TabletopCollisionMapProcessing.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-pr2_object_manipulation/doc_stacks/2014-01-03_11-39-44.427894/pr2_object_manipulation/perception/tabletop_collision_map_processing/srv/TabletopCollisionMapProcessing.srv */
00002 #ifndef TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H
00003 #define TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "ros/service_traits.h"
00018 
00019 #include "tabletop_object_detector/TabletopDetectionResult.h"
00020 
00021 
00022 #include "object_manipulation_msgs/GraspableObject.h"
00023 
00024 namespace tabletop_collision_map_processing
00025 {
00026 template <class ContainerAllocator>
00027 struct TabletopCollisionMapProcessingRequest_ {
00028   typedef TabletopCollisionMapProcessingRequest_<ContainerAllocator> Type;
00029 
00030   TabletopCollisionMapProcessingRequest_()
00031   : detection_result()
00032   , reset_collision_models(false)
00033   , reset_attached_models(false)
00034   , desired_frame()
00035   {
00036   }
00037 
00038   TabletopCollisionMapProcessingRequest_(const ContainerAllocator& _alloc)
00039   : detection_result(_alloc)
00040   , reset_collision_models(false)
00041   , reset_attached_models(false)
00042   , desired_frame(_alloc)
00043   {
00044   }
00045 
00046   typedef  ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator>  _detection_result_type;
00047    ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator>  detection_result;
00048 
00049   typedef uint8_t _reset_collision_models_type;
00050   uint8_t reset_collision_models;
00051 
00052   typedef uint8_t _reset_attached_models_type;
00053   uint8_t reset_attached_models;
00054 
00055   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _desired_frame_type;
00056   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  desired_frame;
00057 
00058 
00059   typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > Ptr;
00060   typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator>  const> ConstPtr;
00061   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00062 }; // struct TabletopCollisionMapProcessingRequest
00063 typedef  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<std::allocator<void> > TabletopCollisionMapProcessingRequest;
00064 
00065 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest> TabletopCollisionMapProcessingRequestPtr;
00066 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest const> TabletopCollisionMapProcessingRequestConstPtr;
00067 
00068 
00069 template <class ContainerAllocator>
00070 struct TabletopCollisionMapProcessingResponse_ {
00071   typedef TabletopCollisionMapProcessingResponse_<ContainerAllocator> Type;
00072 
00073   TabletopCollisionMapProcessingResponse_()
00074   : graspable_objects()
00075   , collision_object_names()
00076   , collision_support_surface_name()
00077   {
00078   }
00079 
00080   TabletopCollisionMapProcessingResponse_(const ContainerAllocator& _alloc)
00081   : graspable_objects(_alloc)
00082   , collision_object_names(_alloc)
00083   , collision_support_surface_name(_alloc)
00084   {
00085   }
00086 
00087   typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other >  _graspable_objects_type;
00088   std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other >  graspable_objects;
00089 
00090   typedef std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other >  _collision_object_names_type;
00091   std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other >  collision_object_names;
00092 
00093   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _collision_support_surface_name_type;
00094   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  collision_support_surface_name;
00095 
00096 
00097   typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > Ptr;
00098   typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator>  const> ConstPtr;
00099   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00100 }; // struct TabletopCollisionMapProcessingResponse
00101 typedef  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<std::allocator<void> > TabletopCollisionMapProcessingResponse;
00102 
00103 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse> TabletopCollisionMapProcessingResponsePtr;
00104 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse const> TabletopCollisionMapProcessingResponseConstPtr;
00105 
00106 struct TabletopCollisionMapProcessing
00107 {
00108 
00109 typedef TabletopCollisionMapProcessingRequest Request;
00110 typedef TabletopCollisionMapProcessingResponse Response;
00111 Request request;
00112 Response response;
00113 
00114 typedef Request RequestType;
00115 typedef Response ResponseType;
00116 }; // struct TabletopCollisionMapProcessing
00117 } // namespace tabletop_collision_map_processing
00118 
00119 namespace ros
00120 {
00121 namespace message_traits
00122 {
00123 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > : public TrueType {};
