pinhole_camera_model.cpp
Go to the documentation of this file.
00001 #include "image_geometry/pinhole_camera_model.h"
00002 #include <sensor_msgs/distortion_models.h>
00003 #include <boost/make_shared.hpp>
00004 
00005 namespace image_geometry {
00006 
00007 enum DistortionState { NONE, CALIBRATED, UNKNOWN };
00008 
00009 struct PinholeCameraModel::Cache
00010 {
00011   DistortionState distortion_state;
00012 
00013   cv::Mat_<double> K_binned, P_binned; // Binning applied, but not cropping
00014   
00015   mutable bool full_maps_dirty;
00016   mutable cv::Mat full_map1, full_map2;
00017 
00018   mutable bool reduced_maps_dirty;
00019   mutable cv::Mat reduced_map1, reduced_map2;
00020   
00021   mutable bool rectified_roi_dirty;
00022   mutable cv::Rect rectified_roi;
00023 
00024   Cache()
00025     : full_maps_dirty(true),
00026       reduced_maps_dirty(true),
00027       rectified_roi_dirty(true)
00028   {
00029   }
00030 };
00031 
00032 PinholeCameraModel::PinholeCameraModel()
00033 {
00034 }
00035 
00036 PinholeCameraModel& PinholeCameraModel::operator=(const PinholeCameraModel& other)
00037 {
00038   if (other.initialized())
00039     this->fromCameraInfo(other.cameraInfo());
00040   return *this;
00041 }
00042 
00043 PinholeCameraModel::PinholeCameraModel(const PinholeCameraModel& other)
00044 {
00045   if (other.initialized())
00046     fromCameraInfo(other.cam_info_);
00047 }
00048 
00049 // For uint32_t, string, bool...
00050 template<typename T>
00051 bool update(const T& new_val, T& my_val)
00052 {
00053   if (my_val == new_val)
00054     return false;
00055   my_val = new_val;
00056   return true;
00057 }
00058 
00059 // For boost::array, std::vector
00060 template<typename MatT>
00061 bool updateMat(const MatT& new_mat, MatT& my_mat, cv::Mat_<double>& cv_mat, int rows, int cols)
00062 {
00063   if ((my_mat == new_mat) && (my_mat.size() == cv_mat.rows*cv_mat.cols))
00064     return false;
00065   my_mat = new_mat;
00066   // D may be empty if camera is uncalibrated or distortion model is non-standard
00067   cv_mat = (my_mat.size() == 0) ? cv::Mat_<double>() : cv::Mat_<double>(rows, cols, &my_mat[0]);
00068   return true;
00069 }
00070 
00071 bool PinholeCameraModel::fromCameraInfo(const sensor_msgs::CameraInfo& msg)
00072 {
00073   // Create our repository of cached data (rectification maps, etc.)
00074   if (!cache_)
00075     cache_ = boost::make_shared<Cache>();
00076   
00077   // Binning = 0 is considered the same as binning = 1 (no binning).
00078   uint32_t binning_x = msg.binning_x ? msg.binning_x : 1;
00079   uint32_t binning_y = msg.binning_y ? msg.binning_y : 1;
00080 
00081   // ROI all zeros is considered the same as full resolution.
00082   sensor_msgs::RegionOfInterest roi = msg.roi;
00083   if (roi.x_offset == 0 && roi.y_offset == 0 && roi.width == 0 && roi.height == 0) {
00084     roi.width  = msg.width;
00085     roi.height = msg.height;
00086   }
00087 
00088   // Update time stamp (and frame_id if that changes for some reason)
00089   cam_info_.header = msg.header;
00090   
00091   // Update any parameters that have changed. The full rectification maps are
00092   // invalidated by any change in the calibration parameters OR binning.
