Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 #include "main.h"
00026 #include <unsupported/Eigen/FFT>
00027
00028 template <typename T>
00029 std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
00030
00031 using namespace std;
00032 using namespace Eigen;
00033
00034 float norm(float x) {return x*x;}
00035 double norm(double x) {return x*x;}
00036 long double norm(long double x) {return x*x;}
00037
00038 template < typename T>
00039 complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
00040
00041 complex<long double> promote(float x) { return complex<long double>( x); }
00042 complex<long double> promote(double x) { return complex<long double>( x); }
00043 complex<long double> promote(long double x) { return complex<long double>( x); }
00044
00045
00046 template <typename VT1,typename VT2>
00047 long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
00048 {
00049 long double totalpower=0;
00050 long double difpower=0;
00051 long double pi = acos((long double)-1 );
00052 for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
00053 complex<long double> acc = 0;
00054 long double phinc = -2.*k0* pi / timebuf.size();
00055 for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
00056 acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
00057 }
00058 totalpower += norm(acc);
00059 complex<long double> x = promote(fftbuf[k0]);
00060 complex<long double> dif = acc - x;
00061 difpower += norm(dif);
00062
00063 }
00064 cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
00065 return sqrt(difpower/totalpower);
00066 }
00067
00068 template <typename VT1,typename VT2>
00069 long double dif_rmse( const VT1 buf1,const VT2 buf2)
00070 {
00071 long double totalpower=0;
00072 long double difpower=0;
00073 size_t n = min( buf1.size(),buf2.size() );
00074 for (size_t k=0;k<n;++k) {
00075 totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
00076 difpower += norm(buf1[k] - buf2[k]);
00077 }
00078 return sqrt(difpower/totalpower);
00079 }
00080
00081 enum { StdVectorContainer, EigenVectorContainer };
00082
00083 template<int Container, typename Scalar> struct VectorType;
00084
00085 template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
00086 {
00087 typedef vector<Scalar> type;
00088 };
00089
00090 template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
00091 {
00092 typedef Matrix<Scalar,Dynamic,1> type;
00093 };
00094
00095 template <int Container, typename T>
00096 void test_scalar_generic(int nfft)
00097 {
00098 typedef typename FFT<T>::Complex Complex;
00099 typedef typename FFT<T>::Scalar Scalar;
00100 typedef typename VectorType<Container,Scalar>::type ScalarVector;
00101 typedef typename VectorType<Container,Complex>::type ComplexVector;
00102
00103 FFT<T> fft;
00104 ScalarVector tbuf(nfft);
00105 ComplexVector freqBuf;
00106 for (int k=0;k<nfft;++k)
00107 tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
00108
00109
00110
00111 fft.SetFlag(fft.HalfSpectrum );
00112 fft.fwd( freqBuf,tbuf);
00113 VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
00114 VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );
00115
00116 fft.ClearFlag(fft.HalfSpectrum );
00117 fft.fwd( freqBuf,tbuf);
00118 VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
00119 VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );
00120
00121 if (nfft&1)
00122 return;
00123
00124 ScalarVector tbuf2;
00125 fft.inv( tbuf2 , freqBuf);
00126 VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );
00127
00128
00129
00130 ScalarVector tbuf3;
00131 fft.SetFlag(fft.Unscaled);
00132
00133 fft.inv( tbuf3 , freqBuf);
00134
00135 for (int k=0;k<nfft;++k)
00136 tbuf3[k] *= T(1./nfft);
00137
00138
00139
00140
00141
00142 VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>() );
00143
00144
00145 fft.ClearFlag(fft.Unscaled);
00146 fft.inv( tbuf2 , freqBuf);
00147 VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );
00148 }
00149
00150 template <typename T>
00151 void test_scalar(int nfft)
00152 {
00153 test_scalar_generic<StdVectorContainer,T>(nfft);
00154
00155 }
00156
00157
00158 template <int Container, typename T>
00159 void test_complex_generic(int nfft)
00160 {
00161 typedef typename FFT<T>::Complex Complex;
00162 typedef typename VectorType<Container,Complex>::type ComplexVector;
00163
00164 FFT<T> fft;
00165
00166 ComplexVector inbuf(nfft);
00167 ComplexVector outbuf;
00168 ComplexVector buf3;
00169 for (int k=0;k<nfft;++k)
00170 inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
00171 fft.fwd( outbuf , inbuf);
00172
00173 VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );
00174 fft.inv( buf3 , outbuf);
00175
00176 VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );
00177
00178
00179 ComplexVector buf4;
00180 fft.SetFlag(fft.Unscaled);
00181 fft.inv( buf4 , outbuf);
00182 for (int k=0;k<nfft;++k)
00183 buf4[k] *= T(1./nfft);
00184 VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );
00185
00186
00187 fft.ClearFlag(fft.Unscaled);
00188 fft.inv( buf3 , outbuf);
00189 VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );
00190 }
00191
00192 template <typename T>
00193 void test_complex(int nfft)
00194 {
00195 test_complex_generic<StdVectorContainer,T>(nfft);
00196 test_complex_generic<EigenVectorContainer,T>(nfft);
00197 }
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229 void test_return_by_value(int len)
00230 {
00231 VectorXf in;
00232 VectorXf in1;
00233 in.setRandom( len );
00234 VectorXcf out1,out2;
00235 FFT<float> fft;
00236
00237 fft.SetFlag(fft.HalfSpectrum );
00238
00239 fft.fwd(out1,in);
00240 out2 = fft.fwd(in);
00241 VERIFY( (out1-out2).norm() < test_precision<float>() );
00242 in1 = fft.inv(out1);
00243 VERIFY( (in1-in).norm() < test_precision<float>() );
00244 }
00245
00246 void test_FFTW()
00247 {
00248 CALL_SUBTEST( test_return_by_value(32) );
00249
00250
00251 CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) );
00252 CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) );
00253 CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) );
00254 CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) );
00255 CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) );
00256 CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) );
00257 CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
00258
00259 CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) );
00260 CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) );
00261 CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) );
00262 CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) );
00263 CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
00264
00265 #ifdef EIGEN_HAS_FFTWL
00266 CALL_SUBTEST( test_complex<long double>(32) );
00267 CALL_SUBTEST( test_complex<long double>(256) );
00268 CALL_SUBTEST( test_complex<long double>(3*8) );
00269 CALL_SUBTEST( test_complex<long double>(5*32) );
00270 CALL_SUBTEST( test_complex<long double>(2*3*4) );
00271 CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
00272 CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
00273
00274 CALL_SUBTEST( test_scalar<long double>(32) );
00275 CALL_SUBTEST( test_scalar<long double>(45) );
00276 CALL_SUBTEST( test_scalar<long double>(50) );
00277 CALL_SUBTEST( test_scalar<long double>(256) );
00278 CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
00279 #endif
00280 }