Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_
00039 #define PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_
00040
00041 #include <pcl/sample_consensus/msac.h>
00042
00044 template <typename PointT> bool
00045 pcl::MEstimatorSampleConsensus<PointT>::computeModel (int debug_verbosity_level)
00046 {
00047
00048 if (threshold_ == std::numeric_limits<double>::max())
00049 {
00050 PCL_ERROR ("[pcl::MEstimatorSampleConsensus::computeModel] No threshold set!\n");
00051 return (false);
00052 }
00053
00054 iterations_ = 0;
00055 double d_best_penalty = std::numeric_limits<double>::max();
00056 double k = 1.0;
00057
00058 std::vector<int> best_model;
00059 std::vector<int> selection;
00060 Eigen::VectorXf model_coefficients;
00061 std::vector<double> distances;
00062
00063 int n_inliers_count = 0;
00064 unsigned skipped_count = 0;
00065
00066 const unsigned max_skip = max_iterations_ * 10;
00067
00068
00069 while (iterations_ < k && skipped_count < max_skip)
00070 {
00071
00072 sac_model_->getSamples (iterations_, selection);
00073
00074 if (selection.empty ()) break;
00075
00076
00077 if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
00078 {
00079
00080 ++ skipped_count;
00081 continue;
00082 }
00083
00084 double d_cur_penalty = 0;
00085
00086 sac_model_->getDistancesToModel (model_coefficients, distances);
00087
00088 if (distances.empty () && k > 1.0)
00089 continue;
00090
00091 for (size_t i = 0; i < distances.size (); ++i)
00092 d_cur_penalty += (std::min) (distances[i], threshold_);
00093
00094
00095 if (d_cur_penalty < d_best_penalty)
00096 {
00097 d_best_penalty = d_cur_penalty;
00098
00099
00100 model_ = selection;
00101 model_coefficients_ = model_coefficients;
00102
00103 n_inliers_count = 0;
00104
00105 for (size_t i = 0; i < distances.size (); ++i)
00106 if (distances[i] <= threshold_)
00107 ++n_inliers_count;
00108
00109
00110 double w = static_cast<double> (n_inliers_count) / static_cast<double> (sac_model_->getIndices ()->size ());
00111 double p_no_outliers = 1.0 - pow (w, static_cast<double> (selection.size ()));
00112 p_no_outliers = (std::max) (std::numeric_limits<double>::epsilon (), p_no_outliers);
00113 p_no_outliers = (std::min) (1.0 - std::numeric_limits<double>::epsilon (), p_no_outliers);
00114 k = log (1.0 - probability_) / log (p_no_outliers);
00115 }
00116
00117 ++iterations_;
00118 if (debug_verbosity_level > 1)
00119 PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Trial %d out of %d. Best penalty is %f.\n", iterations_, static_cast<int> (ceil (k)), d_best_penalty);
00120 if (iterations_ > max_iterations_)
00121 {
00122 if (debug_verbosity_level > 0)
00123 PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] MSAC reached the maximum number of trials.\n");
00124 break;
00125 }
00126 }
00127
00128 if (model_.empty ())
00129 {
00130 if (debug_verbosity_level > 0)
00131 PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Unable to find a solution!\n");
00132 return (false);
00133 }
00134
00135
00136 sac_model_->getDistancesToModel (model_coefficients_, distances);
00137 std::vector<int> &indices = *sac_model_->getIndices ();
00138
00139 if (distances.size () != indices.size ())
00140 {
00141 PCL_ERROR ("[pcl::MEstimatorSampleConsensus::computeModel] Estimated distances (%zu) differs than the normal of indices (%zu).\n", distances.size (), indices.size ());
00142 return (false);
00143 }
00144
00145 inliers_.resize (distances.size ());
00146
00147 n_inliers_count = 0;
00148 for (size_t i = 0; i < distances.size (); ++i)
00149 if (distances[i] <= threshold_)
00150 inliers_[n_inliers_count++] = indices[i];
00151
00152
00153 inliers_.resize (n_inliers_count);
00154
00155 if (debug_verbosity_level > 0)
00156 PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Model: %zu size, %d inliers.\n", model_.size (), n_inliers_count);
00157
00158 return (true);
00159 }
00160
00161 #define PCL_INSTANTIATE_MEstimatorSampleConsensus(T) template class PCL_EXPORTS pcl::MEstimatorSampleConsensus<T>;
00162
00163 #endif // PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_