00124 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator>  const> : public TrueType {};
00125 template<class ContainerAllocator>
00126 struct MD5Sum< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00127   static const char* value() 
00128   {
00129     return "fe986e22908c7a2936a0cdf9f240d4a3";
00130   }
00131 
00132   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 
00133   static const uint64_t static_value1 = 0xfe986e22908c7a29ULL;
00134   static const uint64_t static_value2 = 0x36a0cdf9f240d4a3ULL;
00135 };
00136 
00137 template<class ContainerAllocator>
00138 struct DataType< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00139   static const char* value() 
00140   {
00141     return "tabletop_collision_map_processing/TabletopCollisionMapProcessingRequest";
00142   }
00143 
00144   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 
00145 };
00146 
00147 template<class ContainerAllocator>
00148 struct Definition< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00149   static const char* value() 
00150   {
00151     return "\n\
00152 \n\
00153 \n\
00154 \n\
00155 \n\
00156 \n\
00157 \n\
00158 tabletop_object_detector/TabletopDetectionResult detection_result\n\
00159 \n\
00160 \n\
00161 bool reset_collision_models\n\
00162 \n\
00163 \n\
00164 bool reset_attached_models\n\
00165 \n\
00166 \n\
00167 \n\
00168 string desired_frame\n\
00169 \n\
00170 \n\
00171 ================================================================================\n\
00172 MSG: tabletop_object_detector/TabletopDetectionResult\n\
00173 # Contains all the information from one run of the tabletop detection node\n\
00174 \n\
00175 # The information for the plane that has been detected\n\
00176 Table table\n\
00177 \n\
00178 # The raw clusters detected in the scan \n\
00179 sensor_msgs/PointCloud[] clusters\n\
00180 \n\
00181 # The list of potential models that have been detected for each cluster\n\
00182 # An empty list will be returned for a cluster that has no recognition results at all\n\
00183 household_objects_database_msgs/DatabaseModelPoseList[] models\n\
00184 \n\
00185 # For each cluster, the index of the list of models that was fit to that cluster\n\
00186 # keep in mind that multiple raw clusters can correspond to a single fit\n\
00187 int32[] cluster_model_indices\n\
00188 \n\
00189 # Whether the detection has succeeded or failed\n\
00190 int32 NO_CLOUD_RECEIVED = 1\n\
00191 int32 NO_TABLE = 2\n\
00192 int32 OTHER_ERROR = 3\n\
00193 int32 SUCCESS = 4\n\
00194 int32 result\n\
00195 \n\
00196 ================================================================================\n\
00197 MSG: tabletop_object_detector/Table\n\
00198 # Informs that a planar table has been detected at a given location\n\
00199 \n\
00200 # The pose gives you the transform that take you to the coordinate system\n\
00201 # of the table, with the origin somewhere in the table plane and the \n\
00202 # z axis normal to the plane\n\
00203 geometry_msgs/PoseStamped pose\n\
00204 \n\
00205 # These values give you the observed extents of the table, along x and y,\n\
00206 # in the table's own coordinate system (above)\n\
00207 # there is no guarantee that the origin of the table coordinate system is\n\
00208 # inside the boundary defined by these values. \n\
00209 float32 x_min\n\
00210 float32 x_max\n\
00211 float32 y_min\n\
00212 float32 y_max\n\
00213 \n\
00214 # There is no guarantee that the table does NOT extend further than these \n\
00215 # values; this is just as far as we've observed it.\n\
00216 \n\
00217 \n\
00218 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\
00219 arm_navigation_msgs/Shape convex_hull\n\
00220 \n\
00221 ================================================================================\n\
00222 MSG: geometry_msgs/PoseStamped\n\
00223 # A Pose with reference coordinate frame and timestamp\n\
00224 Header header\n\
00225 Pose pose\n\
00226 \n\
00227 ================================================================================\n\
00228 MSG: std_msgs/Header\n\
00229 # Standard metadata for higher-level stamped data types.\n\
00230 # This is generally used to communicate timestamped data \n\
00231 # in a particular coordinate frame.\n\
00232 # \n\
00233 # sequence ID: consecutively increasing ID \n\
00234 uint32 seq\n\
00235 #Two-integer timestamp that is expressed as:\n\
00236 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00237 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00238 # time-handling sugar is provided by the client library\n\
00239 time stamp\n\
00240 #Frame this data is associated with\n\
00241 # 0: no frame\n\
00242 # 1: global frame\n\
00243 string frame_id\n\
00244 \n\
00245 ================================================================================\n\
00246 MSG: geometry_msgs/Pose\n\
00247 # A representation of pose in free space, composed of postion and orientation. \n\
00248 Point position\n\
00249 Quaternion orientation\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: geometry_msgs/Point\n\