00093   bool &full_dirty = cache_->full_maps_dirty;
00094   full_dirty |= update(msg.height, cam_info_.height);
00095   full_dirty |= update(msg.width,  cam_info_.width);
00096   full_dirty |= update(msg.distortion_model, cam_info_.distortion_model);
00097   full_dirty |= updateMat(msg.D, cam_info_.D, D_, 1, msg.D.size());
00098   full_dirty |= updateMat(msg.K, cam_info_.K, K_full_, 3, 3);
00099   full_dirty |= updateMat(msg.R, cam_info_.R, R_, 3, 3);
00100   full_dirty |= updateMat(msg.P, cam_info_.P, P_full_, 3, 4);
00101   full_dirty |= update(binning_x, cam_info_.binning_x);
00102   full_dirty |= update(binning_y, cam_info_.binning_y);
00103 
00104   // The reduced rectification maps are invalidated by any of the above or a
00105   // change in ROI.
00106   bool &reduced_dirty = cache_->reduced_maps_dirty;
00107   reduced_dirty  = full_dirty;
00108   reduced_dirty |= update(roi.x_offset,   cam_info_.roi.x_offset);
00109   reduced_dirty |= update(roi.y_offset,   cam_info_.roi.y_offset);
00110   reduced_dirty |= update(roi.height,     cam_info_.roi.height);
00111   reduced_dirty |= update(roi.width,      cam_info_.roi.width);
00112   reduced_dirty |= update(roi.do_rectify, cam_info_.roi.do_rectify);
00113   // As is the rectified ROI
00114   cache_->rectified_roi_dirty = reduced_dirty;
00115 
00116   // Figure out how to handle the distortion
00117   if (cam_info_.distortion_model == sensor_msgs::distortion_models::PLUMB_BOB ||
00118       cam_info_.distortion_model == sensor_msgs::distortion_models::RATIONAL_POLYNOMIAL) {
00119     cache_->distortion_state = (cam_info_.D[0] == 0.0) ? NONE : CALIBRATED;
00120   }
00121   else
00122     cache_->distortion_state = UNKNOWN;
00123 
00124   // If necessary, create new K_ and P_ adjusted for binning and ROI
00126   bool adjust_binning = (binning_x > 1) || (binning_y > 1);
00127   bool adjust_roi = (roi.x_offset != 0) || (roi.y_offset != 0);
00128 
00129   if (!adjust_binning && !adjust_roi) {
00130     K_ = K_full_;
00131     P_ = P_full_;
00132   }
00133   else {
00134     K_full_.copyTo(K_);
00135     P_full_.copyTo(P_);
00136 
00137     // ROI is in full image coordinates, so change it first
00138     if (adjust_roi) {
00139       // Move principal point by the offset
00141       K_(0,2) -= roi.x_offset;
00142       K_(1,2) -= roi.y_offset;
00143       P_(0,2) -= roi.x_offset;
00144       P_(1,2) -= roi.y_offset;
00145     }
00146 
00147     if (binning_x > 1) {
00148       double scale_x = 1.0 / binning_x;
00149       K_(0,0) *= scale_x;
00150       K_(0,2) *= scale_x;
00151       P_(0,0) *= scale_x;
00152       P_(0,2) *= scale_x;
00153       P_(0,3) *= scale_x;
00154     }
00155     if (binning_y > 1) {
00156       double scale_y = 1.0 / binning_y;
00157       K_(1,1) *= scale_y;
00158       K_(1,2) *= scale_y;
00159       P_(1,1) *= scale_y;
00160       P_(1,2) *= scale_y;
00161       P_(1,3) *= scale_y;
00162     }
00163   }
00164 
00165   return reduced_dirty;
00166 }
00167 
00168 bool PinholeCameraModel::fromCameraInfo(const sensor_msgs::CameraInfoConstPtr& msg)
00169 {
00170   return fromCameraInfo(*msg);
00171 }
00172 
00173 cv::Size PinholeCameraModel::fullResolution() const
00174 {
00175   assert( initialized() );
00176   return cv::Size(cam_info_.width, cam_info_.height);
00177 }
00178 
00179 cv::Size PinholeCameraModel::reducedResolution() const
00180 {
00181   assert( initialized() );
00182 
00183   cv::Rect roi = rectifiedRoi();
00184   return cv::Size(roi.width / binningX(), roi.height / binningY());
00185 }
00186 
00187 cv::Point2d PinholeCameraModel::toFullResolution(const cv::Point2d& uv_reduced) const
00188 {
