MathFunctions.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2007 Julien Pommier
00005 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00006 //
00007 // Eigen is free software; you can redistribute it and/or
00008 // modify it under the terms of the GNU Lesser General Public
00009 // License as published by the Free Software Foundation; either
00010 // version 3 of the License, or (at your option) any later version.
00011 //
00012 // Alternatively, you can redistribute it and/or
00013 // modify it under the terms of the GNU General Public License as
00014 // published by the Free Software Foundation; either version 2 of
00015 // the License, or (at your option) any later version.
00016 //
00017 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00018 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00019 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00020 // GNU General Public License for more details.
00021 //
00022 // You should have received a copy of the GNU Lesser General Public
00023 // License and a copy of the GNU General Public License along with
00024 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00025 
00026 /* The sin, cos, exp, and log functions of this file come from
00027  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
00028  */
00029 
00030 #ifndef EIGEN_MATH_FUNCTIONS_SSE_H
00031 #define EIGEN_MATH_FUNCTIONS_SSE_H
00032 
00033 namespace internal {
00034 
00035 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00036 Packet4f plog<Packet4f>(const Packet4f& _x)
00037 {
00038   Packet4f x = _x;
00039   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00040   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00041   _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
00042 
00043   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
00044 
00045   /* the smallest non denormalized float number */
00046   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos,  0x00800000);
00047 
00048   /* natural logarithm computed for 4 simultaneous float
00049     return NaN for x <= 0
00050   */
00051   _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
00052   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
00053   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
00054   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
00055   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
00056   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
00057   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
00058   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
00059   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
00060   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
00061   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
00062   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
00063 
00064 
00065   Packet4i emm0;
00066 
00067   Packet4f invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
00068 
00069   x = pmax(x, p4f_min_norm_pos);  /* cut off denormalized stuff */
00070   emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
00071 
00072   /* keep only the fractional part */
00073   x = _mm_and_ps(x, p4f_inv_mant_mask);
00074   x = _mm_or_ps(x, p4f_half);
00075 
00076   emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
00077   Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);
00078 
00079   /* part2:
00080      if( x < SQRTHF ) {
00081        e -= 1;
00082        x = x + x - 1.0;
00083      } else { x = x - 1.0; }
00084   */
00085   Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
00086   Packet4f tmp = _mm_and_ps(x, mask);
00087   x = psub(x, p4f_1);
00088   e = psub(e, _mm_and_ps(p4f_1, mask));
00089   x = padd(x, tmp);
00090 
00091   Packet4f x2 = pmul(x,x);
00092   Packet4f x3 = pmul(x2,x);
00093 
00094   Packet4f y, y1, y2;
00095   y  = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
00096   y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
00097   y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
00098   y  = pmadd(y , x, p4f_cephes_log_p2);
00099   y1 = pmadd(y1, x, p4f_cephes_log_p5);
00100   y2 = pmadd(y2, x, p4f_cephes_log_p8);
00101   y = pmadd(y, x3, y1);
00102   y = pmadd(y, x3, y2);
00103   y = pmul(y, x3);
00104 
00105   y1 = pmul(e, p4f_cephes_log_q1);
00106   tmp = pmul(x2, p4f_half);
00107   y = padd(y, y1);
00108   x = psub(x, tmp);
00109   y2 = pmul(e, p4f_cephes_log_q2);
00110   x = padd(x, y);
00111   x = padd(x, y2);
00112   return _mm_or_ps(x, invalid_mask); // negative arg will be NAN
00113 }
00114 
00115 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00116 Packet4f pexp<Packet4f>(const Packet4f& _x)
00117 {
00118   Packet4f x = _x;
00119   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00120   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00121   _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
00122 
00123 
00124   _EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647949f);
00125   _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
00126 
00127   _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
00128   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
00129   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
00130 
00131   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
00132   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
00133   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
00134   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
00135   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
00136   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
00137 
00138   Packet4f tmp = _mm_setzero_ps(), fx;
00139   Packet4i emm0;
00140 
00141   // clamp x
00142   x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
00143 
00144   /* express exp(x) as exp(g + n*log(2)) */
00145   fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
00146 
00147   /* how to perform a floorf with SSE: just below */
00148   emm0 = _mm_cvttps_epi32(fx);
00149   tmp  = _mm_cvtepi32_ps(emm0);
00150   /* if greater, substract 1 */
00151   Packet4f mask = _mm_cmpgt_ps(tmp, fx);
00152   mask = _mm_and_ps(mask, p4f_1);
00153   fx = psub(tmp, mask);
00154 
00155   tmp = pmul(fx, p4f_cephes_exp_C1);
00156   Packet4f z = pmul(fx, p4f_cephes_exp_C2);
00157   x = psub(x, tmp);
00158   x = psub(x, z);
00159 
00160   z = pmul(x,x);
00161 
00162   Packet4f y = p4f_cephes_exp_p0;
00163   y = pmadd(y, x, p4f_cephes_exp_p1);
00164   y = pmadd(y, x, p4f_cephes_exp_p2);
00165   y = pmadd(y, x, p4f_cephes_exp_p3);
00166   y = pmadd(y, x, p4f_cephes_exp_p4);
00167   y = pmadd(y, x, p4f_cephes_exp_p5);
00168   y = pmadd(y, z, x);
00169   y = padd(y, p4f_1);
00170 
00171   /* build 2^n */
00172   emm0 = _mm_cvttps_epi32(fx);
00173   emm0 = _mm_add_epi32(emm0, p4i_0x7f);
00174   emm0 = _mm_slli_epi32(emm0, 23);
00175   return pmul(y, _mm_castsi128_ps(emm0));
00176 }
00177 
00178 /* evaluation of 4 sines at onces, using SSE2 intrinsics.