00253 # This contains the position of a point in free space\n\
00254 float64 x\n\
00255 float64 y\n\
00256 float64 z\n\
00257 \n\
00258 ================================================================================\n\
00259 MSG: geometry_msgs/Quaternion\n\
00260 # This represents an orientation in free space in quaternion form.\n\
00261 \n\
00262 float64 x\n\
00263 float64 y\n\
00264 float64 z\n\
00265 float64 w\n\
00266 \n\
00267 ================================================================================\n\
00268 MSG: arm_navigation_msgs/Shape\n\
00269 byte SPHERE=0\n\
00270 byte BOX=1\n\
00271 byte CYLINDER=2\n\
00272 byte MESH=3\n\
00273 \n\
00274 byte type\n\
00275 \n\
00276 \n\
00277 #### define sphere, box, cylinder ####\n\
00278 # the origin of each shape is considered at the shape's center\n\
00279 \n\
00280 # for sphere\n\
00281 # radius := dimensions[0]\n\
00282 \n\
00283 # for cylinder\n\
00284 # radius := dimensions[0]\n\
00285 # length := dimensions[1]\n\
00286 # the length is along the Z axis\n\
00287 \n\
00288 # for box\n\
00289 # size_x := dimensions[0]\n\
00290 # size_y := dimensions[1]\n\
00291 # size_z := dimensions[2]\n\
00292 float64[] dimensions\n\
00293 \n\
00294 \n\
00295 #### define mesh ####\n\
00296 \n\
00297 # list of triangles; triangle k is defined by tre vertices located\n\
00298 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00299 int32[] triangles\n\
00300 geometry_msgs/Point[] vertices\n\
00301 \n\
00302 ================================================================================\n\
00303 MSG: sensor_msgs/PointCloud\n\
00304 # This message holds a collection of 3d points, plus optional additional\n\
00305 # information about each point.\n\
00306 \n\
00307 # Time of sensor data acquisition, coordinate frame ID.\n\
00308 Header header\n\
00309 \n\
00310 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00311 # in the frame given in the header.\n\
00312 geometry_msgs/Point32[] points\n\
00313 \n\
00314 # Each channel should have the same number of elements as points array,\n\
00315 # and the data in each channel should correspond 1:1 with each point.\n\
00316 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00317 ChannelFloat32[] channels\n\
00318 \n\
00319 ================================================================================\n\
00320 MSG: geometry_msgs/Point32\n\
00321 # This contains the position of a point in free space(with 32 bits of precision).\n\
00322 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00323 # \n\
00324 # This recommendation is to promote interoperability.  \n\
00325 #\n\
00326 # This message is designed to take up less space when sending\n\
00327 # lots of points at once, as in the case of a PointCloud.  \n\
00328 \n\
00329 float32 x\n\
00330 float32 y\n\
00331 float32 z\n\
00332 ================================================================================\n\
00333 MSG: sensor_msgs/ChannelFloat32\n\
00334 # This message is used by the PointCloud message to hold optional data\n\
00335 # associated with each point in the cloud. The length of the values\n\
00336 # array should be the same as the length of the points array in the\n\
00337 # PointCloud, and each value should be associated with the corresponding\n\
00338 # point.\n\
00339 \n\
00340 # Channel names in existing practice include:\n\
00341 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00342 #              This is opposite to usual conventions but remains for\n\
00343 #              historical reasons. The newer PointCloud2 message has no\n\
00344 #              such problem.\n\
00345 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00346 #           (R,G,B) values packed into the least significant 24 bits,\n\
00347 #           in order.\n\
00348 #   \"intensity\" - laser or pixel intensity.\n\
00349 #   \"distance\"\n\
00350 \n\
00351 # The channel name should give semantics of the channel (e.g.\n\
00352 # \"intensity\" instead of \"value\").\n\
00353 string name\n\
00354 \n\
00355 # The values array should be 1-1 with the elements of the associated\n\
00356 # PointCloud.\n\
00357 float32[] values\n\
00358 \n\
00359 ================================================================================\n\
00360 MSG: household_objects_database_msgs/DatabaseModelPoseList\n\
00361 # stores a list of possible database models recognition results\n\
00362 DatabaseModelPose[] model_list\n\
00363 ================================================================================\n\
00364 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00365 # Informs that a specific model from the Model Database has been \n\
00366 # identified at a certain location\n\
00367 \n\
00368 # the database id of the model\n\
00369 int32 model_id\n\
00370 \n\
00371 # the pose that it can be found in\n\
00372 geometry_msgs/PoseStamped pose\n\
00373 \n\
00374 # a measure of the confidence level in this detection result\n\
00375 float32 confidence\n\
00376 \n\
