ResultWas::OfType resultType, StringRef names );

        Capturer(Capturer const&) = delete;
        Capturer& operator=(Capturer const&) = delete;

        ~Capturer();

        void captureValue( size_t index, std::string const& value );

        template<typename T>
        void captureValues( size_t index, T const& value ) {
            captureValue( index, Catch::Detail::stringify( value ) );
        }

        template<typename T, typename... Ts>
        void captureValues( size_t index, T const& value, Ts const&... values ) {
            captureValue( index, Catch::Detail::stringify(value) );
            captureValues( index+1, values... );
        }
    };

} // end namespace Catch

#define INTERNAL_CATCH_MSG( macroName, messageType, resultDisposition, ... ) \
    do { \
        Catch::AssertionHandler catchAssertionHandler( macroName##_catch_sr, CATCH_INTERNAL_LINEINFO, Catch::StringRef(), resultDisposition ); \
        catchAssertionHandler.handleMessage( messageType, ( Catch::MessageStream() << __VA_ARGS__ + ::Catch::StreamEndStop() ).m_stream.str() ); \
        INTERNAL_CATCH_REACT( catchAssertionHandler ) \
    } while( false )

#define INTERNAL_CATCH_CAPTURE( varName, macroName, ... ) \
    Catch::Capturer varName( macroName##_catch_sr,        \
                             CATCH_INTERNAL_LINEINFO,     \
                             Catch::ResultWas::Info,      \
                             #__VA_ARGS__##_catch_sr );   \
    varName.captureValues( 0, __VA_ARGS__ )

#define INTERNAL_CATCH_INFO( macroName, log ) \
    const Catch::ScopedMessage INTERNAL_CATCH_UNIQUE_NAME( scopedMessage )( Catch::MessageBuilder( macroName##_catch_sr, CATCH_INTERNAL_LINEINFO, Catch::ResultWas::Info ) << log )

#define INTERNAL_CATCH_UNSCOPED_INFO( macroName, log ) \
    Catch::getResultCapture().emplaceUnscopedMessage( Catch::MessageBuilder( macroName##_catch_sr, CATCH_INTERNAL_LINEINFO, Catch::ResultWas::Info ) << log )


#if defined(CATCH_CONFIG_PREFIX_MESSAGES) && !defined(CATCH_CONFIG_DISABLE)

  #define CATCH_INFO( msg ) INTERNAL_CATCH_INFO( "CATCH_INFO", msg )
  #define CATCH_UNSCOPED_INFO( msg ) INTERNAL_CATCH_UNSCOPED_INFO( "CATCH_UNSCOPED_INFO", msg )
  #define CATCH_WARN( msg ) INTERNAL_CATCH_MSG( "CATCH_WARN", Catch::ResultWas::Warning, Catch::ResultDisposition::ContinueOnFailure, msg )
  #define CATCH_CAPTURE( ... ) INTERNAL_CATCH_CAPTURE( INTERNAL_CATCH_UNIQUE_NAME(capturer), "CATCH_CAPTURE", __VA_ARGS__ )

#elif defined(CATCH_CONFIG_PREFIX_MESSAGES) && defined(CATCH_CONFIG_DISABLE)

  #define CATCH_INFO( msg )          (void)(0)
  #define CATCH_UNSCOPED_INFO( msg ) (void)(0)
  #define CATCH_WARN( msg )          (void)(0)
  #define CATCH_CAPTURE( ... )       (void)(0)

#elif !defined(CATCH_CONFIG_PREFIX_MESSAGES) && !defined(CATCH_CONFIG_DISABLE)

  #define INFO( msg ) INTERNAL_CATCH_INFO( "INFO", msg )
  #define UNSCOPED_INFO( msg ) INTERNAL_CATCH_UNSCOPED_INFO( "UNSCOPED_INFO", msg )
  #define WARN( msg ) INTERNAL_CATCH_MSG( "WARN", Catch::ResultWas::Warning, Catch::ResultDisposition::ContinueOnFailure, msg )
  #define CAPTURE( ... ) INTERNAL_CATCH_CAPTURE( INTERNAL_CATCH_UNIQUE_NAME(capturer), "CAPTURE", __VA_ARGS__ )

#elif !defined(CATCH_CONFIG_PREFIX_MESSAGES) && defined(CATCH_CONFIG_DISABLE)

  #define INFO( msg )          (void)(0)
  #define UNSCOPED_INFO( msg ) (void)(0)
  #define WARN( msg )          (void)(0)
  #define CAPTURE( ... )       (void)(0)

#endif // end of user facing macro declarations




#endif // CATCH_MESSAGE_HPP_INCLUDED


#ifndef CATCH_SECTION_INFO_HPP_INCLUDED
#define CATCH_SECTION_INFO_HPP_INCLUDED



#ifndef CATCH_TOTALS_HPP_INCLUDED
#define CATCH_TOTALS_HPP_INCLUDED

#include <cstdint>

namespace Catch {

    struct Counts {
        Counts operator - ( Counts const& other ) const;
        Counts& operator += ( Counts const& other );

        std::uint64_t total() const;
        bool allPassed() const;
        bool allOk() const;

        std::uint64_t passed = 0;
        std::uint64_t failed = 0;
        std::uint64_t failedButOk = 0;
        std::uint64_t skipped = 0;
    };

    struct Totals {

        Totals operator - ( Totals const& other ) const;
        Totals& operator += ( Totals const& other );

        Totals delta( Totals const& prevTotals ) const;

        Counts assertions;
        Counts testCases;
    };
}

#endif // CATCH_TOTALS_HPP_INCLUDED

#include <string>

namespace Catch {

    struct SectionInfo {
        // The last argument is ignored, so that people can write
        // SECTION("ShortName", "Proper description that is long") and
        // still use the `-c` flag comfortably.
        SectionInfo( SourceLineInfo const& _lineInfo, std::string _name,
                    const char* const = nullptr ):
            name(CATCH_MOVE(_name)),
            lineInfo(_lineInfo)
            {}

        std::string name;
        SourceLineInfo lineInfo;
    };

    struct SectionEndInfo {
        SectionInfo sectionInfo;
        Counts prevAssertions;
        double durationInSeconds;
    };

} // end namespace Catch

#endif // CATCH_SECTION_INFO_HPP_INCLUDED


#ifndef CATCH_SESSION_HPP_INCLUDED
#define CATCH_SESSION_HPP_INCLUDED



#ifndef CATCH_COMMANDLINE_HPP_INCLUDED
#define CATCH_COMMANDLINE_HPP_INCLUDED



#ifndef CATCH_CLARA_HPP_INCLUDED
#define CATCH_CLARA_HPP_INCLUDED

#if defined( __clang__ )
#    pragma clang diagnostic push
#    pragma clang diagnostic ignored "-Wweak-vtables"
#    pragma clang diagnostic ignored "-Wshadow"
#    pragma clang diagnostic ignored "-Wdeprecated"
#endif

#if defined( __GNUC__ )
#    pragma GCC diagnostic push
#    pragma GCC diagnostic ignored "-Wsign-conversion"
#endif

#ifndef CLARA_CONFIG_OPTIONAL_TYPE
#    ifdef __has_include
#        if __has_include( <optional>) && __cplusplus >= 201703L
#            include <optional>
#            define CLARA_CONFIG_OPTIONAL_TYPE std::optional
#        endif
#    endif
#endif


#include <cassert>
#include <memory>
#include <ostream>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>

namespace Catch {
    namespace Clara {

        class Args;
        class Parser;

        // enum of result types from a parse
        enum class ParseResultType {
            Matched,
            NoMatch,
            ShortCircuitAll,
            ShortCircuitSame
        };

        struct accept_many_t {};
        constexpr accept_many_t accept_many {};

        namespace Detail {
            struct fake_arg {
                template <typename T>
                operator T();
            };

            template <typename F, typename = void>
            struct is_unary_function : std::false_type {};

            template <typename F>
            struct is_unary_function<
                F,
                Catch::Detail::void_t<decltype(
                    std::declval<F>()( fake_arg() ) )
                >
            > : std::true_type {};

            // Traits for extracting arg and return type of lambdas (for single
            // argument lambdas)
            template <typename L>
            struct UnaryLambdaTraits
                : UnaryLambdaTraits<decltype( &L::operator() )> {};

            template <typename ClassT, typename ReturnT, typename... Args>
            struct UnaryLambdaTraits<ReturnT ( ClassT::* )( Args... ) const> {
                static const bool isValid = false;
            };

            template <typename ClassT, typename ReturnT, typename ArgT>
            struct UnaryLambdaTraits<ReturnT ( ClassT::* )( ArgT ) const> {
                static const bool isValid = true;
                using ArgType = std::remove_const_t<std::remove_reference_t<ArgT>>;
                using ReturnType = ReturnT;
            };

            class TokenStream;

            // Wraps a token coming from a token stream. These may not directly
            // correspond to strings as a single string may encode an option +
            // its argument if the : or = form is used
            enum class TokenType { Option, Argument };
            struct Token {
                TokenType type;
                StringRef token;
            };

            // Abstracts iterators into args as a stream of tokens, with option
            // arguments uniformly handled
            class TokenStream {
                using Iterator = std::vector<StringRef>::const_iterator;
                Iterator it;
                Iterator itEnd;
                std::vector<Token> m_tokenBuffer;
                void loadBuffer();

            public:
                explicit TokenStream( Args const& args );
                TokenStream( Iterator it, Iterator itEnd );

                explicit operator bool() const {
                    return !m_tokenBuffer.empty() || it != itEnd;
                }

                size_t count() const {
                    return m_tokenBuffer.size() + ( itEnd - it );
                }

                Token operator*() const {
                    assert( !m_tokenBuffer.empty() );
                    return m_tokenBuffer.front();
                }

                Token const* operator->() const {
                    assert( !m_tokenBuffer.empty() );
                    return &m_tokenBuffer.front();
                }

                TokenStream& operator++();
            };

            enum class ResultType {
                Ok,
                LogicError,
                RuntimeError
            };

            class ResultBase {
            protected:
                ResultBase( ResultType type ): m_type( type ) {}
                virtual ~ResultBase(); // = default;