00179 
00180    The code is the exact rewriting of the cephes sinf function.
00181    Precision is excellent as long as x < 8192 (I did not bother to
00182    take into account the special handling they have for greater values
00183    -- it does not return garbage for arguments over 8192, though, but
00184    the extra precision is missing).
00185 
00186    Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
00187    surprising but correct result.
00188 */
00189 
00190 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00191 Packet4f psin<Packet4f>(const Packet4f& _x)
00192 {
00193   Packet4f x = _x;
00194   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00195   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00196 
00197   _EIGEN_DECLARE_CONST_Packet4i(1, 1);
00198   _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
00199   _EIGEN_DECLARE_CONST_Packet4i(2, 2);
00200   _EIGEN_DECLARE_CONST_Packet4i(4, 4);
00201 
00202   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
00203 
00204   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
00205   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
00206   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
00207   _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
00208   _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
00209   _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
00210   _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
00211   _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
00212   _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
00213   _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
00214 
00215   Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
00216 
00217   Packet4i emm0, emm2;
00218   sign_bit = x;
00219   /* take the absolute value */
00220   x = pabs(x);
00221 
00222   /* take the modulo */
00223 
00224   /* extract the sign bit (upper one) */
00225   sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);
00226 
00227   /* scale by 4/Pi */
00228   y = pmul(x, p4f_cephes_FOPI);
00229 
00230   /* store the integer part of y in mm0 */
00231   emm2 = _mm_cvttps_epi32(y);
00232   /* j=(j+1) & (~1) (see the cephes sources) */
00233   emm2 = _mm_add_epi32(emm2, p4i_1);
00234   emm2 = _mm_and_si128(emm2, p4i_not1);
00235   y = _mm_cvtepi32_ps(emm2);
00236   /* get the swap sign flag */
00237   emm0 = _mm_and_si128(emm2, p4i_4);
00238   emm0 = _mm_slli_epi32(emm0, 29);
00239   /* get the polynom selection mask
00240      there is one polynom for 0 <= x <= Pi/4
00241      and another one for Pi/4<x<=Pi/2
00242 
00243      Both branches will be computed.
00244   */
00245   emm2 = _mm_and_si128(emm2, p4i_2);
00246   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
00247 
00248   Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
00249   Packet4f poly_mask = _mm_castsi128_ps(emm2);
00250   sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
00251 
00252   /* The magic pass: "Extended precision modular arithmetic"
00253      x = ((x - y * DP1) - y * DP2) - y * DP3; */
00254   xmm1 = pmul(y, p4f_minus_cephes_DP1);
00255   xmm2 = pmul(y, p4f_minus_cephes_DP2);
00256   xmm3 = pmul(y, p4f_minus_cephes_DP3);
00257   x = padd(x, xmm1);
00258   x = padd(x, xmm2);
00259   x = padd(x, xmm3);
00260 
00261   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
00262   y = p4f_coscof_p0;
00263   Packet4f z = _mm_mul_ps(x,x);
00264 
00265   y = pmadd(y, z, p4f_coscof_p1);
00266   y = pmadd(y, z, p4f_coscof_p2);
00267   y = pmul(y, z);
00268   y = pmul(y, z);
00269   Packet4f tmp = pmul(z, p4f_half);
00270   y = psub(y, tmp);
00271   y = padd(y, p4f_1);
00272 
00273   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
00274 
00275   Packet4f y2 = p4f_sincof_p0;
00276   y2 = pmadd(y2, z, p4f_sincof_p1);
00277   y2 = pmadd(y2, z, p4f_sincof_p2);
00278   y2 = pmul(y2, z);
00279   y2 = pmul(y2, x);
00280   y2 = padd(y2, x);
00281 
00282   /* select the correct result from the two polynoms */
00283   y2 = _mm_and_ps(poly_mask, y2);
00284   y = _mm_andnot_ps(poly_mask, y);
00285   y = _mm_or_ps(y,y2);
00286   /* update the sign */
