sac_model_sphere.h
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2011, Willow Garage, Inc.
00006  *
00007  *  All rights reserved.
00008  *
00009  *  Redistribution and use in source and binary forms, with or without
00010  *  modification, are permitted provided that the following conditions
00011  *  are met:
00012  *
00013  *   * Redistributions of source code must retain the above copyright
00014  *     notice, this list of conditions and the following disclaimer.
00015  *   * Redistributions in binary form must reproduce the above
00016  *     copyright notice, this list of conditions and the following
00017  *     disclaimer in the documentation and/or other materials provided
00018  *     with the distribution.
00019  *   * Neither the name of Willow Garage, Inc. nor the names of its
00020  *     contributors may be used to endorse or promote products derived
00021  *     from this software without specific prior written permission.
00022  *
00023  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  *  POSSIBILITY OF SUCH DAMAGE.
00035  *
00036  * $Id: sac_model_sphere.h 6144 2012-07-04 22:06:28Z rusu $
00037  *
00038  */
00039 
00040 #ifndef PCL_SAMPLE_CONSENSUS_MODEL_SPHERE_H_
00041 #define PCL_SAMPLE_CONSENSUS_MODEL_SPHERE_H_
00042 
00043 #include <pcl/sample_consensus/sac_model.h>
00044 #include <pcl/sample_consensus/model_types.h>
00045 
00046 namespace pcl
00047 {
00058   template <typename PointT>
00059   class SampleConsensusModelSphere : public SampleConsensusModel<PointT>
00060   {
00061     public:
00062       using SampleConsensusModel<PointT>::input_;
00063       using SampleConsensusModel<PointT>::indices_;
00064       using SampleConsensusModel<PointT>::radius_min_;
00065       using SampleConsensusModel<PointT>::radius_max_;
00066 
00067     
00068       typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
00069       typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
00070       typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
00071 
00072       typedef boost::shared_ptr<SampleConsensusModelSphere> Ptr;
00073 
00077       SampleConsensusModelSphere (const PointCloudConstPtr &cloud) : 
00078         SampleConsensusModel<PointT> (cloud), tmp_inliers_ ()
00079       {}
00080 
00085       SampleConsensusModelSphere (const PointCloudConstPtr &cloud, const std::vector<int> &indices) : 
00086         SampleConsensusModel<PointT> (cloud, indices), tmp_inliers_ ()
00087       {}
00088 
00092       SampleConsensusModelSphere (const SampleConsensusModelSphere &source) :
00093         SampleConsensusModel<PointT> (), tmp_inliers_ () 
00094       {
00095         *this = source;
00096       }
00097 
00101       inline SampleConsensusModelSphere&
00102       operator = (const SampleConsensusModelSphere &source)
00103       {
00104         SampleConsensusModel<PointT>::operator=(source);
00105         tmp_inliers_ = source.tmp_inliers_;
00106         return (*this);
00107       }
00108 
00115       bool 
00116       computeModelCoefficients (const std::vector<int> &samples, 
00117                                 Eigen::VectorXf &model_coefficients);
00118 
00123       void 
00124       getDistancesToModel (const Eigen::VectorXf &model_coefficients, 
00125                            std::vector<double> &distances);
00126 
00132       void 
00133       selectWithinDistance (const Eigen::VectorXf &model_coefficients, 
00134                             const double threshold, 
00135                             std::vector<int> &inliers);
00136 
00143       virtual int
00144       countWithinDistance (const Eigen::VectorXf &model_coefficients, 
00145                            const double threshold);
00146 
00153       void 
00154       optimizeModelCoefficients (const std::vector<int> &inliers, 
00155                                  const Eigen::VectorXf &model_coefficients, 
00156                                  Eigen::VectorXf &optimized_coefficients);
00157 
00165       void 
00166       projectPoints (const std::vector<int> &inliers, 
00167                      const Eigen::VectorXf &model_coefficients, 
00168                      PointCloud &projected_points, 
00169                      bool copy_data_fields = true);
00170 
00176       bool 
00177       doSamplesVerifyModel (const std::set<int> &indices, 
00178                             const Eigen::VectorXf &model_coefficients, 
00179                             const double threshold);
00180 
00182       inline pcl::SacModel getModelType () const { return (SACMODEL_SPHERE); }
00183 
00184     protected:
00188       inline bool 
00189       isModelValid (const Eigen::VectorXf &model_coefficients)
00190       {
00191         // Needs a valid model coefficients
00192         if (model_coefficients.size () != 4)
00193         {
00194           PCL_ERROR ("[pcl::SampleConsensusModelSphere::isModelValid] Invalid number of model coefficients given (%zu)!\n", model_coefficients.size ());
00195           return (false);
00196         }
00197 
00198         if (radius_min_ != -std::numeric_limits<double>::max() && model_coefficients[3] < radius_min_)
00199           return (false);
00200         if (radius_max_ != std::numeric_limits<double>::max() && model_coefficients[3] > radius_max_)
00201           return (false);
00202 
00203         return (true);
00204       }
00205 
00210       bool
00211       isSampleGood(const std::vector<int> &samples) const;
00212 
00213     private:
00215       const std::vector<int> *tmp_inliers_;
00216 
00217 #if defined BUILD_Maintainer && defined __GNUC__ && __GNUC__ == 4 && __GNUC_MINOR__ > 3
00218 #pragma GCC diagnostic ignored "-Weffc++"
00219 #endif
00220       struct OptimizationFunctor : pcl::Functor<float>
00221       {
00227         OptimizationFunctor (int m_data_points, pcl::SampleConsensusModelSphere<PointT> *model) : 
00228           pcl::Functor<float>(m_data_points), model_ (model) {}
00229 
00235         int 
00236         operator() (const Eigen::VectorXf &x, Eigen::VectorXf &fvec) const
00237         {
00238           Eigen::Vector4f cen_t;
00239           cen_t[3] = 0;
00240           for (int i = 0; i < values (); ++i)
00241           {
00242             // Compute the difference between the center of the sphere and the datapoint X_i
00243             cen_t[0] = model_->input_->points[(*model_->tmp_inliers_)[i]].x - x[0];
00244             cen_t[1] = model_->input_->points[(*model_->tmp_inliers_)[i]].y - x[1];
00245             cen_t[2] = model_->input_->points[(*model_->tmp_inliers_)[i]].z - x[2];
00246             
00247             // g = sqrt ((x-a)^2 + (y-b)^2 + (z-c)^2) - R
00248             fvec[i] = sqrtf (cen_t.dot (cen_t)) - x[3];
00249           }
00250           return (0);
00251         }
00252         
00253         pcl::SampleConsensusModelSphere<PointT> *model_;
00254       };
00255 #if defined BUILD_Maintainer && defined __GNUC__ && __GNUC__ == 4 && __GNUC_MINOR__ > 3
00256 #pragma GCC diagnostic warning "-Weffc++"
00257 #endif
00258    };
00259 }
00260 
00261 #endif  //#ifndef PCL_SAMPLE_CONSENSUS_MODEL_SPHERE_H_


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:17:44