                ResultBase(ResultBase const&) = default;
                ResultBase& operator=(ResultBase const&) = default;
                ResultBase(ResultBase&&) = default;
                ResultBase& operator=(ResultBase&&) = default;

                virtual void enforceOk() const = 0;

                ResultType m_type;
            };

            template <typename T>
            class ResultValueBase : public ResultBase {
            public:
                T const& value() const& {
                    enforceOk();
                    return m_value;
                }
                T&& value() && {
                    enforceOk();
                    return CATCH_MOVE( m_value );
                }

            protected:
                ResultValueBase( ResultType type ): ResultBase( type ) {}

                ResultValueBase( ResultValueBase const& other ):
                    ResultBase( other ) {
                    if ( m_type == ResultType::Ok )
                        new ( &m_value ) T( other.m_value );
                }
                ResultValueBase( ResultValueBase&& other ):
                    ResultBase( other ) {
                    if ( m_type == ResultType::Ok )
                        new ( &m_value ) T( CATCH_MOVE(other.m_value) );
                }


                ResultValueBase( ResultType, T const& value ):
                    ResultBase( ResultType::Ok ) {
                    new ( &m_value ) T( value );
                }
                ResultValueBase( ResultType, T&& value ):
                    ResultBase( ResultType::Ok ) {
                    new ( &m_value ) T( CATCH_MOVE(value) );
                }

                ResultValueBase& operator=( ResultValueBase const& other ) {
                    if ( m_type == ResultType::Ok )
                        m_value.~T();
                    ResultBase::operator=( other );
                    if ( m_type == ResultType::Ok )
                        new ( &m_value ) T( other.m_value );
                    return *this;
                }
                ResultValueBase& operator=( ResultValueBase&& other ) {
                    if ( m_type == ResultType::Ok ) m_value.~T();
                    ResultBase::operator=( other );
                    if ( m_type == ResultType::Ok )
                        new ( &m_value ) T( CATCH_MOVE(other.m_value) );
                    return *this;
                }


                ~ResultValueBase() override {
                    if ( m_type == ResultType::Ok )
                        m_value.~T();
                }

                union {
                    T m_value;
                };
            };

            template <> class ResultValueBase<void> : public ResultBase {
            protected:
                using ResultBase::ResultBase;
            };

            template <typename T = void>
            class BasicResult : public ResultValueBase<T> {
            public:
                template <typename U>
                explicit BasicResult( BasicResult<U> const& other ):
                    ResultValueBase<T>( other.type() ),
                    m_errorMessage( other.errorMessage() ) {
                    assert( type() != ResultType::Ok );
                }

                template <typename U>
                static auto ok( U&& value ) -> BasicResult {
                    return { ResultType::Ok, CATCH_FORWARD(value) };
                }
                static auto ok() -> BasicResult { return { ResultType::Ok }; }
                static auto logicError( std::string&& message )
                    -> BasicResult {
                    return { ResultType::LogicError, CATCH_MOVE(message) };
                }
                static auto runtimeError( std::string&& message )
                    -> BasicResult {
                    return { ResultType::RuntimeError, CATCH_MOVE(message) };
                }

                explicit operator bool() const {
                    return m_type == ResultType::Ok;
                }
                auto type() const -> ResultType { return m_type; }
                auto errorMessage() const -> std::string const& {
                    return m_errorMessage;
                }

            protected:
                void enforceOk() const override {

                    // Errors shouldn't reach this point, but if they do
                    // the actual error message will be in m_errorMessage
                    assert( m_type != ResultType::LogicError );
                    assert( m_type != ResultType::RuntimeError );
                    if ( m_type != ResultType::Ok )
                        std::abort();
                }

                std::string
                    m_errorMessage; // Only populated if resultType is an error

                BasicResult( ResultType type,
                             std::string&& message ):
                    ResultValueBase<T>( type ), m_errorMessage( CATCH_MOVE(message) ) {
                    assert( m_type != ResultType::Ok );
                }

                using ResultValueBase<T>::ResultValueBase;
                using ResultBase::m_type;
            };

            class ParseState {
            public:
                ParseState( ParseResultType type,
                            TokenStream remainingTokens );

                ParseResultType type() const { return m_type; }
                TokenStream const& remainingTokens() const& {
                    return m_remainingTokens;
                }
                TokenStream&& remainingTokens() && {
                    return CATCH_MOVE( m_remainingTokens );
                }

            private:
                ParseResultType m_type;
                TokenStream m_remainingTokens;
            };

            using Result = BasicResult<void>;
            using ParserResult = BasicResult<ParseResultType>;
            using InternalParseResult = BasicResult<ParseState>;

            struct HelpColumns {
                std::string left;
                StringRef descriptions;
            };

            template <typename T>
            ParserResult convertInto( std::string const& source, T& target ) {
                std::stringstream ss( source );
                ss >> target;
                if ( ss.fail() ) {
                    return ParserResult::runtimeError(
                        "Unable to convert '" + source +
                        "' to destination type" );
                } else {
                    return ParserResult::ok( ParseResultType::Matched );
                }
            }
            ParserResult convertInto( std::string const& source,
                                      std::string& target );
            ParserResult convertInto( std::string const& source, bool& target );

#ifdef CLARA_CONFIG_OPTIONAL_TYPE
            template <typename T>
            auto convertInto( std::string const& source,
                              CLARA_CONFIG_OPTIONAL_TYPE<T>& target )
                -> ParserResult {
                T temp;
                auto result = convertInto( source, temp );
                if ( result )
                    target = CATCH_MOVE( temp );
                return result;
            }
#endif // CLARA_CONFIG_OPTIONAL_TYPE

            struct BoundRef : Catch::Detail::NonCopyable {
                virtual ~BoundRef() = default;
                virtual bool isContainer() const;
                virtual bool isFlag() const;
            };
            struct BoundValueRefBase : BoundRef {
                virtual auto setValue( std::string const& arg )
                    -> ParserResult = 0;
            };
            struct BoundFlagRefBase : BoundRef {
                virtual auto setFlag( bool flag ) -> ParserResult = 0;
                bool isFlag() const override;
            };

            template <typename T> struct BoundValueRef : BoundValueRefBase {
                T& m_ref;

                explicit BoundValueRef( T& ref ): m_ref( ref ) {}

                ParserResult setValue( std::string const& arg ) override {
                    return convertInto( arg, m_ref );
                }
            };

            template <typename T>
            struct BoundValueRef<std::vector<T>> : BoundValueRefBase {
                std::vector<T>& m_ref;

                explicit BoundValueRef( std::vector<T>& ref ): m_ref( ref ) {}

                auto isContainer() const -> bool override { return true; }

                auto setValue( std::string const& arg )
                    -> ParserResult override {
                    T temp;
                    auto result = convertInto( arg, temp );
                    if ( result )
                        m_ref.push_back( temp );
                    return result;
                }
            };

            struct BoundFlagRef : BoundFlagRefBase {
                bool& m_ref;

                explicit BoundFlagRef( bool& ref ): m_ref( ref ) {}

                ParserResult setFlag( bool flag ) override;
            };

            template <typename ReturnType> struct LambdaInvoker {
                static_assert(
                    std::is_same<ReturnType, ParserResult>::value,
                    "Lambda must return void or clara::ParserResult" );

                template <typename L, typename ArgType>
                static auto invoke( L const& lambda, ArgType const& arg )
                    -> ParserResult {
                    return lambda( arg );
                }
            };

            template <> struct LambdaInvoker<void> {
                template <typename L, typename ArgType>
                static auto invoke( L const& lambda, ArgType const& arg )
                    -> ParserResult {
                    lambda( arg );
                    return ParserResult::ok( ParseResultType::Matched );
                }
            };

            template <typename ArgType, typename L>
            auto invokeLambda( L const& lambda, std::string const& arg )
                -> ParserResult {
                ArgType temp{};
                auto result = convertInto( arg, temp );
                return !result ? result
                               : LambdaInvoker<typename UnaryLambdaTraits<
                                     L>::ReturnType>::invoke( lambda, temp );
            }

            template <typename L> struct BoundLambda : BoundValueRefBase {
                L m_lambda;

                static_assert(
                    UnaryLambdaTraits<L>::isValid,
                    "Supplied lambda must take exactly one argument" );
                explicit BoundLambda( L const& lambda ): m_lambda( lambda ) {}

                auto setValue( std::string const& arg )
                    -> ParserResult override {
                    return invokeLambda<typename UnaryLambdaTraits<L>::ArgType>(
                        m_lambda, arg );
                }
            };

            template <typename L> struct BoundManyLambda : BoundLambda<L> {
                explicit BoundManyLambda( L const& lambda ): BoundLambda<L>( lambda ) {}
                bool isContainer() const override { return true; }
            };

            template <typename L> struct BoundFlagLambda : BoundFlagRefBase {
                L m_lambda;

                static_assert(
                    UnaryLambdaTraits<L>::isValid,
                    "Supplied lambda must take exactly one argument" );
                static_assert(
                    std::is_same<typename UnaryLambdaTraits<L>::ArgType,
                                 bool>::value,
                    "flags must be boolean" );

                explicit BoundFlagLambda( L const& lambda ):
                    m_lambda( lambda ) {}

                auto setFlag( bool flag ) -> ParserResult override {
                    return LambdaInvoker<typename UnaryLambdaTraits<
                        L>::ReturnType>::invoke( m_lambda, flag );
                }
            };

            enum class Optionality { Optional, Required };

            class ParserBase {
            public:
                virtual ~ParserBase() = default;
                virtual auto validate() const -> Result { return Result::ok(); }
                virtual auto parse( std::string const& exeName,
                                    TokenStream tokens ) const
                    -> InternalParseResult = 0;
                virtual size_t cardinality() const;

                InternalParseResult parse( Args const& args ) const;
            };

            template <typename DerivedT>
            class ComposableParserImpl : public ParserBase {
            public:
                template <typename T>
                auto operator|( T const& other ) const -> Parser;
            };

