Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045 from numpy import reshape, array, zeros, matrix, diag, real
00046
00047 import roslib; roslib.load_manifest('calibration_estimation')
00048 import rospy
00049 import numpy
00050
00051 class TiltingLaserBundler:
00052 def __init__(self, valid_configs):
00053 self._valid_configs = valid_configs
00054
00055
00056 def build_blocks(self, M_robot):
00057 sensors = []
00058 for cur_config in self._valid_configs:
00059 if cur_config["sensor_id"] in [ x.laser_id for x in M_robot.M_laser ] :
00060 M_laser = [x for x in M_robot.M_laser if cur_config["sensor_id"] == x.laser_id][0]
00061 cur_sensor = TiltingLaserSensor(cur_config, M_laser)
00062 sensors.append(cur_sensor)
00063 else:
00064 rospy.logdebug(" Didn't find block")
00065 return sensors
00066
00067 class TiltingLaserSensor:
00068 def __init__(self, config_dict, M_laser):
00069 self.sensor_type = "laser"
00070 self.sensor_id = config_dict["sensor_id"]
00071
00072 self._config_dict = config_dict
00073 self._M_laser = M_laser
00074 self.terms_per_sample = 3
00075
00076 def update_config(self, robot_params):
00077 self._tilting_laser = robot_params.tilting_lasers[ self.sensor_id ]
00078 self._tilting_laser.update_config(robot_params)
00079
00080 def compute_residual(self, target_pts):
00081 z_mat = self.get_measurement()
00082 h_mat = self.compute_expected(target_pts)
00083 assert(z_mat.shape[0] == 4)
00084 assert(h_mat.shape[0] == 4)
00085 assert(z_mat.shape[1] == z_mat.shape[1])
00086 r = array(reshape(h_mat[0:3,:].T - z_mat[0:3,:].T, [-1,1]))[:,0]
00087 return r
00088
00089 def compute_residual_scaled(self, target_pts):
00090 r = self.compute_residual(target_pts)
00091 gamma_sqrt = self.compute_marginal_gamma_sqrt(target_pts)
00092 r_scaled = gamma_sqrt * matrix(r).T
00093 return array(r_scaled.T)[0]
00094
00095 def compute_marginal_gamma_sqrt(self, target_pts):
00096 import scipy.linalg
00097
00098 cov = self.compute_cov(target_pts)
00099 gamma = matrix(zeros(cov.shape))
00100 num_pts = self.get_residual_length()/3
00101
00102 for k in range(num_pts):
00103 first = 3*k
00104 last = 3*k+3
00105 sub_cov = matrix(cov[first:last, first:last])
00106 sub_gamma_sqrt_full = matrix(scipy.linalg.sqrtm(sub_cov.I))
00107 sub_gamma_sqrt = real(sub_gamma_sqrt_full)
00108 assert(scipy.linalg.norm(sub_gamma_sqrt_full - sub_gamma_sqrt) < 1e-6)
00109 gamma[first:last, first:last] = sub_gamma_sqrt
00110 return gamma
00111
00112 def get_residual_length(self):
00113 N = len(self._M_laser.joint_points)
00114 return N*3
00115
00116
00117
00118 def get_measurement(self):
00119
00120 laser_pts_root = self._tilting_laser.project_to_3D([x.position for x in self._M_laser.joint_points])
00121 return laser_pts_root
00122
00123 def compute_cov(self, target_pts):
00124 epsilon = 1e-8
00125
00126
00127
00128
00129
00130 Jt = zeros([3, self.get_residual_length()])
00131
00132 import copy
00133 x = [copy.copy(x.position) for x in self._M_laser.joint_points]
00134
00135 f0 = reshape(array(self._tilting_laser.project_to_3D(x)[0:3,:].T), [-1])
00136 for i in range(3):
00137 x = [ [y for y in x.position] for x in self._M_laser.joint_points]
00138 for cur_pt in x:
00139 cur_pt[i] += epsilon
00140 fTest = reshape(array(self._tilting_laser.project_to_3D(x)[0:3,:].T), [-1])
00141 Jt[i] = (fTest - f0)/epsilon
00142
00143 num_pts = len(x)
00144 std_dev_sensor = [self._tilting_laser._cov_dict['tilt'],
00145 self._tilting_laser._cov_dict['bearing'],
00146 self._tilting_laser._cov_dict['range']]
00147 cov_sensor = [x*x for x in std_dev_sensor]
00148
00149 cov = matrix(Jt).T * matrix(diag(cov_sensor)) * matrix(Jt)
00150 return cov
00151
00152
00153
00154 def compute_expected(self, target_pts):
00155 return target_pts
00156
00157
00158 def build_sparsity_dict(self):
00159 sparsity = dict()
00160
00161 sparsity['tilting_lasers'] = {}
00162 sparsity['tilting_lasers'][self.sensor_id] = {'gearing':1}
00163 sparsity['transforms'] = {}
00164 for cur_transform in ( self._tilting_laser._before_chain_Ts + \
00165 self._tilting_laser._after_chain_Ts ):
00166 sparsity['transforms'][cur_transform._name] = [1, 1, 1, 1, 1, 1]
00167 sparsity['transforms'][self._tilting_laser._config['joint']] = [1, 1, 1, 1, 1, 1]
00168
00169 return sparsity
00170