00287   return _mm_xor_ps(y, sign_bit);
00288 }
00289 
00290 /* almost the same as psin */
00291 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00292 Packet4f pcos<Packet4f>(const Packet4f& _x)
00293 {
00294   Packet4f x = _x;
00295   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00296   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00297 
00298   _EIGEN_DECLARE_CONST_Packet4i(1, 1);
00299   _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
00300   _EIGEN_DECLARE_CONST_Packet4i(2, 2);
00301   _EIGEN_DECLARE_CONST_Packet4i(4, 4);
00302 
00303   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
00304   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
00305   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
00306   _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
00307   _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
00308   _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
00309   _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
00310   _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
00311   _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
00312   _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
00313 
00314   Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
00315   Packet4i emm0, emm2;
00316 
00317   x = pabs(x);
00318 
00319   /* scale by 4/Pi */
00320   y = pmul(x, p4f_cephes_FOPI);
00321 
00322   /* get the integer part of y */
00323   emm2 = _mm_cvttps_epi32(y);
00324   /* j=(j+1) & (~1) (see the cephes sources) */
00325   emm2 = _mm_add_epi32(emm2, p4i_1);
00326   emm2 = _mm_and_si128(emm2, p4i_not1);
00327   y = _mm_cvtepi32_ps(emm2);
00328 
00329   emm2 = _mm_sub_epi32(emm2, p4i_2);
00330 
00331   /* get the swap sign flag */
00332   emm0 = _mm_andnot_si128(emm2, p4i_4);
00333   emm0 = _mm_slli_epi32(emm0, 29);
00334   /* get the polynom selection mask */
00335   emm2 = _mm_and_si128(emm2, p4i_2);
00336   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
00337 
00338   Packet4f sign_bit = _mm_castsi128_ps(emm0);
00339   Packet4f poly_mask = _mm_castsi128_ps(emm2);
00340 
00341   /* The magic pass: "Extended precision modular arithmetic"
00342      x = ((x - y * DP1) - y * DP2) - y * DP3; */
00343   xmm1 = pmul(y, p4f_minus_cephes_DP1);
00344   xmm2 = pmul(y, p4f_minus_cephes_DP2);
00345   xmm3 = pmul(y, p4f_minus_cephes_DP3);
00346   x = padd(x, xmm1);
00347   x = padd(x, xmm2);
00348   x = padd(x, xmm3);
00349 
00350   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
00351   y = p4f_coscof_p0;
00352   Packet4f z = pmul(x,x);
00353 
00354   y = pmadd(y,z,p4f_coscof_p1);
00355   y = pmadd(y,z,p4f_coscof_p2);
00356   y = pmul(y, z);
00357   y = pmul(y, z);
00358   Packet4f tmp = _mm_mul_ps(z, p4f_half);
00359   y = psub(y, tmp);
00360   y = padd(y, p4f_1);
00361 
00362   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
00363   Packet4f y2 = p4f_sincof_p0;
00364   y2 = pmadd(y2, z, p4f_sincof_p1);
00365   y2 = pmadd(y2, z, p4f_sincof_p2);
00366   y2 = pmul(y2, z);
00367   y2 = pmadd(y2, x, x);
00368 
00369   /* select the correct result from the two polynoms */
00370   y2 = _mm_and_ps(poly_mask, y2);
00371   y  = _mm_andnot_ps(poly_mask, y);
00372   y  = _mm_or_ps(y,y2);
00373 
00374   /* update the sign */
00375   return _mm_xor_ps(y, sign_bit);
00376 }
00377 
00378 // This is based on Quake3's fast inverse square root.
00379 // For detail see here: http://www.beyond3d.com/content/articles/8/
00380 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00381 Packet4f psqrt<Packet4f>(const Packet4f& _x)
00382 {
00383   Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
00384 
00385   /* select only the inverse sqrt of non-zero inputs */
00386   Packet4f non_zero_mask = _mm_cmpgt_ps(_x, pset1<Packet4f>(std::numeric_limits<float>::epsilon()));
00387   Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
00388 
00389   x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
00390   return pmul(_x,x);
00391 }
00392 
00393 } // end namespace internal
00394 
00395 #endif // EIGEN_MATH_FUNCTIONS_SSE_H


re_vision
Author(s): Dorian Galvez-Lopez
autogenerated on Sun Jan 5 2014 11:31:52