00377 # the name of the object detector that generated this detection result\n\
00378 string detector_name\n\
00379 \n\
00380 ";
00381   }
00382 
00383   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 
00384 };
00385 
00386 } // namespace message_traits
00387 } // namespace ros
00388 
00389 
00390 namespace ros
00391 {
00392 namespace message_traits
00393 {
00394 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > : public TrueType {};
00395 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator>  const> : public TrueType {};
00396 template<class ContainerAllocator>
00397 struct MD5Sum< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
00398   static const char* value() 
00399   {
00400     return "684fb6e369cb671a9c4149f683c75e88";
00401   }
00402 
00403   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 
00404   static const uint64_t static_value1 = 0x684fb6e369cb671aULL;
00405   static const uint64_t static_value2 = 0x9c4149f683c75e88ULL;
00406 };
00407 
00408 template<class ContainerAllocator>
00409 struct DataType< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
00410   static const char* value() 
00411   {
00412     return "tabletop_collision_map_processing/TabletopCollisionMapProcessingResponse";
00413   }
00414 
00415   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 
00416 };
00417 
00418 template<class ContainerAllocator>
00419 struct Definition< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
00420   static const char* value() 
00421   {
00422     return "\n\
00423 \n\
00424 object_manipulation_msgs/GraspableObject[] graspable_objects\n\
00425 \n\
00426 \n\
00427 \n\
00428 string[] collision_object_names\n\
00429 \n\
00430 \n\
00431 string collision_support_surface_name\n\
00432 \n\
00433 \n\
00434 ================================================================================\n\
00435 MSG: object_manipulation_msgs/GraspableObject\n\
00436 # an object that the object_manipulator can work on\n\
00437 \n\
00438 # a graspable object can be represented in multiple ways. This message\n\
00439 # can contain all of them. Which one is actually used is up to the receiver\n\
00440 # of this message. When adding new representations, one must be careful that\n\
00441 # they have reasonable lightweight defaults indicating that that particular\n\
00442 # representation is not available.\n\
00443 \n\
00444 # the tf frame to be used as a reference frame when combining information from\n\
00445 # the different representations below\n\
00446 string reference_frame_id\n\
00447 \n\
00448 # potential recognition results from a database of models\n\
00449 # all poses are relative to the object reference pose\n\
00450 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00451 \n\
00452 # the point cloud itself\n\
00453 sensor_msgs/PointCloud cluster\n\
00454 \n\
00455 # a region of a PointCloud2 of interest\n\
00456 object_manipulation_msgs/SceneRegion region\n\
00457 \n\
00458 # the name that this object has in the collision environment\n\
00459 string collision_name\n\
00460 ================================================================================\n\
00461 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00462 # Informs that a specific model from the Model Database has been \n\
00463 # identified at a certain location\n\
00464 \n\
00465 # the database id of the model\n\
00466 int32 model_id\n\
00467 \n\
00468 # the pose that it can be found in\n\
00469 geometry_msgs/PoseStamped pose\n\
00470 \n\
00471 # a measure of the confidence level in this detection result\n\
00472 float32 confidence\n\
00473 \n\
00474 # the name of the object detector that generated this detection result\n\
00475 string detector_name\n\
00476 \n\
00477 ================================================================================\n\
00478 MSG: geometry_msgs/PoseStamped\n\
00479 # A Pose with reference coordinate frame and timestamp\n\
00480 Header header\n\
00481 Pose pose\n\
00482 \n\
00483 ================================================================================\n\
00484 MSG: std_msgs/Header\n\
00485 # Standard metadata for higher-level stamped data types.\n\
00486 # This is generally used to communicate timestamped data \n\
00487 # in a particular coordinate frame.\n\
00488 # \n\
00489 # sequence ID: consecutively increasing ID \n\
00490 uint32 seq\n\
00491 #Two-integer timestamp that is expressed as:\n\
00492 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00493 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00494 # time-handling sugar is provided by the client library\n\
00495 time stamp\n\
00496 #Frame this data is associated with\n\
00497 # 0: no frame\n\
00498 # 1: global frame\n\
00499 string frame_id\n\
00500 \n\
00501 ================================================================================\n\
00502 MSG: geometry_msgs/Pose\n\
00503 # A representation of pose in free space, composed of postion and orientation. \n\
00504 Point position\n\