00189   cv::Rect roi = rectifiedRoi();
00190   return cv::Point2d(uv_reduced.x * binningX() + roi.x,
00191                      uv_reduced.y * binningY() + roi.y);
00192 }
00193 
00194 cv::Rect PinholeCameraModel::toFullResolution(const cv::Rect& roi_reduced) const
00195 {
00196   cv::Rect roi = rectifiedRoi();
00197   return cv::Rect(roi_reduced.x * binningX() + roi.x,
00198                   roi_reduced.y * binningY() + roi.y,
00199                   roi_reduced.width  * binningX(),
00200                   roi_reduced.height * binningY());
00201 }
00202 
00203 cv::Point2d PinholeCameraModel::toReducedResolution(const cv::Point2d& uv_full) const
00204 {
00205   cv::Rect roi = rectifiedRoi();
00206   return cv::Point2d((uv_full.x - roi.x) / binningX(),
00207                      (uv_full.y - roi.y) / binningY());
00208 }
00209 
00210 cv::Rect PinholeCameraModel::toReducedResolution(const cv::Rect& roi_full) const
00211 {
00212   cv::Rect roi = rectifiedRoi();
00213   return cv::Rect((roi_full.x - roi.x) / binningX(),
00214                   (roi_full.y - roi.y) / binningY(),
00215                   roi_full.width  / binningX(),
00216                   roi_full.height / binningY());
00217 }
00218 
00219 cv::Rect PinholeCameraModel::rawRoi() const
00220 {
00221   assert( initialized() );
00222 
00223   return cv::Rect(cam_info_.roi.x_offset, cam_info_.roi.y_offset,
00224                   cam_info_.roi.width, cam_info_.roi.height);
00225 }
00226 
00227 cv::Rect PinholeCameraModel::rectifiedRoi() const
00228 {
00229   assert( initialized() );
00230   
00231   if (cache_->rectified_roi_dirty)
00232   {
00233     if (!cam_info_.roi.do_rectify)
00234       cache_->rectified_roi = rawRoi();
00235     else
00236       cache_->rectified_roi = rectifyRoi(rawRoi());
00237     cache_->rectified_roi_dirty = false;
00238   }
00239   return cache_->rectified_roi;
00240 }
00241 
00242 cv::Point2d PinholeCameraModel::project3dToPixel(const cv::Point3d& xyz) const
00243 {
00244   assert( initialized() );
00245   assert(P_(2, 3) == 0.0); // Calibrated stereo cameras should be in the same plane
00246 
00247   // [U V W]^T = P * [X Y Z 1]^T
00248   // u = U/W
00249   // v = V/W
00250   cv::Point2d uv_rect;
00251   uv_rect.x = (fx()*xyz.x + Tx()) / xyz.z + cx();
00252   uv_rect.y = (fy()*xyz.y + Ty()) / xyz.z + cy();
00253   return uv_rect;
00254 }
00255 
00256 cv::Point3d PinholeCameraModel::projectPixelTo3dRay(const cv::Point2d& uv_rect) const
00257 {
00258   assert( initialized() );
00259 
00260   cv::Point3d ray;
00261   ray.x = (uv_rect.x - cx() - Tx()) / fx();
00262   ray.y = (uv_rect.y - cy() - Ty()) / fy();
00263   ray.z = 1.0;
00264   return ray;
00265 }
00266 
00267 void PinholeCameraModel::rectifyImage(const cv::Mat& raw, cv::Mat& rectified, int interpolation) const
00268 {
00269   assert( initialized() );
00270 
00271   switch (cache_->distortion_state) {
00272     case NONE:
00273       raw.copyTo(rectified);
00274       break;
00275     case CALIBRATED:
00276       initRectificationMaps();
00277       cv::remap(raw, rectified, cache_->reduced_map1, cache_->reduced_map2, interpolation);
00278       break;
00279     default:
00280       assert(cache_->distortion_state == UNKNOWN);
00281       throw Exception("Cannot call rectifyImage when distortion is unknown.");
00282   }
00283 }
00284 
00285 void PinholeCameraModel::unrectifyImage(const cv::Mat& rectified, cv::Mat& raw, int interpolation) const
00286 {
00287   assert( initialized() );
00288 
00289   throw Exception("PinholeCameraModel::unrectifyImage is unimplemented.");
00291   // Similar to rectifyImage, but need to build separate set of inverse maps (raw->rectified)...
