00001
00002
00003
00004
00005
00006 #include <stdio.h>
00007
00008 #include "main.h"
00009 #include <unsupported/Eigen/NumericalDiff>
00010
00011
00012 template<typename _Scalar, int NX=Dynamic, int NY=Dynamic>
00013 struct Functor
00014 {
00015 typedef _Scalar Scalar;
00016 enum {
00017 InputsAtCompileTime = NX,
00018 ValuesAtCompileTime = NY
00019 };
00020 typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
00021 typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
00022 typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
00023
00024 int m_inputs, m_values;
00025
00026 Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
00027 Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
00028
00029 int inputs() const { return m_inputs; }
00030 int values() const { return m_values; }
00031
00032 };
00033
00034 struct my_functor : Functor<double>
00035 {
00036 my_functor(void): Functor<double>(3,15) {}
00037 int operator()(const VectorXd &x, VectorXd &fvec) const
00038 {
00039 double tmp1, tmp2, tmp3;
00040 double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
00041 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
00042
00043 for (int i = 0; i < values(); i++)
00044 {
00045 tmp1 = i+1;
00046 tmp2 = 16 - i - 1;
00047 tmp3 = (i>=8)? tmp2 : tmp1;
00048 fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
00049 }
00050 return 0;
00051 }
00052
00053 int actual_df(const VectorXd &x, MatrixXd &fjac) const
00054 {
00055 double tmp1, tmp2, tmp3, tmp4;
00056 for (int i = 0; i < values(); i++)
00057 {
00058 tmp1 = i+1;
00059 tmp2 = 16 - i - 1;
00060 tmp3 = (i>=8)? tmp2 : tmp1;
00061 tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4;
00062 fjac(i,0) = -1;
00063 fjac(i,1) = tmp1*tmp2/tmp4;
00064 fjac(i,2) = tmp1*tmp3/tmp4;
00065 }
00066 return 0;
00067 }
00068 };
00069
00070 void test_forward()
00071 {
00072 VectorXd x(3);
00073 MatrixXd jac(15,3);
00074 MatrixXd actual_jac(15,3);
00075 my_functor functor;
00076
00077 x << 0.082, 1.13, 2.35;
00078
00079
00080 functor.actual_df(x, actual_jac);
00081
00082
00083
00084 NumericalDiff<my_functor> numDiff(functor);
00085 numDiff.df(x, jac);
00086
00087
00088 VERIFY_IS_APPROX(jac, actual_jac);
00089 }
00090
00091 void test_central()
00092 {
00093 VectorXd x(3);
00094 MatrixXd jac(15,3);
00095 MatrixXd actual_jac(15,3);
00096 my_functor functor;
00097
00098 x << 0.082, 1.13, 2.35;
00099
00100
00101 functor.actual_df(x, actual_jac);
00102
00103
00104 NumericalDiff<my_functor,Central> numDiff(functor);
00105 numDiff.df(x, jac);
00106
00107 VERIFY_IS_APPROX(jac, actual_jac);
00108 }
00109
00110 void test_NumericalDiff()
00111 {
00112 CALL_SUBTEST(test_forward());
00113 CALL_SUBTEST(test_central());
00114 }