euclidean_plane_coefficient_comparator.h
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2012, Willow Garage, Inc.
00006  *
00007  *  All rights reserved.
00008  *
00009  *  Redistribution and use in source and binary forms, with or without
00010  *  modification, are permitted provided that the following conditions
00011  *  are met:
00012  *
00013  *   * Redistributions of source code must retain the above copyright
00014  *     notice, this list of conditions and the following disclaimer.
00015  *   * Redistributions in binary form must reproduce the above
00016  *     copyright notice, this list of conditions and the following
00017  *     disclaimer in the documentation and/or other materials provided
00018  *     with the distribution.
00019  *   * Neither the name of Willow Garage, Inc. nor the names of its
00020  *     contributors may be used to endorse or promote products derived
00021  *     from this software without specific prior written permission.
00022  *
00023  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  *  POSSIBILITY OF SUCH DAMAGE.
00035  *
00036  *
00037  *
00038  */
00039 
00040 #ifndef PCL_EUCLIDEAN_SEGMENTATION_PLANE_COEFFICIENT_COMPARATOR_H_
00041 #define PCL_EUCLIDEAN_SEGMENTATION_PLANE_COEFFICIENT_COMPARATOR_H_
00042 
00043 #include <pcl/segmentation/plane_coefficient_comparator.h>
00044 #include <boost/make_shared.hpp>
00045 
00046 namespace pcl
00047 {
00054   template<typename PointT, typename PointNT>
00055   class EuclideanPlaneCoefficientComparator: public PlaneCoefficientComparator<PointT, PointNT>
00056   {
00057     public:
00058       typedef typename Comparator<PointT>::PointCloud PointCloud;
00059       typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
00060       typedef typename pcl::PointCloud<PointNT> PointCloudN;
00061       typedef typename PointCloudN::Ptr PointCloudNPtr;
00062       typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
00063       
00064       typedef boost::shared_ptr<EuclideanPlaneCoefficientComparator<PointT, PointNT> > Ptr;
00065       typedef boost::shared_ptr<const EuclideanPlaneCoefficientComparator<PointT, PointNT> > ConstPtr;
00066 
00067       using pcl::Comparator<PointT>::input_;
00068       using pcl::PlaneCoefficientComparator<PointT, PointNT>::normals_;
00069       using pcl::PlaneCoefficientComparator<PointT, PointNT>::angular_threshold_;
00070       using pcl::PlaneCoefficientComparator<PointT, PointNT>::distance_threshold_;
00071       
00073       EuclideanPlaneCoefficientComparator ()
00074       {
00075       }
00076 
00078       virtual
00079       ~EuclideanPlaneCoefficientComparator ()
00080       {
00081       }
00082 
00087       virtual bool
00088       compare (int idx1, int idx2) const
00089       {
00090         float dx = input_->points[idx1].x - input_->points[idx2].x;
00091         float dy = input_->points[idx1].y - input_->points[idx2].y;
00092         float dz = input_->points[idx1].z - input_->points[idx2].z;
00093         float dist = sqrtf (dx*dx + dy*dy + dz*dz);
00094         
00095         return ( (dist < distance_threshold_)
00096                  && (normals_->points[idx1].getNormalVector3fMap ().dot (normals_->points[idx2].getNormalVector3fMap () ) > angular_threshold_ ) );
00097       }
00098   };
00099 }
00100 
00101 #endif // PCL_SEGMENTATION_PLANE_COEFFICIENT_COMPARATOR_H_


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:14:52