00505 Quaternion orientation\n\
00506 \n\
00507 ================================================================================\n\
00508 MSG: geometry_msgs/Point\n\
00509 # This contains the position of a point in free space\n\
00510 float64 x\n\
00511 float64 y\n\
00512 float64 z\n\
00513 \n\
00514 ================================================================================\n\
00515 MSG: geometry_msgs/Quaternion\n\
00516 # This represents an orientation in free space in quaternion form.\n\
00517 \n\
00518 float64 x\n\
00519 float64 y\n\
00520 float64 z\n\
00521 float64 w\n\
00522 \n\
00523 ================================================================================\n\
00524 MSG: sensor_msgs/PointCloud\n\
00525 # This message holds a collection of 3d points, plus optional additional\n\
00526 # information about each point.\n\
00527 \n\
00528 # Time of sensor data acquisition, coordinate frame ID.\n\
00529 Header header\n\
00530 \n\
00531 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00532 # in the frame given in the header.\n\
00533 geometry_msgs/Point32[] points\n\
00534 \n\
00535 # Each channel should have the same number of elements as points array,\n\
00536 # and the data in each channel should correspond 1:1 with each point.\n\
00537 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00538 ChannelFloat32[] channels\n\
00539 \n\
00540 ================================================================================\n\
00541 MSG: geometry_msgs/Point32\n\
00542 # This contains the position of a point in free space(with 32 bits of precision).\n\
00543 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00544 # \n\
00545 # This recommendation is to promote interoperability.  \n\
00546 #\n\
00547 # This message is designed to take up less space when sending\n\
00548 # lots of points at once, as in the case of a PointCloud.  \n\
00549 \n\
00550 float32 x\n\
00551 float32 y\n\
00552 float32 z\n\
00553 ================================================================================\n\
00554 MSG: sensor_msgs/ChannelFloat32\n\
00555 # This message is used by the PointCloud message to hold optional data\n\
00556 # associated with each point in the cloud. The length of the values\n\
00557 # array should be the same as the length of the points array in the\n\
00558 # PointCloud, and each value should be associated with the corresponding\n\
00559 # point.\n\
00560 \n\
00561 # Channel names in existing practice include:\n\
00562 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00563 #              This is opposite to usual conventions but remains for\n\
00564 #              historical reasons. The newer PointCloud2 message has no\n\
00565 #              such problem.\n\
00566 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00567 #           (R,G,B) values packed into the least significant 24 bits,\n\
00568 #           in order.\n\
00569 #   \"intensity\" - laser or pixel intensity.\n\
00570 #   \"distance\"\n\
00571 \n\
00572 # The channel name should give semantics of the channel (e.g.\n\
00573 # \"intensity\" instead of \"value\").\n\
00574 string name\n\
00575 \n\
00576 # The values array should be 1-1 with the elements of the associated\n\
00577 # PointCloud.\n\
00578 float32[] values\n\
00579 \n\
00580 ================================================================================\n\
00581 MSG: object_manipulation_msgs/SceneRegion\n\
00582 # Point cloud\n\
00583 sensor_msgs/PointCloud2 cloud\n\
00584 \n\
00585 # Indices for the region of interest\n\
00586 int32[] mask\n\
00587 \n\
00588 # One of the corresponding 2D images, if applicable\n\
00589 sensor_msgs/Image image\n\
00590 \n\
00591 # The disparity image, if applicable\n\
00592 sensor_msgs/Image disparity_image\n\
00593 \n\
00594 # Camera info for the camera that took the image\n\
00595 sensor_msgs/CameraInfo cam_info\n\
00596 \n\
00597 # a 3D region of interest for grasp planning\n\
00598 geometry_msgs/PoseStamped  roi_box_pose\n\
00599 geometry_msgs/Vector3      roi_box_dims\n\
00600 \n\
00601 ================================================================================\n\
00602 MSG: sensor_msgs/PointCloud2\n\
00603 # This message holds a collection of N-dimensional points, which may\n\
00604 # contain additional information such as normals, intensity, etc. The\n\
00605 # point data is stored as a binary blob, its layout described by the\n\
00606 # contents of the \"fields\" array.\n\
00607 \n\
00608 # The point cloud data may be organized 2d (image-like) or 1d\n\
00609 # (unordered). Point clouds organized as 2d images may be produced by\n\
00610 # camera depth sensors such as stereo or time-of-flight.\n\
00611 \n\
00612 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00613 # points).\n\
00614 Header header\n\
00615 \n\
00616 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00617 # 1 and width is the length of the point cloud.\n\
00618 uint32 height\n\
00619 uint32 width\n\
00620 \n\