            // Common code and state for Args and Opts
            template <typename DerivedT>
            class ParserRefImpl : public ComposableParserImpl<DerivedT> {
            protected:
                Optionality m_optionality = Optionality::Optional;
                std::shared_ptr<BoundRef> m_ref;
                StringRef m_hint;
                StringRef m_description;

                explicit ParserRefImpl( std::shared_ptr<BoundRef> const& ref ):
                    m_ref( ref ) {}

            public:
                template <typename LambdaT>
                ParserRefImpl( accept_many_t,
                               LambdaT const& ref,
                               StringRef hint ):
                    m_ref( std::make_shared<BoundManyLambda<LambdaT>>( ref ) ),
                    m_hint( hint ) {}

                template <typename T,
                          typename = typename std::enable_if_t<
                              !Detail::is_unary_function<T>::value>>
                ParserRefImpl( T& ref, StringRef hint ):
                    m_ref( std::make_shared<BoundValueRef<T>>( ref ) ),
                    m_hint( hint ) {}

                template <typename LambdaT,
                          typename = typename std::enable_if_t<
                              Detail::is_unary_function<LambdaT>::value>>
                ParserRefImpl( LambdaT const& ref, StringRef hint ):
                    m_ref( std::make_shared<BoundLambda<LambdaT>>( ref ) ),
                    m_hint( hint ) {}

                DerivedT& operator()( StringRef description ) & {
                    m_description = description;
                    return static_cast<DerivedT&>( *this );
                }
                DerivedT&& operator()( StringRef description ) && {
                    m_description = description;
                    return static_cast<DerivedT&&>( *this );
                }

                auto optional() -> DerivedT& {
                    m_optionality = Optionality::Optional;
                    return static_cast<DerivedT&>( *this );
                }

                auto required() -> DerivedT& {
                    m_optionality = Optionality::Required;
                    return static_cast<DerivedT&>( *this );
                }

                auto isOptional() const -> bool {
                    return m_optionality == Optionality::Optional;
                }

                auto cardinality() const -> size_t override {
                    if ( m_ref->isContainer() )
                        return 0;
                    else
                        return 1;
                }

                StringRef hint() const { return m_hint; }
            };

        } // namespace detail


        // A parser for arguments
        class Arg : public Detail::ParserRefImpl<Arg> {
        public:
            using ParserRefImpl::ParserRefImpl;
            using ParserBase::parse;

            Detail::InternalParseResult
                parse(std::string const&,
                      Detail::TokenStream tokens) const override;
        };

        // A parser for options
        class Opt : public Detail::ParserRefImpl<Opt> {
        protected:
            std::vector<StringRef> m_optNames;

        public:
            template <typename LambdaT>
            explicit Opt(LambdaT const& ref) :
                ParserRefImpl(
                    std::make_shared<Detail::BoundFlagLambda<LambdaT>>(ref)) {}

            explicit Opt(bool& ref);

            template <typename LambdaT,
                      typename = typename std::enable_if_t<
                          Detail::is_unary_function<LambdaT>::value>>
            Opt( LambdaT const& ref, StringRef hint ):
                ParserRefImpl( ref, hint ) {}

            template <typename LambdaT>
            Opt( accept_many_t, LambdaT const& ref, StringRef hint ):
                ParserRefImpl( accept_many, ref, hint ) {}

            template <typename T,
                      typename = typename std::enable_if_t<
                          !Detail::is_unary_function<T>::value>>
            Opt( T& ref, StringRef hint ):
                ParserRefImpl( ref, hint ) {}

            Opt& operator[]( StringRef optName ) & {
                m_optNames.push_back(optName);
                return *this;
            }
            Opt&& operator[]( StringRef optName ) && {
                m_optNames.push_back( optName );
                return CATCH_MOVE(*this);
            }

            Detail::HelpColumns getHelpColumns() const;

            bool isMatch(StringRef optToken) const;

            using ParserBase::parse;

            Detail::InternalParseResult
                parse(std::string const&,
                      Detail::TokenStream tokens) const override;

            Detail::Result validate() const override;
        };

        // Specifies the name of the executable
        class ExeName : public Detail::ComposableParserImpl<ExeName> {
            std::shared_ptr<std::string> m_name;
            std::shared_ptr<Detail::BoundValueRefBase> m_ref;

        public:
            ExeName();
            explicit ExeName(std::string& ref);

            template <typename LambdaT>
            explicit ExeName(LambdaT const& lambda) : ExeName() {
                m_ref = std::make_shared<Detail::BoundLambda<LambdaT>>(lambda);
            }

            // The exe name is not parsed out of the normal tokens, but is
            // handled specially
            Detail::InternalParseResult
                parse(std::string const&,
                      Detail::TokenStream tokens) const override;

            std::string const& name() const { return *m_name; }
            Detail::ParserResult set(std::string const& newName);
        };


        // A Combined parser
        class Parser : Detail::ParserBase {
            mutable ExeName m_exeName;
            std::vector<Opt> m_options;
            std::vector<Arg> m_args;

        public:

            auto operator|=(ExeName const& exeName) -> Parser& {
                m_exeName = exeName;
                return *this;
            }

            auto operator|=(Arg const& arg) -> Parser& {
                m_args.push_back(arg);
                return *this;
            }

            friend Parser& operator|=( Parser& p, Opt const& opt ) {
                p.m_options.push_back( opt );
                return p;
            }
            friend Parser& operator|=( Parser& p, Opt&& opt ) {
                p.m_options.push_back( CATCH_MOVE(opt) );
                return p;
            }

            Parser& operator|=(Parser const& other);

            template <typename T>
            friend Parser operator|( Parser const& p, T&& rhs ) {
                Parser temp( p );
                temp |= rhs;
                return temp;
            }

            template <typename T>
            friend Parser operator|( Parser&& p, T&& rhs ) {
                p |= CATCH_FORWARD(rhs);
                return CATCH_MOVE(p);
            }

            std::vector<Detail::HelpColumns> getHelpColumns() const;

            void writeToStream(std::ostream& os) const;

            friend auto operator<<(std::ostream& os, Parser const& parser)
                -> std::ostream& {
                parser.writeToStream(os);
                return os;
            }

            Detail::Result validate() const override;

            using ParserBase::parse;
            Detail::InternalParseResult
                parse(std::string const& exeName,
                      Detail::TokenStream tokens) const override;
        };

        class Args {
            friend Detail::TokenStream;
            StringRef m_exeName;
            std::vector<StringRef> m_args;

        public:
            Args(int argc, char const* const* argv);
            // Helper constructor for testing
            Args(std::initializer_list<StringRef> args);

            StringRef exeName() const { return m_exeName; }
        };


        // Convenience wrapper for option parser that specifies the help option
        struct Help : Opt {
            Help(bool& showHelpFlag);
        };

        // Result type for parser operation
        using Detail::ParserResult;

        namespace Detail {
            template <typename DerivedT>
            template <typename T>
            Parser
                ComposableParserImpl<DerivedT>::operator|(T const& other) const {
                return Parser() | static_cast<DerivedT const&>(*this) | other;
            }
        }

    } // namespace Clara
} // namespace Catch

#if defined( __clang__ )
#    pragma clang diagnostic pop
#endif

#if defined( __GNUC__ )
#    pragma GCC diagnostic pop
#endif

#endif // CATCH_CLARA_HPP_INCLUDED

namespace Catch {

    struct ConfigData;

    Clara::Parser makeCommandLineParser( ConfigData& config );

} // end namespace Catch

#endif // CATCH_COMMANDLINE_HPP_INCLUDED

namespace Catch {

    class Session : Detail::NonCopyable {
    public:

        Session();
        ~Session();

        void showHelp() const;
        void libIdentify();

        int applyCommandLine( int argc, char const * const * argv );
    #if defined(CATCH_CONFIG_WCHAR) && defined(_WIN32) && defined(UNICODE)
        int applyCommandLine( int argc, wchar_t const * const * argv );
    #endif

        void useConfigData( ConfigData const& configData );

        template<typename CharT>
        int run(int argc, CharT const * const argv[]) {
            if (m_startupExceptions)
                return 1;
            int returnCode = applyCommandLine(argc, argv);
            if (returnCode == 0)
                returnCode = run();
            return returnCode;
        }

        int run();

        Clara::Parser const& cli() const;
        void cli( Clara::Parser const& newParser );
        ConfigData& configData();
        Config& config();
    private:
        int runInternal();

        Clara::Parser m_cli;
        ConfigData m_configData;
        Detail::unique_ptr<Config> m_config;
        bool m_startupExceptions = false;
    };

} // end namespace Catch

#endif // CATCH_SESSION_HPP_INCLUDED


#ifndef CATCH_TAG_ALIAS_HPP_INCLUDED
#define CATCH_TAG_ALIAS_HPP_INCLUDED


#include <string>

namespace Catch {

    struct TagAlias {
        TagAlias(std::string const& _tag, SourceLineInfo _lineInfo):
            tag(_tag),
            lineInfo(_lineInfo)
        {}

        std::string tag;
        SourceLineInfo lineInfo;
    };

} // end namespace Catch

#endif // CATCH_TAG_ALIAS_HPP_INCLUDED


#ifndef CATCH_TAG_ALIAS_AUTOREGISTRAR_HPP_INCLUDED
#define CATCH_TAG_ALIAS_AUTOREGISTRAR_HPP_INCLUDED


namespace Catch {

    struct RegistrarForTagAliases {
        RegistrarForTagAliases( char const* alias, char const* tag, SourceLineInfo const& lineInfo );
    };

} // end namespace Catch

#define CATCH_REGISTER_TAG_ALIAS( alias, spec ) \
    CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
    CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
    namespace{ Catch::RegistrarForTagAliases INTERNAL_CATCH_UNIQUE_NAME( AutoRegisterTagAlias )( alias, spec, CATCH_INTERNAL_LINEINFO ); } \
    CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION

#endif // CATCH_TAG_ALIAS_AUTOREGISTRAR_HPP_INCLUDED


#ifndef CATCH_TEMPLATE_TEST_MACROS_HPP_INCLUDED
#define CATCH_TEMPLATE_TEST_MACROS_HPP_INCLUDED

// We need this suppression to leak, because it took until GCC 10
// for the front end to handle local suppression via _Pragma properly
// inside templates (so `TEMPLATE_TEST_CASE` and co).
// **THIS IS DIFFERENT FOR STANDARD TESTS, WHERE GCC 9 IS SUFFICIENT**
#if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && __GNUC__ < 10
#pragma GCC diagnostic ignored "-Wparentheses"
#endif




