Go to the documentation of this file.00001
00002 #ifndef OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIRESULT_H
00003 #define OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIRESULT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "tabletop_object_detector/Table.h"
00018 #include "sensor_msgs/PointCloud.h"
00019
00020 namespace object_segmentation_gui
00021 {
00022 template <class ContainerAllocator>
00023 struct ObjectSegmentationGuiResult_ {
00024 typedef ObjectSegmentationGuiResult_<ContainerAllocator> Type;
00025
00026 ObjectSegmentationGuiResult_()
00027 : table()
00028 , clusters()
00029 , result(0)
00030 {
00031 }
00032
00033 ObjectSegmentationGuiResult_(const ContainerAllocator& _alloc)
00034 : table(_alloc)
00035 , clusters(_alloc)
00036 , result(0)
00037 {
00038 }
00039
00040 typedef ::tabletop_object_detector::Table_<ContainerAllocator> _table_type;
00041 ::tabletop_object_detector::Table_<ContainerAllocator> table;
00042
00043 typedef std::vector< ::sensor_msgs::PointCloud_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud_<ContainerAllocator> >::other > _clusters_type;
00044 std::vector< ::sensor_msgs::PointCloud_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud_<ContainerAllocator> >::other > clusters;
00045
00046 typedef int32_t _result_type;
00047 int32_t result;
00048
00049 enum { NO_CLOUD_RECEIVED = 1 };
00050 enum { NO_TABLE = 2 };
00051 enum { OTHER_ERROR = 3 };
00052 enum { SUCCESS = 4 };
00053
00054 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > Ptr;
00055 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> const> ConstPtr;
00056 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00057 };
00058 typedef ::object_segmentation_gui::ObjectSegmentationGuiResult_<std::allocator<void> > ObjectSegmentationGuiResult;
00059
00060 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiResult> ObjectSegmentationGuiResultPtr;
00061 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiResult const> ObjectSegmentationGuiResultConstPtr;
00062
00063
00064 template<typename ContainerAllocator>
00065 std::ostream& operator<<(std::ostream& s, const ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> & v)
00066 {
00067 ros::message_operations::Printer< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> >::stream(s, "", v);
00068 return s;}
00069
00070 }
00071
00072 namespace ros
00073 {
00074 namespace message_traits
00075 {
00076 template<class ContainerAllocator> struct IsMessage< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > : public TrueType {};
00077 template<class ContainerAllocator> struct IsMessage< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> const> : public TrueType {};
00078 template<class ContainerAllocator>
00079 struct MD5Sum< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > {
00080 static const char* value()
00081 {
00082 return "1ece7d86360ba38c12673652ea654b18";
00083 }
00084
00085 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> &) { return value(); }
00086 static const uint64_t static_value1 = 0x1ece7d86360ba38cULL;
00087 static const uint64_t static_value2 = 0x12673652ea654b18ULL;
00088 };
00089
00090 template<class ContainerAllocator>
00091 struct DataType< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > {
00092 static const char* value()
00093 {
00094 return "object_segmentation_gui/ObjectSegmentationGuiResult";
00095 }
00096
00097 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> &) { return value(); }
00098 };
00099
00100 template<class ContainerAllocator>
00101 struct Definition< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > {
00102 static const char* value()
00103 {
00104 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00105 # The information for the plane that has been detected\n\
00106 tabletop_object_detector/Table table\n\
00107 \n\
00108 # The raw clusters detected in the scan \n\
00109 sensor_msgs/PointCloud[] clusters\n\
00110 \n\
00111 # Whether the detection has succeeded or failed\n\
00112 int32 NO_CLOUD_RECEIVED = 1\n\
00113 int32 NO_TABLE = 2\n\
00114 int32 OTHER_ERROR = 3\n\
00115 int32 SUCCESS = 4\n\
00116 int32 result\n\
00117 \n\
00118 \n\
00119 ================================================================================\n\
00120 MSG: tabletop_object_detector/Table\n\
00121 # Informs that a planar table has been detected at a given location\n\
00122 \n\
00123 # The pose gives you the transform that take you to the coordinate system\n\
00124 # of the table, with the origin somewhere in the table plane and the \n\
00125 # z axis normal to the plane\n\
00126 geometry_msgs/PoseStamped pose\n\
00127 \n\
00128 # These values give you the observed extents of the table, along x and y,\n\
00129 # in the table's own coordinate system (above)\n\
00130 # there is no guarantee that the origin of the table coordinate system is\n\
00131 # inside the boundary defined by these values. \n\
00132 float32 x_min\n\
00133 float32 x_max\n\
00134 float32 y_min\n\
00135 float32 y_max\n\
00136 \n\
00137 # There is no guarantee that the table does NOT extend further than these \n\
00138 # values; this is just as far as we've observed it.\n\
00139 \n\
00140 \n\
00141 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\
00142 arm_navigation_msgs/Shape convex_hull\n\
00143 \n\
00144 ================================================================================\n\
00145 MSG: geometry_msgs/PoseStamped\n\
00146 # A Pose with reference coordinate frame and timestamp\n\