00621 # Describes the channels and their layout in the binary data blob.\n\
00622 PointField[] fields\n\
00623 \n\
00624 bool    is_bigendian # Is this data bigendian?\n\
00625 uint32  point_step   # Length of a point in bytes\n\
00626 uint32  row_step     # Length of a row in bytes\n\
00627 uint8[] data         # Actual point data, size is (row_step*height)\n\
00628 \n\
00629 bool is_dense        # True if there are no invalid points\n\
00630 \n\
00631 ================================================================================\n\
00632 MSG: sensor_msgs/PointField\n\
00633 # This message holds the description of one point entry in the\n\
00634 # PointCloud2 message format.\n\
00635 uint8 INT8    = 1\n\
00636 uint8 UINT8   = 2\n\
00637 uint8 INT16   = 3\n\
00638 uint8 UINT16  = 4\n\
00639 uint8 INT32   = 5\n\
00640 uint8 UINT32  = 6\n\
00641 uint8 FLOAT32 = 7\n\
00642 uint8 FLOAT64 = 8\n\
00643 \n\
00644 string name      # Name of field\n\
00645 uint32 offset    # Offset from start of point struct\n\
00646 uint8  datatype  # Datatype enumeration, see above\n\
00647 uint32 count     # How many elements in the field\n\
00648 \n\
00649 ================================================================================\n\
00650 MSG: sensor_msgs/Image\n\
00651 # This message contains an uncompressed image\n\
00652 # (0, 0) is at top-left corner of image\n\
00653 #\n\
00654 \n\
00655 Header header        # Header timestamp should be acquisition time of image\n\
00656                      # Header frame_id should be optical frame of camera\n\
00657                      # origin of frame should be optical center of cameara\n\
00658                      # +x should point to the right in the image\n\
00659                      # +y should point down in the image\n\
00660                      # +z should point into to plane of the image\n\
00661                      # If the frame_id here and the frame_id of the CameraInfo\n\
00662                      # message associated with the image conflict\n\
00663                      # the behavior is undefined\n\
00664 \n\
00665 uint32 height         # image height, that is, number of rows\n\
00666 uint32 width          # image width, that is, number of columns\n\
00667 \n\
00668 # The legal values for encoding are in file src/image_encodings.cpp\n\
00669 # If you want to standardize a new string format, join\n\
00670 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00671 \n\
00672 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00673                       # taken from the list of strings in src/image_encodings.cpp\n\
00674 \n\
00675 uint8 is_bigendian    # is this data bigendian?\n\
00676 uint32 step           # Full row length in bytes\n\
00677 uint8[] data          # actual matrix data, size is (step * rows)\n\
00678 \n\
00679 ================================================================================\n\
00680 MSG: sensor_msgs/CameraInfo\n\
00681 # This message defines meta information for a camera. It should be in a\n\
00682 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00683 # image topics named:\n\
00684 #\n\
00685 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00686 #   image            - monochrome, distorted\n\
00687 #   image_color      - color, distorted\n\
00688 #   image_rect       - monochrome, rectified\n\
00689 #   image_rect_color - color, rectified\n\
00690 #\n\
00691 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00692 # for producing the four processed image topics from image_raw and\n\
00693 # camera_info. The meaning of the camera parameters are described in\n\
00694 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00695 #\n\
00696 # The image_geometry package provides a user-friendly interface to\n\
00697 # common operations using this meta information. If you want to, e.g.,\n\
00698 # project a 3d point into image coordinates, we strongly recommend\n\
00699 # using image_geometry.\n\
00700 #\n\
00701 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00702 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00703 # indicates an uncalibrated camera.\n\
00704 \n\
00705 #######################################################################\n\
00706 #                     Image acquisition info                          #\n\
00707 #######################################################################\n\
00708 \n\
00709 # Time of image acquisition, camera coordinate frame ID\n\
00710 Header header    # Header timestamp should be acquisition time of image\n\
00711                  # Header frame_id should be optical frame of camera\n\
00712                  # origin of frame should be optical center of camera\n\
00713                  # +x should point to the right in the image\n\
00714                  # +y should point down in the image\n\
00715                  # +z should point into the plane of the image\n\
00716 \n\
00717 \n\
00718 #######################################################################\n\