#ifndef CATCH_TEST_MACROS_HPP_INCLUDED
#define CATCH_TEST_MACROS_HPP_INCLUDED



#ifndef CATCH_TEST_MACRO_IMPL_HPP_INCLUDED
#define CATCH_TEST_MACRO_IMPL_HPP_INCLUDED



#ifndef CATCH_ASSERTION_HANDLER_HPP_INCLUDED
#define CATCH_ASSERTION_HANDLER_HPP_INCLUDED



#ifndef CATCH_DECOMPOSER_HPP_INCLUDED
#define CATCH_DECOMPOSER_HPP_INCLUDED



#ifndef CATCH_COMPARE_TRAITS_HPP_INCLUDED
#define CATCH_COMPARE_TRAITS_HPP_INCLUDED


#include <type_traits>

namespace Catch {
    namespace Detail {

#if defined( __GNUC__ ) && !defined( __clang__ )
#    pragma GCC diagnostic push
    // GCC likes to complain about comparing bool with 0, in the decltype()
    // that defines the comparable traits below.
#    pragma GCC diagnostic ignored "-Wbool-compare"
    // "ordered comparison of pointer with integer zero" same as above,
    // but it does not have a separate warning flag to suppress
#    pragma GCC diagnostic ignored "-Wextra"
    // Did you know that comparing floats with `0` directly
    // is super-duper dangerous in unevaluated context?
#    pragma GCC diagnostic ignored "-Wfloat-equal"
#endif

#if defined( __clang__ )
#    pragma clang diagnostic push
    // Did you know that comparing floats with `0` directly
    // is super-duper dangerous in unevaluated context?
#    pragma clang diagnostic ignored "-Wfloat-equal"
#endif

#define CATCH_DEFINE_COMPARABLE_TRAIT( id, op )                               \
    template <typename, typename, typename = void>                            \
    struct is_##id##_comparable : std::false_type {};                         \
    template <typename T, typename U>                                         \
    struct is_##id##_comparable<                                              \
        T,                                                                    \
        U,                                                                    \
        void_t<decltype( std::declval<T>() op std::declval<U>() )>>           \
        : std::true_type {};                                                  \
    template <typename, typename = void>                                      \
    struct is_##id##_0_comparable : std::false_type {};                       \
    template <typename T>                                                     \
    struct is_##id##_0_comparable<T,                                          \
                                  void_t<decltype( std::declval<T>() op 0 )>> \
        : std::true_type {};

        // We need all 6 pre-spaceship comparison ops: <, <=, >, >=, ==, !=
        CATCH_DEFINE_COMPARABLE_TRAIT( lt, < )
        CATCH_DEFINE_COMPARABLE_TRAIT( le, <= )
        CATCH_DEFINE_COMPARABLE_TRAIT( gt, > )
        CATCH_DEFINE_COMPARABLE_TRAIT( ge, >= )
        CATCH_DEFINE_COMPARABLE_TRAIT( eq, == )
        CATCH_DEFINE_COMPARABLE_TRAIT( ne, != )

#undef CATCH_DEFINE_COMPARABLE_TRAIT

#if defined( __GNUC__ ) && !defined( __clang__ )
#    pragma GCC diagnostic pop
#endif
#if defined( __clang__ )
#    pragma clang diagnostic pop
#endif


    } // namespace Detail
} // namespace Catch

#endif // CATCH_COMPARE_TRAITS_HPP_INCLUDED


#ifndef CATCH_LOGICAL_TRAITS_HPP_INCLUDED
#define CATCH_LOGICAL_TRAITS_HPP_INCLUDED

#include <type_traits>

namespace Catch {
namespace Detail {

#if defined( __cpp_lib_logical_traits ) && __cpp_lib_logical_traits >= 201510

    using std::conjunction;
    using std::disjunction;
    using std::negation;

#else

    template <class...> struct conjunction : std::true_type {};
    template <class B1> struct conjunction<B1> : B1 {};
    template <class B1, class... Bn>
    struct conjunction<B1, Bn...>
        : std::conditional_t<bool( B1::value ), conjunction<Bn...>, B1> {};

    template <class...> struct disjunction : std::false_type {};
    template <class B1> struct disjunction<B1> : B1 {};
    template <class B1, class... Bn>
    struct disjunction<B1, Bn...>
        : std::conditional_t<bool( B1::value ), B1, disjunction<Bn...>> {};

    template <class B>
    struct negation : std::integral_constant<bool, !bool(B::value)> {};

#endif

} // namespace Detail
} // namespace Catch

#endif // CATCH_LOGICAL_TRAITS_HPP_INCLUDED

#include <type_traits>
#include <iosfwd>

#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4389) // '==' : signed/unsigned mismatch
#pragma warning(disable:4018) // more "signed/unsigned mismatch"
#pragma warning(disable:4312) // Converting int to T* using reinterpret_cast (issue on x64 platform)
#pragma warning(disable:4180) // qualifier applied to function type has no meaning
#pragma warning(disable:4800) // Forcing result to true or false
#endif

#ifdef __clang__
#  pragma clang diagnostic push
#  pragma clang diagnostic ignored "-Wsign-compare"
#elif defined __GNUC__
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wsign-compare"
#endif

#if defined(CATCH_CPP20_OR_GREATER) && __has_include(<compare>)
#  include <compare>
#    if defined( __cpp_lib_three_way_comparison ) && \
            __cpp_lib_three_way_comparison >= 201907L
#      define CATCH_CONFIG_CPP20_COMPARE_OVERLOADS
#    endif
#endif

namespace Catch {

    namespace Detail {
        // This was added in C++20, but we require only C++14 for now.
        template <typename T>
        using RemoveCVRef_t = std::remove_cv_t<std::remove_reference_t<T>>;
    }

    // Note: There is nothing that stops us from extending this,
    //       e.g. to `std::is_scalar`, but the more encompassing
    //       traits are usually also more expensive. For now we
    //       keep this as it used to be and it can be changed later.
    template <typename T>
    struct capture_by_value
        : std::integral_constant<bool, std::is_arithmetic<T>{}> {};

#if defined( CATCH_CONFIG_CPP20_COMPARE_OVERLOADS )
    template <>
    struct capture_by_value<std::strong_ordering> : std::true_type {};
    template <>
    struct capture_by_value<std::weak_ordering> : std::true_type {};
    template <>
    struct capture_by_value<std::partial_ordering> : std::true_type {};
#endif

    template <typename T>
    struct always_false : std::false_type {};

    class ITransientExpression {
        bool m_isBinaryExpression;
        bool m_result;

    public:
        constexpr auto isBinaryExpression() const -> bool { return m_isBinaryExpression; }
        constexpr auto getResult() const -> bool { return m_result; }
        virtual void streamReconstructedExpression( std::ostream& os ) const;

        constexpr ITransientExpression( bool isBinaryExpression, bool result )
        :   m_isBinaryExpression( isBinaryExpression ),
            m_result( result )
        {}

        ITransientExpression() = default;
        ITransientExpression(ITransientExpression const&) = default;
        ITransientExpression& operator=(ITransientExpression const&) = default;

        friend std::ostream& operator<<(std::ostream& out, ITransientExpression const& expr) {
            expr.streamReconstructedExpression(out);
            return out;
        }

    protected:
        ~ITransientExpression() = default;
    };

    void formatReconstructedExpression( std::ostream &os, std::string const& lhs, StringRef op, std::string const& rhs );

    template<typename LhsT, typename RhsT>
    class BinaryExpr  : public ITransientExpression {
        LhsT m_lhs;
        StringRef m_op;
        RhsT m_rhs;

        void streamReconstructedExpression( std::ostream &os ) const override {
            formatReconstructedExpression
                    ( os, Catch::Detail::stringify( m_lhs ), m_op, Catch::Detail::stringify( m_rhs ) );
        }

    public:
        constexpr BinaryExpr( bool comparisonResult, LhsT lhs, StringRef op, RhsT rhs )
        :   ITransientExpression{ true, comparisonResult },
            m_lhs( lhs ),
            m_op( op ),
            m_rhs( rhs )
        {}

        template<typename T>
        auto operator && ( T ) const -> BinaryExpr<LhsT, RhsT const&> const {
            static_assert(always_false<T>::value,
            "chained comparisons are not supported inside assertions, "
            "wrap the expression inside parentheses, or decompose it");
        }

        template<typename T>
        auto operator || ( T ) const -> BinaryExpr<LhsT, RhsT const&> const {
            static_assert(always_false<T>::value,
            "chained comparisons are not supported inside assertions, "
            "wrap the expression inside parentheses, or decompose it");
        }

        template<typename T>
        auto operator == ( T ) const -> BinaryExpr<LhsT, RhsT const&> const {
            static_assert(always_false<T>::value,
            "chained comparisons are not supported inside assertions, "
            "wrap the expression inside parentheses, or decompose it");
        }

        template<typename T>
        auto operator != ( T ) const -> BinaryExpr<LhsT, RhsT const&> const {
            static_assert(always_false<T>::value,
            "chained comparisons are not supported inside assertions, "
            "wrap the expression inside parentheses, or decompose it");
        }

        template<typename T>
        auto operator > ( T ) const -> BinaryExpr<LhsT, RhsT const&> const {
            static_assert(always_false<T>::value,
            "chained comparisons are not supported inside assertions, "
            "wrap the expression inside parentheses, or decompose it");
        }

        template<typename T>
        auto operator < ( T ) const -> BinaryExpr<LhsT, RhsT const&> const {
            static_assert(always_false<T>::value,
            "chained comparisons are not supported inside assertions, "
            "wrap the expression inside parentheses, or decompose it");
        }

        template<typename T>
        auto operator >= ( T ) const -> BinaryExpr<LhsT, RhsT const&> const {
            static_assert(always_false<T>::value,
            "chained comparisons are not supported inside assertions, "
            "wrap the expression inside parentheses, or decompose it");
        }

        template<typename T>
        auto operator <= ( T ) const -> BinaryExpr<LhsT, RhsT const&> const {
            static_assert(always_false<T>::value,
            "chained comparisons are not supported inside assertions, "
            "wrap the expression inside parentheses, or decompose it");
        }
    };

    template<typename LhsT>
    class UnaryExpr : public ITransientExpression {
        LhsT m_lhs;

        void streamReconstructedExpression( std::ostream &os ) const override {
            os << Catch::Detail::stringify( m_lhs );
        }

    public:
        explicit constexpr UnaryExpr( LhsT lhs )
        :   ITransientExpression{ false, static_cast<bool>(lhs) },
            m_lhs( lhs )
        {}
    };


    template<typename LhsT>
    class ExprLhs {
        LhsT m_lhs;
    public:
        explicit constexpr ExprLhs( LhsT lhs ) : m_lhs( lhs ) {}