00292   // - Build src_pt Mat with all the raw pixel coordinates (or do it one row at a time)
00293   // - Do cv::undistortPoints(src_pt, dst_pt, K_, D_, R_, P_)
00294   // - Use convertMaps() to convert dst_pt to fast fixed-point maps
00295   // - cv::remap(rectified, raw, ...)
00296   // Need interpolation argument. Same caching behavior?
00297 }
00298 
00299 cv::Point2d PinholeCameraModel::rectifyPoint(const cv::Point2d& uv_raw) const
00300 {
00301   assert( initialized() );
00302 
00303   if (cache_->distortion_state == NONE)
00304     return uv_raw;
00305   if (cache_->distortion_state == UNKNOWN)
00306     throw Exception("Cannot call rectifyPoint when distortion is unknown.");
00307   assert(cache_->distortion_state == CALIBRATED);
00308 
00310   cv::Point2f raw32 = uv_raw, rect32;
00311   const cv::Mat src_pt(1, 1, CV_32FC2, &raw32.x);
00312   cv::Mat dst_pt(1, 1, CV_32FC2, &rect32.x);
00313   cv::undistortPoints(src_pt, dst_pt, K_, D_, R_, P_);
00314   return rect32;
00315 }
00316 
00317 cv::Point2d PinholeCameraModel::unrectifyPoint(const cv::Point2d& uv_rect) const
00318 {
00319   assert( initialized() );
00320 
00321   if (cache_->distortion_state == NONE)
00322     return uv_rect;
00323   if (cache_->distortion_state == UNKNOWN)
00324     throw Exception("Cannot call unrectifyPoint when distortion is unknown.");
00325   assert(cache_->distortion_state == CALIBRATED);
00326 
00327   // Convert to a ray
00328   cv::Point3d ray = projectPixelTo3dRay(uv_rect);
00329 
00330   // Project the ray on the image
00331   cv::Mat r_vec, t_vec = cv::Mat_<double>::zeros(3, 1);
00332   cv::Rodrigues(R_.t(), r_vec);
00333   std::vector<cv::Point2d> image_point;
00334   cv::projectPoints(std::vector<cv::Point3d>(1, ray), r_vec, t_vec, K_, D_, image_point);
00335 
00336   return image_point[0];
00337 }
00338 
00339 cv::Rect PinholeCameraModel::rectifyRoi(const cv::Rect& roi_raw) const
00340 {
00341   assert( initialized() );
00342 
00344   
00345   // For now, just unrectify the four corners and take the bounding box.
00346   cv::Point2d rect_tl = rectifyPoint(cv::Point2d(roi_raw.x, roi_raw.y));
00347   cv::Point2d rect_tr = rectifyPoint(cv::Point2d(roi_raw.x + roi_raw.width, roi_raw.y));
00348   cv::Point2d rect_br = rectifyPoint(cv::Point2d(roi_raw.x + roi_raw.width,
00349                                                  roi_raw.y + roi_raw.height));
00350   cv::Point2d rect_bl = rectifyPoint(cv::Point2d(roi_raw.x, roi_raw.y + roi_raw.height));
00351 
00352   cv::Point roi_tl(std::ceil (std::min(rect_tl.x, rect_bl.x)),
00353                    std::ceil (std::min(rect_tl.y, rect_tr.y)));
00354   cv::Point roi_br(std::floor(std::max(rect_tr.x, rect_br.x)),
00355                    std::floor(std::max(rect_bl.y, rect_br.y)));
00356 
00357   return cv::Rect(roi_tl.x, roi_tl.y, roi_br.x - roi_tl.x, roi_br.y - roi_tl.y);
00358 }
00359 
00360 cv::Rect PinholeCameraModel::unrectifyRoi(const cv::Rect& roi_rect) const
00361 {
00362   assert( initialized() );
00363 
00365   
00366   // For now, just unrectify the four corners and take the bounding box.
