eigen2_svd.cpp
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra. Eigen itself is part of the KDE project.
00003 //
00004 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 #include "main.h"
00026 #include <Eigen/SVD>
00027 
00028 template<typename MatrixType> void svd(const MatrixType& m)
00029 {
00030   /* this test covers the following files:
00031      SVD.h
00032   */
00033   int rows = m.rows();
00034   int cols = m.cols();
00035 
00036   typedef typename MatrixType::Scalar Scalar;
00037   typedef typename NumTraits<Scalar>::Real RealScalar;
00038   MatrixType a = MatrixType::Random(rows,cols);
00039   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b =
00040     Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1);
00041   Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1);
00042 
00043   RealScalar largerEps = test_precision<RealScalar>();
00044   if (ei_is_same_type<RealScalar,float>::ret)
00045     largerEps = 1e-3f;
00046 
00047   {
00048     SVD<MatrixType> svd(a);
00049     MatrixType sigma = MatrixType::Zero(rows,cols);
00050     MatrixType matU  = MatrixType::Zero(rows,rows);
00051     sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal();
00052     matU.block(0,0,rows,cols) = svd.matrixU();
00053     VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose());
00054   }
00055 
00056 
00057   if (rows==cols)
00058   {
00059     if (ei_is_same_type<RealScalar,float>::ret)
00060     {
00061       MatrixType a1 = MatrixType::Random(rows,cols);
00062       a += a * a.adjoint() + a1 * a1.adjoint();
00063     }
00064     SVD<MatrixType> svd(a);
00065     svd.solve(b, &x);
00066     VERIFY_IS_APPROX(a * x,b);
00067   }
00068 
00069 
00070   if(rows==cols)
00071   {
00072     SVD<MatrixType> svd(a);
00073     MatrixType unitary, positive;
00074     svd.computeUnitaryPositive(&unitary, &positive);
00075     VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
00076     VERIFY_IS_APPROX(positive, positive.adjoint());
00077     for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
00078     VERIFY_IS_APPROX(unitary*positive, a);
00079 
00080     svd.computePositiveUnitary(&positive, &unitary);
00081     VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
00082     VERIFY_IS_APPROX(positive, positive.adjoint());
00083     for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
00084     VERIFY_IS_APPROX(positive*unitary, a);
00085   }
00086 }
00087 
00088 void test_eigen2_svd()
00089 {
00090   for(int i = 0; i < g_repeat; i++) {
00091     CALL_SUBTEST_1( svd(Matrix3f()) );
00092     CALL_SUBTEST_2( svd(Matrix4d()) );
00093     CALL_SUBTEST_3( svd(MatrixXf(7,7)) );
00094     CALL_SUBTEST_4( svd(MatrixXd(14,7)) );
00095     // complex are not implemented yet
00096 //     CALL_SUBTEST( svd(MatrixXcd(6,6)) );
00097 //     CALL_SUBTEST( svd(MatrixXcf(3,3)) );
00098     SVD<MatrixXf> s;
00099     MatrixXf m = MatrixXf::Random(10,1);
00100     s.compute(m);
00101   }
00102 }


re_vision
Author(s): Dorian Galvez-Lopez
autogenerated on Sun Jan 5 2014 11:31:05