00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026 #include "main.h"
00027 #include <functional>
00028 #include <Eigen/Array>
00029
00030 using namespace std;
00031
00032 template<typename Scalar> struct AddIfNull {
00033 const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
00034 enum { Cost = NumTraits<Scalar>::AddCost };
00035 };
00036
00037 template<typename MatrixType> void cwiseops(const MatrixType& m)
00038 {
00039 typedef typename MatrixType::Scalar Scalar;
00040 typedef typename NumTraits<Scalar>::Real RealScalar;
00041 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
00042
00043 int rows = m.rows();
00044 int cols = m.cols();
00045
00046 MatrixType m1 = MatrixType::Random(rows, cols),
00047 m2 = MatrixType::Random(rows, cols),
00048 m3(rows, cols),
00049 m4(rows, cols),
00050 mzero = MatrixType::Zero(rows, cols),
00051 mones = MatrixType::Ones(rows, cols),
00052 identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
00053 ::Identity(rows, rows),
00054 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
00055 VectorType v1 = VectorType::Random(rows),
00056 v2 = VectorType::Random(rows),
00057 vzero = VectorType::Zero(rows),
00058 vones = VectorType::Ones(rows),
00059 v3(rows);
00060
00061 int r = ei_random<int>(0, rows-1),
00062 c = ei_random<int>(0, cols-1);
00063
00064 Scalar s1 = ei_random<Scalar>();
00065
00066
00067 m3 = MatrixType::Constant(rows, cols, s1);
00068 for (int j=0; j<cols; ++j)
00069 for (int i=0; i<rows; ++i)
00070 {
00071 VERIFY_IS_APPROX(mzero(i,j), Scalar(0));
00072 VERIFY_IS_APPROX(mones(i,j), Scalar(1));
00073 VERIFY_IS_APPROX(m3(i,j), s1);
00074 }
00075 VERIFY(mzero.isZero());
00076 VERIFY(mones.isOnes());
00077 VERIFY(m3.isConstant(s1));
00078 VERIFY(identity.isIdentity());
00079 VERIFY_IS_APPROX(m4.setConstant(s1), m3);
00080 VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3);
00081 VERIFY_IS_APPROX(m4.setZero(), mzero);
00082 VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero);
00083 VERIFY_IS_APPROX(m4.setOnes(), mones);
00084 VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones);
00085 m4.fill(s1);
00086 VERIFY_IS_APPROX(m4, m3);
00087
00088 VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1));
00089 VERIFY_IS_APPROX(v3.setZero(rows), vzero);
00090 VERIFY_IS_APPROX(v3.setOnes(rows), vones);
00091
00092 m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones);
00093
00094 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2());
00095 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
00096 VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube());
00097
00098 VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1));
00099 VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1));
00100 m3 = m1; m3.cwise() += 1;
00101 VERIFY_IS_APPROX(m1 + mones, m3);
00102 m3 = m1; m3.cwise() -= 1;
00103 VERIFY_IS_APPROX(m1 - mones, m3);
00104
00105 VERIFY_IS_APPROX(m2, m2.cwise() * mones);
00106 VERIFY_IS_APPROX(m1.cwise() * m2, m2.cwise() * m1);
00107 m3 = m1;
00108 m3.cwise() *= m2;
00109 VERIFY_IS_APPROX(m3, m1.cwise() * m2);
00110
00111 VERIFY_IS_APPROX(mones, m2.cwise()/m2);
00112 if(NumTraits<Scalar>::HasFloatingPoint)
00113 {
00114 VERIFY_IS_APPROX(m1.cwise() / m2, m1.cwise() * (m2.cwise().inverse()));
00115 m3 = m1.cwise().abs().cwise().sqrt();
00116 VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs());
00117 VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs());
00118 VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs());
00119
00120 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
00121 m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1);
00122 VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse());
00123 m3 = m1.cwise().abs();
00124 VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt());
00125
00126
00127 VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square());
00128 m3 = m1;
00129 m3.cwise() /= m2;
00130 VERIFY_IS_APPROX(m3, m1.cwise() / m2);
00131 }
00132
00133
00134 VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) );
00135 VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 );
00136 VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones );
00137
00138
00139 VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) );
00140 VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 );
00141 VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones );
00142
00143 VERIFY( (m1.cwise() == m1).all() );
00144 VERIFY( (m1.cwise() != m2).any() );
00145 VERIFY(!(m1.cwise() == (m1+mones)).any() );
00146 if (rows*cols>1)
00147 {
00148 m3 = m1;
00149 m3(r,c) += 1;
00150 VERIFY( (m1.cwise() == m3).any() );
00151 VERIFY( !(m1.cwise() == m3).all() );
00152 }
00153 VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() );
00154 VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() );
00155 VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
00156 VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );
00157
00158 VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
00159 VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
00160 VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
00161 }
00162
00163 void test_eigen2_cwiseop()
00164 {
00165 for(int i = 0; i < g_repeat ; i++) {
00166 CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) );
00167 CALL_SUBTEST_2( cwiseops(Matrix4d()) );
00168 CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) );
00169 CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) );
00170 CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) );
00171 CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) );
00172 }
00173 }