BlasUtil.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_BLASUTIL_H
00011 #define EIGEN_BLASUTIL_H
00012 
00013 // This file contains many lightweight helper classes used to
00014 // implement and control fast level 2 and level 3 BLAS-like routines.
00015 
00016 namespace Eigen {
00017 
00018 namespace internal {
00019 
00020 // forward declarations
00021 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs=false, bool ConjugateRhs=false>
00022 struct gebp_kernel;
00023 
00024 template<typename Scalar, typename Index, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false>
00025 struct gemm_pack_rhs;
00026 
00027 template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate = false, bool PanelMode = false>
00028 struct gemm_pack_lhs;
00029 
00030 template<
00031   typename Index,
00032   typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
00033   typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
00034   int ResStorageOrder>
00035 struct general_matrix_matrix_product;
00036 
00037 template<typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version=Specialized>
00038 struct general_matrix_vector_product;
00039 
00040 
00041 template<bool Conjugate> struct conj_if;
00042 
00043 template<> struct conj_if<true> {
00044   template<typename T>
00045   inline T operator()(const T& x) { return conj(x); }
00046   template<typename T>
00047   inline T pconj(const T& x) { return internal::pconj(x); }
00048 };
00049 
00050 template<> struct conj_if<false> {
00051   template<typename T>
00052   inline const T& operator()(const T& x) { return x; }
00053   template<typename T>
00054   inline const T& pconj(const T& x) { return x; }
00055 };
00056 
00057 template<typename Scalar> struct conj_helper<Scalar,Scalar,false,false>
00058 {
00059   EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); }
00060   EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); }
00061 };
00062 
00063 template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, false,true>
00064 {
00065   typedef std::complex<RealScalar> Scalar;
00066   EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
00067   { return c + pmul(x,y); }
00068 
00069   EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
00070   { return Scalar(real(x)*real(y) + imag(x)*imag(y), imag(x)*real(y) - real(x)*imag(y)); }
00071 };
00072 
00073 template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,false>
00074 {
00075   typedef std::complex<RealScalar> Scalar;
00076   EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
00077   { return c + pmul(x,y); }
00078 
00079   EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
00080   { return Scalar(real(x)*real(y) + imag(x)*imag(y), real(x)*imag(y) - imag(x)*real(y)); }
00081 };
00082 
00083 template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,true>
00084 {
00085   typedef std::complex<RealScalar> Scalar;
00086   EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
00087   { return c + pmul(x,y); }
00088 
00089   EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
00090   { return Scalar(real(x)*real(y) - imag(x)*imag(y), - real(x)*imag(y) - imag(x)*real(y)); }
00091 };
00092 
00093 template<typename RealScalar,bool Conj> struct conj_helper<std::complex<RealScalar>, RealScalar, Conj,false>
00094 {
00095   typedef std::complex<RealScalar> Scalar;
00096   EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const
00097   { return padd(c, pmul(x,y)); }
00098   EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const
00099   { return conj_if<Conj>()(x)*y; }
00100 };
00101 
00102 template<typename RealScalar,bool Conj> struct conj_helper<RealScalar, std::complex<RealScalar>, false,Conj>
00103 {
00104   typedef std::complex<RealScalar> Scalar;
00105   EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const
00106   { return padd(c, pmul(x,y)); }
00107   EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const
00108   { return x*conj_if<Conj>()(y); }
00109 };
00110 
00111 template<typename From,typename To> struct get_factor {
00112   static EIGEN_STRONG_INLINE To run(const From& x) { return x; }
00113 };
00114 
00115 template<typename Scalar> struct get_factor<Scalar,typename NumTraits<Scalar>::Real> {
00116   static EIGEN_STRONG_INLINE typename NumTraits<Scalar>::Real run(const Scalar& x) { return real(x); }
00117 };
00118 
00119 // Lightweight helper class to access matrix coefficients.
00120 // Yes, this is somehow redundant with Map<>, but this version is much much lighter,
00121 // and so I hope better compilation performance (time and code quality).
00122 template<typename Scalar, typename Index, int StorageOrder>
00123 class blas_data_mapper
00124 {
00125   public:
00126     blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
00127     EIGEN_STRONG_INLINE Scalar& operator()(Index i, Index j)
00128     { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
00129   protected:
00130     Scalar* EIGEN_RESTRICT m_data;
00131     Index m_stride;
00132 };
00133 
00134 // lightweight helper class to access matrix coefficients (const version)
00135 template<typename Scalar, typename Index, int StorageOrder>
00136 class const_blas_data_mapper
00137 {
00138   public:
00139     const_blas_data_mapper(const Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
00140     EIGEN_STRONG_INLINE const Scalar& operator()(Index i, Index j) const
00141     { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
00142   protected:
00143     const Scalar* EIGEN_RESTRICT m_data;
00144     Index m_stride;
00145 };
00146 
00147 
00148 /* Helper class to analyze the factors of a Product expression.