#define CATCH_INTERNAL_DEFINE_EXPRESSION_EQUALITY_OPERATOR( id, op )           \
    template <typename RhsT>                                                   \
    constexpr friend auto operator op( ExprLhs&& lhs, RhsT&& rhs )             \
        -> std::enable_if_t<                                                   \
            Detail::conjunction<Detail::is_##id##_comparable<LhsT, RhsT>,      \
                                Detail::negation<capture_by_value<             \
                                    Detail::RemoveCVRef_t<RhsT>>>>::value,     \
            BinaryExpr<LhsT, RhsT const&>> {                                   \
        return {                                                               \
            static_cast<bool>( lhs.m_lhs op rhs ), lhs.m_lhs, #op##_sr, rhs }; \
    }                                                                          \
    template <typename RhsT>                                                   \
    constexpr friend auto operator op( ExprLhs&& lhs, RhsT rhs )               \
        -> std::enable_if_t<                                                   \
            Detail::conjunction<Detail::is_##id##_comparable<LhsT, RhsT>,      \
                                capture_by_value<RhsT>>::value,                \
            BinaryExpr<LhsT, RhsT>> {                                          \
        return {                                                               \
            static_cast<bool>( lhs.m_lhs op rhs ), lhs.m_lhs, #op##_sr, rhs }; \
    }                                                                          \
    template <typename RhsT>                                                   \
    constexpr friend auto operator op( ExprLhs&& lhs, RhsT rhs )               \
        -> std::enable_if_t<                                                   \
            Detail::conjunction<                                               \
                Detail::negation<Detail::is_##id##_comparable<LhsT, RhsT>>,    \
                Detail::is_eq_0_comparable<LhsT>,                              \
              /* We allow long because we want `ptr op NULL` to be accepted */ \
                Detail::disjunction<std::is_same<RhsT, int>,                   \
                                    std::is_same<RhsT, long>>>::value,         \
            BinaryExpr<LhsT, RhsT>> {                                          \
        if ( rhs != 0 ) { throw_test_failure_exception(); }                    \
        return {                                                               \
            static_cast<bool>( lhs.m_lhs op 0 ), lhs.m_lhs, #op##_sr, rhs };   \
    }                                                                          \
    template <typename RhsT>                                                   \
    constexpr friend auto operator op( ExprLhs&& lhs, RhsT rhs )               \
        -> std::enable_if_t<                                                   \
            Detail::conjunction<                                               \
                Detail::negation<Detail::is_##id##_comparable<LhsT, RhsT>>,    \
                Detail::is_eq_0_comparable<RhsT>,                              \
              /* We allow long because we want `ptr op NULL` to be accepted */ \
                Detail::disjunction<std::is_same<LhsT, int>,                   \
                                    std::is_same<LhsT, long>>>::value,         \
            BinaryExpr<LhsT, RhsT>> {                                          \
        if ( lhs.m_lhs != 0 ) { throw_test_failure_exception(); }              \
        return { static_cast<bool>( 0 op rhs ), lhs.m_lhs, #op##_sr, rhs };    \
    }

        CATCH_INTERNAL_DEFINE_EXPRESSION_EQUALITY_OPERATOR( eq, == )
        CATCH_INTERNAL_DEFINE_EXPRESSION_EQUALITY_OPERATOR( ne, != )

    #undef CATCH_INTERNAL_DEFINE_EXPRESSION_EQUALITY_OPERATOR


#define CATCH_INTERNAL_DEFINE_EXPRESSION_COMPARISON_OPERATOR( id, op )         \
    template <typename RhsT>                                                   \
    constexpr friend auto operator op( ExprLhs&& lhs, RhsT&& rhs )             \
        -> std::enable_if_t<                                                   \
            Detail::conjunction<Detail::is_##id##_comparable<LhsT, RhsT>,      \
                                Detail::negation<capture_by_value<             \
                                    Detail::RemoveCVRef_t<RhsT>>>>::value,     \
            BinaryExpr<LhsT, RhsT const&>> {                                   \
        return {                                                               \
            static_cast<bool>( lhs.m_lhs op rhs ), lhs.m_lhs, #op##_sr, rhs }; \
    }                                                                          \
    template <typename RhsT>                                                   \
    constexpr friend auto operator op( ExprLhs&& lhs, RhsT rhs )               \
        -> std::enable_if_t<                                                   \
            Detail::conjunction<Detail::is_##id##_comparable<LhsT, RhsT>,      \
                                capture_by_value<RhsT>>::value,                \
            BinaryExpr<LhsT, RhsT>> {                                          \
        return {                                                               \
            static_cast<bool>( lhs.m_lhs op rhs ), lhs.m_lhs, #op##_sr, rhs }; \
    }                                                                          \
    template <typename RhsT>                                                   \
    constexpr friend auto operator op( ExprLhs&& lhs, RhsT rhs )               \
        -> std::enable_if_t<                                                   \
            Detail::conjunction<                                               \
                Detail::negation<Detail::is_##id##_comparable<LhsT, RhsT>>,    \
                Detail::is_##id##_0_comparable<LhsT>,                          \
                std::is_same<RhsT, int>>::value,                               \
            BinaryExpr<LhsT, RhsT>> {                                          \
        if ( rhs != 0 ) { throw_test_failure_exception(); }                    \
        return {                                                               \
            static_cast<bool>( lhs.m_lhs op 0 ), lhs.m_lhs, #op##_sr, rhs };   \
    }                                                                          \
    template <typename RhsT>                                                   \
    constexpr friend auto operator op( ExprLhs&& lhs, RhsT rhs )               \
        -> std::enable_if_t<                                                   \
            Detail::conjunction<                                               \
                Detail::negation<Detail::is_##id##_comparable<LhsT, RhsT>>,    \
                Detail::is_##id##_0_comparable<RhsT>,                          \
                std::is_same<LhsT, int>>::value,                               \
            BinaryExpr<LhsT, RhsT>> {                                          \
        if ( lhs.m_lhs != 0 ) { throw_test_failure_exception(); }              \
        return { static_cast<bool>( 0 op rhs ), lhs.m_lhs, #op##_sr, rhs };    \
    }

        CATCH_INTERNAL_DEFINE_EXPRESSION_COMPARISON_OPERATOR( lt, < )
        CATCH_INTERNAL_DEFINE_EXPRESSION_COMPARISON_OPERATOR( le, <= )
        CATCH_INTERNAL_DEFINE_EXPRESSION_COMPARISON_OPERATOR( gt, > )
        CATCH_INTERNAL_DEFINE_EXPRESSION_COMPARISON_OPERATOR( ge, >= )

    #undef CATCH_INTERNAL_DEFINE_EXPRESSION_COMPARISON_OPERATOR


#define CATCH_INTERNAL_DEFINE_EXPRESSION_OPERATOR( op )                        \
    template <typename RhsT>                                                   \
    constexpr friend auto operator op( ExprLhs&& lhs, RhsT&& rhs )             \
        -> std::enable_if_t<                                                   \
            !capture_by_value<Detail::RemoveCVRef_t<RhsT>>::value,             \
            BinaryExpr<LhsT, RhsT const&>> {                                   \
        return {                                                               \
            static_cast<bool>( lhs.m_lhs op rhs ), lhs.m_lhs, #op##_sr, rhs }; \
    }                                                                          \
    template <typename RhsT>                                                   \
    constexpr friend auto operator op( ExprLhs&& lhs, RhsT rhs )               \
        -> std::enable_if_t<capture_by_value<RhsT>::value,                     \
                            BinaryExpr<LhsT, RhsT>> {                          \
        return {                                                               \
            static_cast<bool>( lhs.m_lhs op rhs ), lhs.m_lhs, #op##_sr, rhs }; \
    }

        CATCH_INTERNAL_DEFINE_EXPRESSION_OPERATOR(|)
        CATCH_INTERNAL_DEFINE_EXPRESSION_OPERATOR(&)
        CATCH_INTERNAL_DEFINE_EXPRESSION_OPERATOR(^)

    #undef CATCH_INTERNAL_DEFINE_EXPRESSION_OPERATOR

        template<typename RhsT>
        friend auto operator && ( ExprLhs &&, RhsT && ) -> BinaryExpr<LhsT, RhsT const&> {
            static_assert(always_false<RhsT>::value,
            "operator&& is not supported inside assertions, "
            "wrap the expression inside parentheses, or decompose it");
        }

        template<typename RhsT>
        friend auto operator || ( ExprLhs &&, RhsT && ) -> BinaryExpr<LhsT, RhsT const&> {
            static_assert(always_false<RhsT>::value,
            "operator|| is not supported inside assertions, "
            "wrap the expression inside parentheses, or decompose it");
        }

        constexpr auto makeUnaryExpr() const -> UnaryExpr<LhsT> {
            return UnaryExpr<LhsT>{ m_lhs };
        }
    };

    struct Decomposer {
        template <typename T,
                  std::enable_if_t<!capture_by_value<Detail::RemoveCVRef_t<T>>::value,
                      int> = 0>
        constexpr friend auto operator <= ( Decomposer &&, T && lhs ) -> ExprLhs<T const&> {
            return ExprLhs<const T&>{ lhs };
        }

        template <typename T,
                  std::enable_if_t<capture_by_value<T>::value, int> = 0>
        constexpr friend auto operator <= ( Decomposer &&, T value ) -> ExprLhs<T> {
            return ExprLhs<T>{ value };
        }
    };

} // end namespace Catch

#ifdef _MSC_VER
#pragma warning(pop)
#endif
#ifdef __clang__
#  pragma clang diagnostic pop
#elif defined __GNUC__
#  pragma GCC diagnostic pop
#endif