00719 #                      Calibration Parameters                         #\n\
00720 #######################################################################\n\
00721 # These are fixed during camera calibration. Their values will be the #\n\
00722 # same in all messages until the camera is recalibrated. Note that    #\n\
00723 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00724 #                                                                     #\n\
00725 # The internal parameters can be used to warp a raw (distorted) image #\n\
00726 # to:                                                                 #\n\
00727 #   1. An undistorted image (requires D and K)                        #\n\
00728 #   2. A rectified image (requires D, K, R)                           #\n\
00729 # The projection matrix P projects 3D points into the rectified image.#\n\
00730 #######################################################################\n\
00731 \n\
00732 # The image dimensions with which the camera was calibrated. Normally\n\
00733 # this will be the full camera resolution in pixels.\n\
00734 uint32 height\n\
00735 uint32 width\n\
00736 \n\
00737 # The distortion model used. Supported models are listed in\n\
00738 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00739 # simple model of radial and tangential distortion - is sufficent.\n\
00740 string distortion_model\n\
00741 \n\
00742 # The distortion parameters, size depending on the distortion model.\n\
00743 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00744 float64[] D\n\
00745 \n\
00746 # Intrinsic camera matrix for the raw (distorted) images.\n\
00747 #     [fx  0 cx]\n\
00748 # K = [ 0 fy cy]\n\
00749 #     [ 0  0  1]\n\
00750 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00751 # coordinates using the focal lengths (fx, fy) and principal point\n\
00752 # (cx, cy).\n\
00753 float64[9]  K # 3x3 row-major matrix\n\
00754 \n\
00755 # Rectification matrix (stereo cameras only)\n\
00756 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00757 # stereo image plane so that epipolar lines in both stereo images are\n\
00758 # parallel.\n\
00759 float64[9]  R # 3x3 row-major matrix\n\
00760 \n\
00761 # Projection/camera matrix\n\
00762 #     [fx'  0  cx' Tx]\n\
00763 # P = [ 0  fy' cy' Ty]\n\
00764 #     [ 0   0   1   0]\n\
00765 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00766 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00767 #  is the normal camera intrinsic matrix for the rectified image.\n\
00768 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00769 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00770 #  (cx', cy') - these may differ from the values in K.\n\
00771 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00772 #  also have R = the identity and P[1:3,1:3] = K.\n\
00773 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00774 #  position of the optical center of the second camera in the first\n\
00775 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00776 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00777 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00778 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00779 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00780 #  the rectified image is given by:\n\
00781 #  [u v w]' = P * [X Y Z 1]'\n\
00782 #         x = u / w\n\
00783 #         y = v / w\n\
00784 #  This holds for both images of a stereo pair.\n\
00785 float64[12] P # 3x4 row-major matrix\n\
00786 \n\
00787 \n\
00788 #######################################################################\n\
00789 #                      Operational Parameters                         #\n\
00790 #######################################################################\n\
00791 # These define the image region actually captured by the camera       #\n\
00792 # driver. Although they affect the geometry of the output image, they #\n\
00793 # may be changed freely without recalibrating the camera.             #\n\
00794 #######################################################################\n\
00795 \n\
00796 # Binning refers here to any camera setting which combines rectangular\n\
00797 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00798 #  resolution of the output image to\n\
00799 #  (width / binning_x) x (height / binning_y).\n\
00800 # The default values binning_x = binning_y = 0 is considered the same\n\
00801 #  as binning_x = binning_y = 1 (no subsampling).\n\
00802 uint32 binning_x\n\
00803 uint32 binning_y\n\
00804 \n\
00805 # Region of interest (subwindow of full camera resolution), given in\n\
00806 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00807 #  always denotes the same window of pixels on the camera sensor,\n\
00808 #  regardless of binning settings.\n\
00809 # The default setting of roi (all values 0) is considered the same as\n\
00810 #  full resolution (roi.width = width, roi.height = height).\n\
00811 RegionOfInterest roi\n\
00812 \n\