00367   cv::Point2d raw_tl = unrectifyPoint(cv::Point2d(roi_rect.x, roi_rect.y));
00368   cv::Point2d raw_tr = unrectifyPoint(cv::Point2d(roi_rect.x + roi_rect.width, roi_rect.y));
00369   cv::Point2d raw_br = unrectifyPoint(cv::Point2d(roi_rect.x + roi_rect.width,
00370                                                   roi_rect.y + roi_rect.height));
00371   cv::Point2d raw_bl = unrectifyPoint(cv::Point2d(roi_rect.x, roi_rect.y + roi_rect.height));
00372 
00373   cv::Point roi_tl(std::floor(std::min(raw_tl.x, raw_bl.x)),
00374                    std::floor(std::min(raw_tl.y, raw_tr.y)));
00375   cv::Point roi_br(std::ceil (std::max(raw_tr.x, raw_br.x)),
00376                    std::ceil (std::max(raw_bl.y, raw_br.y)));
00377 
00378   return cv::Rect(roi_tl.x, roi_tl.y, roi_br.x - roi_tl.x, roi_br.y - roi_tl.y);
00379 }
00380 
00381 void PinholeCameraModel::initRectificationMaps() const
00382 {
00385   
00386   if (cache_->full_maps_dirty) {
00387     // Create the full-size map at the binned resolution
00389     cv::Size binned_resolution = fullResolution();
00390     binned_resolution.width  /= binningX();
00391     binned_resolution.height /= binningY();
00392 
00393     cv::Mat_<double> K_binned, P_binned;
00394     if (binningX() == 1 && binningY() == 1) {
00395       K_binned = K_full_;
00396       P_binned = P_full_;
00397     }
00398     else {
00399       K_full_.copyTo(K_binned);
00400       P_full_.copyTo(P_binned);
00401       if (binningX() > 1) {
00402         double scale_x = 1.0 / binningX();
00403         K_binned(0,0) *= scale_x;
00404         K_binned(0,2) *= scale_x;
00405         P_binned(0,0) *= scale_x;
00406         P_binned(0,2) *= scale_x;
00407         P_binned(0,3) *= scale_x;
00408       }
00409       if (binningY() > 1) {
00410         double scale_y = 1.0 / binningY();
00411         K_binned(1,1) *= scale_y;
00412         K_binned(1,2) *= scale_y;
00413         P_binned(1,1) *= scale_y;
00414         P_binned(1,2) *= scale_y;
00415         P_binned(1,3) *= scale_y;
00416       }
00417     }
00418     
00419     // Note: m1type=CV_16SC2 to use fast fixed-point maps (see cv::remap)
00420     cv::initUndistortRectifyMap(K_binned, D_, R_, P_binned, binned_resolution,
00421                                 CV_16SC2, cache_->full_map1, cache_->full_map2);
00422     cache_->full_maps_dirty = false;
00423   }
00424 
00425   if (cache_->reduced_maps_dirty) {
00427     cv::Rect roi(cam_info_.roi.x_offset, cam_info_.roi.y_offset,
00428                  cam_info_.roi.width, cam_info_.roi.height);
00429     if (roi.x != 0 || roi.y != 0 ||
00430         roi.height != (int)cam_info_.height ||
00431         roi.width  != (int)cam_info_.width) {
00432 
00433       // map1 contains integer (x,y) offsets, which we adjust by the ROI offset
00434       // map2 contains LUT index for subpixel interpolation, which we can leave as-is
00435       roi.x /= binningX();
00436       roi.y /= binningY();
00437       roi.width  /= binningX();
00438       roi.height /= binningY();
00439       cache_->reduced_map1 = cache_->full_map1(roi) - cv::Scalar(roi.x, roi.y);
00440       cache_->reduced_map2 = cache_->full_map2(roi);
00441     }
00442     else {
00443       // Otherwise we're rectifying the full image
00444       cache_->reduced_map1 = cache_->full_map1;
00445       cache_->reduced_map2 = cache_->full_map2;
00446     }
00447     cache_->reduced_maps_dirty = false;
00448   }
00449 }
00450 
00451 } //namespace image_geometry


image_geometry
Author(s): Patrick Mihelich
autogenerated on Mon Oct 6 2014 08:38:13