#endif // CATCH_DECOMPOSER_HPP_INCLUDED

#include <string>

namespace Catch {

    struct AssertionReaction {
        bool shouldDebugBreak = false;
        bool shouldThrow = false;
        bool shouldSkip = false;
    };

    class AssertionHandler {
        AssertionInfo m_assertionInfo;
        AssertionReaction m_reaction;
        bool m_completed = false;
        IResultCapture& m_resultCapture;

    public:
        AssertionHandler
            (   StringRef macroName,
                SourceLineInfo const& lineInfo,
                StringRef capturedExpression,
                ResultDisposition::Flags resultDisposition );
        ~AssertionHandler() {
            if ( !m_completed ) {
                m_resultCapture.handleIncomplete( m_assertionInfo );
            }
        }


        template<typename T>
        void handleExpr( ExprLhs<T> const& expr ) {
            handleExpr( expr.makeUnaryExpr() );
        }
        void handleExpr( ITransientExpression const& expr );

        void handleMessage(ResultWas::OfType resultType, StringRef message);

        void handleExceptionThrownAsExpected();
        void handleUnexpectedExceptionNotThrown();
        void handleExceptionNotThrownAsExpected();
        void handleThrowingCallSkipped();
        void handleUnexpectedInflightException();

        void complete();

        // query
        auto allowThrows() const -> bool;
    };

    void handleExceptionMatchExpr( AssertionHandler& handler, std::string const& str );

} // namespace Catch

#endif // CATCH_ASSERTION_HANDLER_HPP_INCLUDED


#ifndef CATCH_PREPROCESSOR_INTERNAL_STRINGIFY_HPP_INCLUDED
#define CATCH_PREPROCESSOR_INTERNAL_STRINGIFY_HPP_INCLUDED


#if !defined(CATCH_CONFIG_DISABLE_STRINGIFICATION)
  #define CATCH_INTERNAL_STRINGIFY(...) #__VA_ARGS__##_catch_sr
#else
  #define CATCH_INTERNAL_STRINGIFY(...) "Disabled by CATCH_CONFIG_DISABLE_STRINGIFICATION"_catch_sr
#endif

#endif // CATCH_PREPROCESSOR_INTERNAL_STRINGIFY_HPP_INCLUDED

// We need this suppression to leak, because it took until GCC 10
// for the front end to handle local suppression via _Pragma properly
#if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && __GNUC__ <= 9
  #pragma GCC diagnostic ignored "-Wparentheses"
#endif

#if !defined(CATCH_CONFIG_DISABLE)

#if defined(CATCH_CONFIG_FAST_COMPILE) || defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)

// Another way to speed-up compilation is to omit local try-catch for REQUIRE*
// macros.
#define INTERNAL_CATCH_TRY
#define INTERNAL_CATCH_CATCH( capturer )

#else // CATCH_CONFIG_FAST_COMPILE

#define INTERNAL_CATCH_TRY try
#define INTERNAL_CATCH_CATCH( handler ) catch(...) { (handler).handleUnexpectedInflightException(); }

#endif

#define INTERNAL_CATCH_REACT( handler ) handler.complete();

#define INTERNAL_CATCH_TEST( macroName, resultDisposition, ... ) \
    do { /* NOLINT(bugprone-infinite-loop) */ \
        /* The expression should not be evaluated, but warnings should hopefully be checked */ \
        CATCH_INTERNAL_IGNORE_BUT_WARN(__VA_ARGS__); \
        Catch::AssertionHandler catchAssertionHandler( macroName##_catch_sr, CATCH_INTERNAL_LINEINFO, CATCH_INTERNAL_STRINGIFY(__VA_ARGS__), resultDisposition ); \
        INTERNAL_CATCH_TRY { \
            CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
            CATCH_INTERNAL_SUPPRESS_PARENTHESES_WARNINGS \
            catchAssertionHandler.handleExpr( Catch::Decomposer() <= __VA_ARGS__ ); /* NOLINT(bugprone-chained-comparison) */ \
            CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
        } INTERNAL_CATCH_CATCH( catchAssertionHandler ) \
        INTERNAL_CATCH_REACT( catchAssertionHandler ) \
    } while( (void)0, (false) && static_cast<const bool&>( !!(__VA_ARGS__) ) ) // the expression here is never evaluated at runtime but it forces the compiler to give it a look
    // The double negation silences MSVC's C4800 warning, the static_cast forces short-circuit evaluation if the type has overloaded &&.

#define INTERNAL_CATCH_IF( macroName, resultDisposition, ... ) \
    INTERNAL_CATCH_TEST( macroName, resultDisposition, __VA_ARGS__ ); \
    if( Catch::getResultCapture().lastAssertionPassed() )

#define INTERNAL_CATCH_ELSE( macroName, resultDisposition, ... ) \
    INTERNAL_CATCH_TEST( macroName, resultDisposition, __VA_ARGS__ ); \
    if( !Catch::getResultCapture().lastAssertionPassed() )

#define INTERNAL_CATCH_NO_THROW( macroName, resultDisposition, ... ) \
    do { \
        Catch::AssertionHandler catchAssertionHandler( macroName##_catch_sr, CATCH_INTERNAL_LINEINFO, CATCH_INTERNAL_STRINGIFY(__VA_ARGS__), resultDisposition ); \
        try { \
            CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
            CATCH_INTERNAL_SUPPRESS_USELESS_CAST_WARNINGS \
            static_cast<void>(__VA_ARGS__); \
            CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
            catchAssertionHandler.handleExceptionNotThrownAsExpected(); \
        } \
        catch( ... ) { \
            catchAssertionHandler.handleUnexpectedInflightException(); \
        } \
        INTERNAL_CATCH_REACT( catchAssertionHandler ) \
    } while( false )

#define INTERNAL_CATCH_THROWS( macroName, resultDisposition, ... ) \
    do { \
        Catch::AssertionHandler catchAssertionHandler( macroName##_catch_sr, CATCH_INTERNAL_LINEINFO, CATCH_INTERNAL_STRINGIFY(__VA_ARGS__), resultDisposition); \
        if( catchAssertionHandler.allowThrows() ) \
            try { \
                CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
                CATCH_INTERNAL_SUPPRESS_UNUSED_RESULT \
                CATCH_INTERNAL_SUPPRESS_USELESS_CAST_WARNINGS \
                static_cast<void>(__VA_ARGS__); \
                CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
                catchAssertionHandler.handleUnexpectedExceptionNotThrown(); \
            } \
            catch( ... ) { \
                catchAssertionHandler.handleExceptionThrownAsExpected(); \
            } \
        else \
            catchAssertionHandler.handleThrowingCallSkipped(); \
        INTERNAL_CATCH_REACT( catchAssertionHandler ) \
    } while( false )

#define INTERNAL_CATCH_THROWS_AS( macroName, exceptionType, resultDisposition, expr ) \
    do { \
        Catch::AssertionHandler catchAssertionHandler( macroName##_catch_sr, CATCH_INTERNAL_LINEINFO, CATCH_INTERNAL_STRINGIFY(expr) ", " CATCH_INTERNAL_STRINGIFY(exceptionType), resultDisposition ); \
        if( catchAssertionHandler.allowThrows() ) \
            try { \
                CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
                CATCH_INTERNAL_SUPPRESS_UNUSED_RESULT \
                CATCH_INTERNAL_SUPPRESS_USELESS_CAST_WARNINGS \
                static_cast<void>(expr); \
                CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
                catchAssertionHandler.handleUnexpectedExceptionNotThrown(); \
            } \
            catch( exceptionType const& ) { \
                catchAssertionHandler.handleExceptionThrownAsExpected(); \
            } \
            catch( ... ) { \
                catchAssertionHandler.handleUnexpectedInflightException(); \
            } \
        else \
            catchAssertionHandler.handleThrowingCallSkipped(); \
        INTERNAL_CATCH_REACT( catchAssertionHandler ) \
    } while( false )



// Although this is matcher-based, it can be used with just a string
#define INTERNAL_CATCH_THROWS_STR_MATCHES( macroName, resultDisposition, matcher, ... ) \
    do { \
        Catch::AssertionHandler catchAssertionHandler( macroName##_catch_sr, CATCH_INTERNAL_LINEINFO, CATCH_INTERNAL_STRINGIFY(__VA_ARGS__) ", " CATCH_INTERNAL_STRINGIFY(matcher), resultDisposition ); \
        if( catchAssertionHandler.allowThrows() ) \
            try { \
                CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
                CATCH_INTERNAL_SUPPRESS_UNUSED_RESULT \
                CATCH_INTERNAL_SUPPRESS_USELESS_CAST_WARNINGS \
                static_cast<void>(__VA_ARGS__); \
                CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
                catchAssertionHandler.handleUnexpectedExceptionNotThrown(); \
            } \
            catch( ... ) { \
                Catch::handleExceptionMatchExpr( catchAssertionHandler, matcher ); \
            } \
        else \
            catchAssertionHandler.handleThrowingCallSkipped(); \
        INTERNAL_CATCH_REACT( catchAssertionHandler ) \
    } while( false )

#endif // CATCH_CONFIG_DISABLE

#endif // CATCH_TEST_MACRO_IMPL_HPP_INCLUDED


#ifndef CATCH_SECTION_HPP_INCLUDED
#define CATCH_SECTION_HPP_INCLUDED




#ifndef CATCH_CONFIG_STATIC_ANALYSIS_SUPPORT_HPP_INCLUDED
#define CATCH_CONFIG_STATIC_ANALYSIS_SUPPORT_HPP_INCLUDED


#if defined(__clang_analyzer__) || defined(__COVERITY__)
    #define CATCH_INTERNAL_CONFIG_STATIC_ANALYSIS_SUPPORT
#endif

#if defined( CATCH_INTERNAL_CONFIG_STATIC_ANALYSIS_SUPPORT ) && \
    !defined( CATCH_CONFIG_NO_EXPERIMENTAL_STATIC_ANALYSIS_SUPPORT ) && \
    !defined( CATCH_CONFIG_EXPERIMENTAL_STATIC_ANALYSIS_SUPPORT )
#    define CATCH_CONFIG_EXPERIMENTAL_STATIC_ANALYSIS_SUPPORT
#endif