00813 ================================================================================\n\
00814 MSG: sensor_msgs/RegionOfInterest\n\
00815 # This message is used to specify a region of interest within an image.\n\
00816 #\n\
00817 # When used to specify the ROI setting of the camera when the image was\n\
00818 # taken, the height and width fields should either match the height and\n\
00819 # width fields for the associated image; or height = width = 0\n\
00820 # indicates that the full resolution image was captured.\n\
00821 \n\
00822 uint32 x_offset  # Leftmost pixel of the ROI\n\
00823                  # (0 if the ROI includes the left edge of the image)\n\
00824 uint32 y_offset  # Topmost pixel of the ROI\n\
00825                  # (0 if the ROI includes the top edge of the image)\n\
00826 uint32 height    # Height of ROI\n\
00827 uint32 width     # Width of ROI\n\
00828 \n\
00829 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00830 # ROI in this message. Typically this should be False if the full image\n\
00831 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00832 # used).\n\
00833 bool do_rectify\n\
00834 \n\
00835 ================================================================================\n\
00836 MSG: geometry_msgs/Vector3\n\
00837 # This represents a vector in free space. \n\
00838 \n\
00839 float64 x\n\
00840 float64 y\n\
00841 float64 z\n\
00842 ";
00843   }
00844 
00845   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 
00846 };
00847 
00848 } // namespace message_traits
00849 } // namespace ros
00850 
00851 namespace ros
00852 {
00853 namespace serialization
00854 {
00855 
00856 template<class ContainerAllocator> struct Serializer< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> >
00857 {
00858   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00859   {
00860     stream.next(m.detection_result);
00861     stream.next(m.reset_collision_models);
00862     stream.next(m.reset_attached_models);
00863     stream.next(m.desired_frame);
00864   }
00865 
00866   ROS_DECLARE_ALLINONE_SERIALIZER;
00867 }; // struct TabletopCollisionMapProcessingRequest_
00868 } // namespace serialization
00869 } // namespace ros
00870 
00871 
00872 namespace ros
00873 {
00874 namespace serialization
00875 {
00876 
00877 template<class ContainerAllocator> struct Serializer< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> >
00878 {
00879   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00880   {
00881     stream.next(m.graspable_objects);
00882     stream.next(m.collision_object_names);
00883     stream.next(m.collision_support_surface_name);
00884   }
00885 
00886   ROS_DECLARE_ALLINONE_SERIALIZER;
00887 }; // struct TabletopCollisionMapProcessingResponse_
00888 } // namespace serialization
00889 } // namespace ros
00890 
00891 namespace ros
00892 {
00893 namespace service_traits
00894 {
00895 template<>
00896 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessing> {
00897   static const char* value() 
00898   {
00899     return "58e439dda25eed20079051e6af1b5eaa";
00900   }
00901 
00902   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessing&) { return value(); } 
00903 };
00904 
00905 template<>
00906 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessing> {
00907   static const char* value() 
00908   {
00909     return "tabletop_collision_map_processing/TabletopCollisionMapProcessing";
00910   }
00911 
00912   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessing&) { return value(); } 
00913 };
00914 
00915 template<class ContainerAllocator>
00916 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00917   static const char* value() 
00918   {
00919     return "58e439dda25eed20079051e6af1b5eaa";
00920   }
00921 
00922   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 
00923 };
00924 
00925 template<class ContainerAllocator>
00926 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00927   static const char* value() 
00928   {
00929     return "tabletop_collision_map_processing/TabletopCollisionMapProcessing";
00930   }
00931 
00932   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 
00933 };
00934 
00935 template<class ContainerAllocator>
00936 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
00937   static const char* value() 
00938   {
00939     return "58e439dda25eed20079051e6af1b5eaa";
00940   }
00941 
00942   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 
00943 };
00944 
00945 template<class ContainerAllocator>
00946 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
00947   static const char* value() 
00948   {
00949     return "tabletop_collision_map_processing/TabletopCollisionMapProcessing";
00950   }
00951 
00952   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 
00953 };
00954 
00955 } // namespace service_traits
00956 } // namespace ros
00957 
00958 #endif // TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H
00959 


tabletop_collision_map_processing
Author(s): Matei Ciocarlie
autogenerated on Fri Jan 3 2014 11:49:30