00149  * In particular it allows to pop out operator-, scalar multiples,
00150  * and conjugate */
00151 template<typename XprType> struct blas_traits
00152 {
00153   typedef typename traits<XprType>::Scalar Scalar;
00154   typedef const XprType& ExtractType;
00155   typedef XprType _ExtractType;
00156   enum {
00157     IsComplex = NumTraits<Scalar>::IsComplex,
00158     IsTransposed = false,
00159     NeedToConjugate = false,
00160     HasUsableDirectAccess = (    (int(XprType::Flags)&DirectAccessBit)
00161                               && (   bool(XprType::IsVectorAtCompileTime)
00162                                   || int(inner_stride_at_compile_time<XprType>::ret) == 1)
00163                              ) ?  1 : 0
00164   };
00165   typedef typename conditional<bool(HasUsableDirectAccess),
00166     ExtractType,
00167     typename _ExtractType::PlainObject
00168     >::type DirectLinearAccessType;
00169   static inline ExtractType extract(const XprType& x) { return x; }
00170   static inline const Scalar extractScalarFactor(const XprType&) { return Scalar(1); }
00171 };
00172 
00173 // pop conjugate
00174 template<typename Scalar, typename NestedXpr>
00175 struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> >
00176  : blas_traits<NestedXpr>
00177 {
00178   typedef blas_traits<NestedXpr> Base;
00179   typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType;
00180   typedef typename Base::ExtractType ExtractType;
00181 
00182   enum {
00183     IsComplex = NumTraits<Scalar>::IsComplex,
00184     NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex
00185   };
00186   static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
00187   static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); }
00188 };
00189 
00190 // pop scalar multiple
00191 template<typename Scalar, typename NestedXpr>
00192 struct blas_traits<CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> >
00193  : blas_traits<NestedXpr>
00194 {
00195   typedef blas_traits<NestedXpr> Base;
00196   typedef CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> XprType;
00197   typedef typename Base::ExtractType ExtractType;
00198   static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
00199   static inline Scalar extractScalarFactor(const XprType& x)
00200   { return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); }
00201 };
00202 
00203 // pop opposite
00204 template<typename Scalar, typename NestedXpr>
00205 struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> >
00206  : blas_traits<NestedXpr>
00207 {
00208   typedef blas_traits<NestedXpr> Base;
00209   typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType;
00210   typedef typename Base::ExtractType ExtractType;
00211   static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
00212   static inline Scalar extractScalarFactor(const XprType& x)
00213   { return - Base::extractScalarFactor(x.nestedExpression()); }
00214 };
00215 
00216 // pop/push transpose
00217 template<typename NestedXpr>
00218 struct blas_traits<Transpose<NestedXpr> >
00219  : blas_traits<NestedXpr>
00220 {
00221   typedef typename NestedXpr::Scalar Scalar;
00222   typedef blas_traits<NestedXpr> Base;
00223   typedef Transpose<NestedXpr> XprType;
00224   typedef Transpose<const typename Base::_ExtractType>  ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS
00225   typedef Transpose<const typename Base::_ExtractType> _ExtractType;
00226   typedef typename conditional<bool(Base::HasUsableDirectAccess),
00227     ExtractType,
00228     typename ExtractType::PlainObject
00229     >::type DirectLinearAccessType;
00230   enum {
00231     IsTransposed = Base::IsTransposed ? 0 : 1
00232   };
00233   static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
00234   static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
00235 };
00236 
00237 template<typename T>
00238 struct blas_traits<const T>
00239      : blas_traits<T>
00240 {};
00241 
00242 template<typename T, bool HasUsableDirectAccess=blas_traits<T>::HasUsableDirectAccess>
00243 struct extract_data_selector {
00244   static const typename T::Scalar* run(const T& m)
00245   {
00246     return blas_traits<T>::extract(m).data();
00247   }
00248 };
00249 
00250 template<typename T>
00251 struct extract_data_selector<T,false> {
00252   static typename T::Scalar* run(const T&) { return 0; }
00253 };
00254 
00255 template<typename T> const typename T::Scalar* extract_data(const T& m)
00256 {
00257   return extract_data_selector<T>::run(m);
00258 }
00259 
00260 } // end namespace internal
00261 
00262 } // end namespace Eigen
00263 
00264 #endif // EIGEN_BLASUTIL_H


win_eigen
Author(s): Daniel Stonier
autogenerated on Mon Oct 6 2014 12:24:12