#endif // CATCH_CONFIG_STATIC_ANALYSIS_SUPPORT_HPP_INCLUDED


#ifndef CATCH_TIMER_HPP_INCLUDED
#define CATCH_TIMER_HPP_INCLUDED

#include <cstdint>

namespace Catch {

    class Timer {
        uint64_t m_nanoseconds = 0;
    public:
        void start();
        auto getElapsedNanoseconds() const -> uint64_t;
        auto getElapsedMicroseconds() const -> uint64_t;
        auto getElapsedMilliseconds() const -> unsigned int;
        auto getElapsedSeconds() const -> double;
    };

} // namespace Catch

#endif // CATCH_TIMER_HPP_INCLUDED

namespace Catch {

    class Section : Detail::NonCopyable {
    public:
        Section( SectionInfo&& info );
        Section( SourceLineInfo const& _lineInfo,
                 StringRef _name,
                 const char* const = nullptr );
        ~Section();

        // This indicates whether the section should be executed or not
        explicit operator bool() const;

    private:
        SectionInfo m_info;

        Counts m_assertions;
        bool m_sectionIncluded;
        Timer m_timer;
    };

} // end namespace Catch

#if !defined(CATCH_CONFIG_EXPERIMENTAL_STATIC_ANALYSIS_SUPPORT)
#    define INTERNAL_CATCH_SECTION( ... )                                 \
        CATCH_INTERNAL_START_WARNINGS_SUPPRESSION                         \
        CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS                  \
        if ( Catch::Section const& INTERNAL_CATCH_UNIQUE_NAME(            \
                 catch_internal_Section ) =                               \
                 Catch::Section( CATCH_INTERNAL_LINEINFO, __VA_ARGS__ ) ) \
        CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION

#    define INTERNAL_CATCH_DYNAMIC_SECTION( ... )                     \
        CATCH_INTERNAL_START_WARNINGS_SUPPRESSION                     \
        CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS              \
        if ( Catch::Section const& INTERNAL_CATCH_UNIQUE_NAME(        \
                 catch_internal_Section ) =                           \
                 Catch::SectionInfo(                                  \
                     CATCH_INTERNAL_LINEINFO,                         \
                     ( Catch::ReusableStringStream() << __VA_ARGS__ ) \
                         .str() ) )                                   \
        CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION

#else

// These section definitions imply that at most one section at one level
// will be intered (because only one section's __LINE__ can be equal to
// the dummy `catchInternalSectionHint` variable from `TEST_CASE`).

namespace Catch {
    namespace Detail {
        // Intentionally without linkage, as it should only be used as a dummy
        // symbol for static analysis.
        // The arguments are used as a dummy for checking warnings in the passed
        // expressions.
        int GetNewSectionHint( StringRef, const char* const = nullptr );
    } // namespace Detail
} // namespace Catch


#    define INTERNAL_CATCH_SECTION( ... )                                   \
        CATCH_INTERNAL_START_WARNINGS_SUPPRESSION                           \
        CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS                    \
        CATCH_INTERNAL_SUPPRESS_SHADOW_WARNINGS                             \
        if ( [[maybe_unused]] const int catchInternalPreviousSectionHint =  \
                 catchInternalSectionHint,                                  \
             catchInternalSectionHint =                                     \
                 Catch::Detail::GetNewSectionHint(__VA_ARGS__);             \
             catchInternalPreviousSectionHint == __LINE__ )                 \
        CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION

#    define INTERNAL_CATCH_DYNAMIC_SECTION( ... )                           \
        CATCH_INTERNAL_START_WARNINGS_SUPPRESSION                           \
        CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS                    \
        CATCH_INTERNAL_SUPPRESS_SHADOW_WARNINGS                             \
        if ( [[maybe_unused]] const int catchInternalPreviousSectionHint =  \
                 catchInternalSectionHint,                                  \
             catchInternalSectionHint = Catch::Detail::GetNewSectionHint(   \
                ( Catch::ReusableStringStream() << __VA_ARGS__ ).str());    \
             catchInternalPreviousSectionHint == __LINE__ )                 \
        CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION

#endif


#endif // CATCH_SECTION_HPP_INCLUDED


#ifndef CATCH_TEST_REGISTRY_HPP_INCLUDED
#define CATCH_TEST_REGISTRY_HPP_INCLUDED



#ifndef CATCH_INTERFACES_TEST_INVOKER_HPP_INCLUDED
#define CATCH_INTERFACES_TEST_INVOKER_HPP_INCLUDED

namespace Catch {

    class ITestInvoker {
    public:
        virtual void invoke() const = 0;
        virtual ~ITestInvoker(); // = default
    };

} // namespace Catch

#endif // CATCH_INTERFACES_TEST_INVOKER_HPP_INCLUDED


#ifndef CATCH_PREPROCESSOR_REMOVE_PARENS_HPP_INCLUDED
#define CATCH_PREPROCESSOR_REMOVE_PARENS_HPP_INCLUDED

#define INTERNAL_CATCH_EXPAND1( param ) INTERNAL_CATCH_EXPAND2( param )
#define INTERNAL_CATCH_EXPAND2( ... ) INTERNAL_CATCH_NO##__VA_ARGS__
#define INTERNAL_CATCH_DEF( ... ) INTERNAL_CATCH_DEF __VA_ARGS__
#define INTERNAL_CATCH_NOINTERNAL_CATCH_DEF

#define INTERNAL_CATCH_REMOVE_PARENS( ... ) \
    INTERNAL_CATCH_EXPAND1( INTERNAL_CATCH_DEF __VA_ARGS__ )

#endif // CATCH_PREPROCESSOR_REMOVE_PARENS_HPP_INCLUDED

// GCC 5 and older do not properly handle disabling unused-variable warning
// with a _Pragma. This means that we have to leak the suppression to the
// user code as well :-(
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ <= 5
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif



namespace Catch {

template<typename C>
class TestInvokerAsMethod : public ITestInvoker {
    void (C::*m_testAsMethod)();
public:
    TestInvokerAsMethod( void (C::*testAsMethod)() ) noexcept : m_testAsMethod( testAsMethod ) {}

    void invoke() const override {
        C obj;
        (obj.*m_testAsMethod)();
    }
};

Detail::unique_ptr<ITestInvoker> makeTestInvoker( void(*testAsFunction)() );

template<typename C>
Detail::unique_ptr<ITestInvoker> makeTestInvoker( void (C::*testAsMethod)() ) {
    return Detail::make_unique<TestInvokerAsMethod<C>>( testAsMethod );
}

struct NameAndTags {
    constexpr NameAndTags( StringRef name_ = StringRef(),
                           StringRef tags_ = StringRef() ) noexcept:
        name( name_ ), tags( tags_ ) {}
    StringRef name;
    StringRef tags;
};

struct AutoReg : Detail::NonCopyable {
    AutoReg( Detail::unique_ptr<ITestInvoker> invoker, SourceLineInfo const& lineInfo, StringRef classOrMethod, NameAndTags const& nameAndTags ) noexcept;
};

} // end namespace Catch

#if defined(CATCH_CONFIG_DISABLE)
    #define INTERNAL_CATCH_TESTCASE_NO_REGISTRATION( TestName, ... ) \
        static inline void TestName()
    #define INTERNAL_CATCH_TESTCASE_METHOD_NO_REGISTRATION( TestName, ClassName, ... ) \
        namespace{                        \
            struct TestName : INTERNAL_CATCH_REMOVE_PARENS(ClassName) { \
                void test();              \
            };                            \
        }                                 \
        void TestName::test()
#endif


#if !defined(CATCH_CONFIG_EXPERIMENTAL_STATIC_ANALYSIS_SUPPORT)

    #define INTERNAL_CATCH_TESTCASE2( TestName, ... ) \
        static void TestName(); \
        CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
        CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
        CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS \
        namespace{ const Catch::AutoReg INTERNAL_CATCH_UNIQUE_NAME( autoRegistrar )( Catch::makeTestInvoker( &TestName ), CATCH_INTERNAL_LINEINFO, Catch::StringRef(), Catch::NameAndTags{ __VA_ARGS__ } ); } /* NOLINT */ \
        CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
        static void TestName()
    #define INTERNAL_CATCH_TESTCASE( ... ) \
        INTERNAL_CATCH_TESTCASE2( INTERNAL_CATCH_UNIQUE_NAME( CATCH2_INTERNAL_TEST_ ), __VA_ARGS__ )

#else  // ^^ !CATCH_CONFIG_EXPERIMENTAL_STATIC_ANALYSIS_SUPPORT | vv CATCH_CONFIG_EXPERIMENTAL_STATIC_ANALYSIS_SUPPORT


// Dummy registrator for the dumy test case macros
namespace Catch {
    namespace Detail {
        struct DummyUse {
            DummyUse( void ( * )( int ), Catch::NameAndTags const& );
        };
    } // namespace Detail
} // namespace Catch

// Note that both the presence of the argument and its exact name are
// necessary for the section support.

// We provide a shadowed variable so that a `SECTION` inside non-`TEST_CASE`
// tests can compile. The redefined `TEST_CASE` shadows this with param.
static int catchInternalSectionHint = 0;

#    define INTERNAL_CATCH_TESTCASE2( fname, ... )                         \
        static void fname( int );                                          \
        CATCH_INTERNAL_START_WARNINGS_SUPPRESSION                          \
        CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS                           \
        CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS                   \
        static const Catch::Detail::DummyUse INTERNAL_CATCH_UNIQUE_NAME(   \
            dummyUser )( &(fname), Catch::NameAndTags{ __VA_ARGS__ } );    \
        CATCH_INTERNAL_SUPPRESS_SHADOW_WARNINGS                            \
        static void fname( [[maybe_unused]] int catchInternalSectionHint ) \
            CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
#    define INTERNAL_CATCH_TESTCASE( ... ) \
        INTERNAL_CATCH_TESTCASE2( INTERNAL_CATCH_UNIQUE_NAME( dummyFunction ), __VA_ARGS__ )


#endif // CATCH_CONFIG_EXPERIMENTAL_STATIC_ANALYSIS_SUPPORT

    #define INTERNAL_CATCH_TEST_CASE_METHOD2( TestName, ClassName, ... )\
        CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
        CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
        CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS \
        namespace{ \
            struct TestName : INTERNAL_CATCH_REMOVE_PARENS(ClassName) { \
                void test(); \
            }; \
            const Catch::AutoReg INTERNAL_CATCH_UNIQUE_NAME( autoRegistrar )( \
            Catch::makeTestInvoker( &TestName::test ),                    \
            CATCH_INTERNAL_LINEINFO,                                      \
            #ClassName##_catch_sr,                                        \
            Catch::NameAndTags{ __VA_ARGS__ } ); /* NOLINT */ \
        } \
        CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
        void TestName::test()
    #define INTERNAL_CATCH_TEST_CASE_METHOD( ClassName, ... ) \
        INTERNAL_CATCH_TEST_CASE_METHOD2( INTERNAL_CATCH_UNIQUE_NAME( CATCH2_INTERNAL_TEST_ ), ClassName, __VA_ARGS__ )


    #define INTERNAL_CATCH_METHOD_AS_TEST_CASE( QualifiedMethod, ... ) \
        CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
        CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
        CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS \
        namespace {                                                           \
        const Catch::AutoReg INTERNAL_CATCH_UNIQUE_NAME( autoRegistrar )( \
            Catch::makeTestInvoker( &QualifiedMethod ),                   \
            CATCH_INTERNAL_LINEINFO,                                      \
            "&" #QualifiedMethod##_catch_sr,                              \
            Catch::NameAndTags{ __VA_ARGS__ } );                          \
    } /* NOLINT */ \
        CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION


    #define INTERNAL_CATCH_REGISTER_TESTCASE( Function, ... ) \
        do { \
            CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
            CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
            CATCH_INTERNAL_SUPPRESS_UNUSED_VARIABLE_WARNINGS \
            Catch::AutoReg INTERNAL_CATCH_UNIQUE_NAME( autoRegistrar )( Catch::makeTestInvoker( Function ), CATCH_INTERNAL_LINEINFO, Catch::StringRef(), Catch::NameAndTags{ __VA_ARGS__ } ); /* NOLINT */ \
            CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
        } while(false)


#endif // CATCH_TEST_REGISTRY_HPP_INCLUDED


// All of our user-facing macros support configuration toggle, that
// forces them to be defined prefixed with CATCH_. We also like to
// support another toggle that can minimize (disable) their implementation.
// Given this, we have 4 different configuration options below

#if defined(CATCH_CONFIG_PREFIX_ALL) && !defined(CATCH_CONFIG_DISABLE)

  #define CATCH_REQUIRE( ... ) INTERNAL_CATCH_TEST( "CATCH_REQUIRE", Catch::ResultDisposition::Normal, __VA_ARGS__ )
  #define CATCH_REQUIRE_FALSE( ... ) INTERNAL_CATCH_TEST( "CATCH_REQUIRE_FALSE", Catch::ResultDisposition::Normal | Catch::ResultDisposition::FalseTest, __VA_ARGS__ )

  #define CATCH_REQUIRE_THROWS( ... ) INTERNAL_CATCH_THROWS( "CATCH_REQUIRE_THROWS", Catch::ResultDisposition::Normal, __VA_ARGS__ )
  #define CATCH_REQUIRE_THROWS_AS( expr, exceptionType ) INTERNAL_CATCH_THROWS_AS( "CATCH_REQUIRE_THROWS_AS", exceptionType, Catch::ResultDisposition::Normal, expr )
  #define CATCH_REQUIRE_NOTHROW( ... ) INTERNAL_CATCH_NO_THROW( "CATCH_REQUIRE_NOTHROW", Catch::ResultDisposition::Normal, __VA_ARGS__ )

  #define CATCH_CHECK( ... ) INTERNAL_CATCH_TEST( "CATCH_CHECK", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__ )
  #define CATCH_CHECK_FALSE( ... ) INTERNAL_CATCH_TEST( "CATCH_CHECK_FALSE", Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::FalseTest, __VA_ARGS__ )
  #define CATCH_CHECKED_IF( ... ) INTERNAL_CATCH_IF( "CATCH_CHECKED_IF", Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::SuppressFail, __VA_ARGS__ )
  #define CATCH_CHECKED_ELSE( ... ) INTERNAL_CATCH_ELSE( "CATCH_CHECKED_ELSE", Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::SuppressFail, __VA_ARGS__ )
  #define CATCH_CHECK_NOFAIL( ... ) INTERNAL_CATCH_TEST( "CATCH_CHECK_NOFAIL", Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::SuppressFail, __VA_ARGS__ )

  #define CATCH_CHECK_THROWS( ... )  INTERNAL_CATCH_THROWS( "CATCH_CHECK_THROWS", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__ )
  #define CATCH_CHECK_THROWS_AS( expr, exceptionType ) INTERNAL_CATCH_THROWS_AS( "CATCH_CHECK_THROWS_AS", exceptionType, Catch::ResultDisposition::ContinueOnFailure, expr )
  #define CATCH_CHECK_NOTHROW( ... ) INTERNAL_CATCH_NO_THROW( "CATCH_CHECK_NOTHROW", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__ )

  #define CATCH_TEST_CASE( ... ) INTERNAL_CATCH_TESTCASE( __VA_ARGS__ )
  #define CATCH_TEST_CASE_METHOD( className, ... ) INTERNAL_CATCH_TEST_CASE_METHOD( className, __VA_ARGS__ )
  #define CATCH_METHOD_AS_TEST_CASE( method, ... ) INTERNAL_CATCH_METHOD_AS_TEST_CASE( method, __VA_ARGS__ )
  #define CATCH_REGISTER_TEST_CASE( Function, ... ) INTERNAL_CATCH_REGISTER_TESTCASE( Function, __VA_ARGS__ )
  #define CATCH_SECTION( ... ) INTERNAL_CATCH_SECTION( __VA_ARGS__ )
  #define CATCH_DYNAMIC_SECTION( ... ) INTERNAL_CATCH_DYNAMIC_SECTION( __VA_ARGS__ )
  #define CATCH_FAIL( ... ) INTERNAL_CATCH_MSG( "CATCH_FAIL", Catch::ResultWas::ExplicitFailure, Catch::ResultDisposition::Normal, __VA_ARGS__ )
  #define CATCH_FAIL_CHECK( ... ) INTERNAL_CATCH_MSG( "CATCH_FAIL_CHECK", Catch::ResultWas::ExplicitFailure, Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__ )
  #define CATCH_SUCCEED( ... ) INTERNAL_CATCH_MSG( "CATCH_SUCCEED", Catch::ResultWas::Ok, Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__ )
  #define CATCH_SKIP( ... ) INTERNAL_CATCH_MSG( "SKIP", Catch::ResultWas::ExplicitSkip, Catch::ResultDisposition::Normal, __VA_ARGS__ )


  #if !defined(CATCH_CONFIG_RUNTIME_STATIC_REQUIRE)
    #define CATCH_STATIC_REQUIRE( ... )       static_assert(   __VA_ARGS__ ,      #__VA_ARGS__ );     CATCH_SUCCEED( #__VA_ARGS__ )
    #define CATCH_STATIC_REQUIRE_FALSE( ... ) static_assert( !(__VA_ARGS__), "!(" #__VA_ARGS__ ")" ); CATCH_SUCCEED( #__VA_ARGS__ )
    #define CATCH_STATIC_CHECK( ... )       static_assert(   __VA_ARGS__ ,      #__VA_ARGS__ );     CATCH_SUCCEED( #__VA_ARGS__ )
    #define CATCH_STATIC_CHECK_FALSE( ... ) static_assert( !(__VA_ARGS__), "!(" #__VA_ARGS__ ")" ); CATCH_SUCCEED( #__VA_ARGS__ )
  #else
    #define CATCH_STATIC_REQUIRE( ... )       CATCH_REQUIRE( __VA_ARGS__ )
    #define CATCH_STATIC_REQUIRE_FALSE( ... ) CATCH_REQUIRE_FALSE( __VA_ARGS__ )
    #define CATCH_STATIC_CHECK( ... )       CATCH_CHECK( __VA_ARGS__ )
    #define CATCH_STATIC_CHECK_FALSE( ... ) CATCH_CHECK_FALSE( __VA_ARGS__ )
  #endif


  // "BDD-style" convenience wrappers
  #define CATCH_SCENARIO( ... ) CATCH_TEST_CASE( "Scenario: " __VA_ARGS__ )
  #define CATCH_SCENARIO_METHOD( className, ... ) INTERNAL_CATCH_TEST_CASE_METHOD( className, "Scenario: " __VA_ARGS__ )
  #define CATCH_GIVEN( desc )     INTERNAL_CATCH_DYNAMIC_SECTION( "    Given: " << desc )
  #define CATCH_AND_GIVEN( desc ) INTERNAL_CATCH_DYNAMIC_SECTION( "And given: " << desc )
  #define CATCH_WHEN( desc )      INTERNAL_CATCH_DYNAMIC_SECTION( "     When: " << desc )
  #define CATCH_AND_WHEN( desc )  INTERNAL_CATCH_DYNAMIC_SECTION( " And when: " << desc )
  #define CATCH_THEN( desc )      INTERNAL_CATCH_DYNAMIC_SECTION( "     Then: " << desc )
  #define CATCH_AND_THEN( desc )  INTERNAL_CATCH_DYNAMIC_SECTION( "      And: " << desc )

#elif defined(CATCH_CONFIG_PREFIX_ALL) && defined(CATCH_CONFIG_DISABLE) // ^^ prefixed, implemented | vv prefixed, disabled

  #define CATCH_REQUIRE( ... )        (void)(0)
  #define CATCH_REQUIRE_FALSE( ... )  (void)(0)

  #define CATCH_REQUIRE_THROWS( ... ) (void)(0)
  #define CATCH_REQUIRE_THROWS_AS( expr, exceptionType ) (void)(0)
  #define CATCH_REQUIRE_NOTHROW( ... ) (void)(0)

  #define CATCH_CHECK( ... )         (void)(0)
  #define CATCH_CHECK_FALSE( ... )   (void)(0)
  #define CATCH_CHECKED_IF( ... )    if (__VA_ARGS__)
  #define CATCH_CHECKED_ELSE( ... )  if (!(__VA_ARGS__))
  #define CATCH_CHECK_NOFAIL( ... )  (void)(0)

  #define CATCH_CHECK_THROWS( ... )