00147 Header header\n\
00148 Pose pose\n\
00149 \n\
00150 ================================================================================\n\
00151 MSG: std_msgs/Header\n\
00152 # Standard metadata for higher-level stamped data types.\n\
00153 # This is generally used to communicate timestamped data \n\
00154 # in a particular coordinate frame.\n\
00155 # \n\
00156 # sequence ID: consecutively increasing ID \n\
00157 uint32 seq\n\
00158 #Two-integer timestamp that is expressed as:\n\
00159 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00160 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00161 # time-handling sugar is provided by the client library\n\
00162 time stamp\n\
00163 #Frame this data is associated with\n\
00164 # 0: no frame\n\
00165 # 1: global frame\n\
00166 string frame_id\n\
00167 \n\
00168 ================================================================================\n\
00169 MSG: geometry_msgs/Pose\n\
00170 # A representation of pose in free space, composed of postion and orientation. \n\
00171 Point position\n\
00172 Quaternion orientation\n\
00173 \n\
00174 ================================================================================\n\
00175 MSG: geometry_msgs/Point\n\
00176 # This contains the position of a point in free space\n\
00177 float64 x\n\
00178 float64 y\n\
00179 float64 z\n\
00180 \n\
00181 ================================================================================\n\
00182 MSG: geometry_msgs/Quaternion\n\
00183 # This represents an orientation in free space in quaternion form.\n\
00184 \n\
00185 float64 x\n\
00186 float64 y\n\
00187 float64 z\n\
00188 float64 w\n\
00189 \n\
00190 ================================================================================\n\
00191 MSG: arm_navigation_msgs/Shape\n\
00192 byte SPHERE=0\n\
00193 byte BOX=1\n\
00194 byte CYLINDER=2\n\
00195 byte MESH=3\n\
00196 \n\
00197 byte type\n\
00198 \n\
00199 \n\
00200 #### define sphere, box, cylinder ####\n\
00201 # the origin of each shape is considered at the shape's center\n\
00202 \n\
00203 # for sphere\n\
00204 # radius := dimensions[0]\n\
00205 \n\
00206 # for cylinder\n\
00207 # radius := dimensions[0]\n\
00208 # length := dimensions[1]\n\
00209 # the length is along the Z axis\n\
00210 \n\
00211 # for box\n\
00212 # size_x := dimensions[0]\n\
00213 # size_y := dimensions[1]\n\
00214 # size_z := dimensions[2]\n\
00215 float64[] dimensions\n\
00216 \n\
00217 \n\
00218 #### define mesh ####\n\
00219 \n\
00220 # list of triangles; triangle k is defined by tre vertices located\n\
00221 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00222 int32[] triangles\n\
00223 geometry_msgs/Point[] vertices\n\
00224 \n\
00225 ================================================================================\n\
00226 MSG: sensor_msgs/PointCloud\n\
00227 # This message holds a collection of 3d points, plus optional additional\n\
00228 # information about each point.\n\
00229 \n\
00230 # Time of sensor data acquisition, coordinate frame ID.\n\
00231 Header header\n\
00232 \n\
00233 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00234 # in the frame given in the header.\n\
00235 geometry_msgs/Point32[] points\n\
00236 \n\
00237 # Each channel should have the same number of elements as points array,\n\
00238 # and the data in each channel should correspond 1:1 with each point.\n\
00239 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00240 ChannelFloat32[] channels\n\
00241 \n\
00242 ================================================================================\n\
00243 MSG: geometry_msgs/Point32\n\
00244 # This contains the position of a point in free space(with 32 bits of precision).\n\
00245 # It is recommeded to use Point wherever possible instead of Point32. \n\
00246 # \n\
00247 # This recommendation is to promote interoperability. \n\
00248 #\n\
00249 # This message is designed to take up less space when sending\n\
00250 # lots of points at once, as in the case of a PointCloud. \n\
00251 \n\
00252 float32 x\n\
00253 float32 y\n\
00254 float32 z\n\
00255 ================================================================================\n\
00256 MSG: sensor_msgs/ChannelFloat32\n\
00257 # This message is used by the PointCloud message to hold optional data\n\
00258 # associated with each point in the cloud. The length of the values\n\
00259 # array should be the same as the length of the points array in the\n\
00260 # PointCloud, and each value should be associated with the corresponding\n\
00261 # point.\n\
00262 \n\
00263 # Channel names in existing practice include:\n\
00264 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00265 # This is opposite to usual conventions but remains for\n\
00266 # historical reasons. The newer PointCloud2 message has no\n\
00267 # such problem.\n\
00268 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00269 # (R,G,B) values packed into the least significant 24 bits,\n\
00270 # in order.\n\
00271 # \"intensity\" - laser or pixel intensity.\n\
00272 # \"distance\"\n\
00273 \n\
00274 # The channel name should give semantics of the channel (e.g.\n\
00275 # \"intensity\" instead of \"value\").\n\
00276 string name\n\
00277 \n\
00278 # The values array should be 1-1 with the elements of the associated\n\
00279 # PointCloud.\n\
00280 float32[] values\n\
00281 \n\
00282 ";
00283 }
00284
00285 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> &) { return value(); }
00286 };
00287
00288 }
00289 }
00290
00291 namespace ros
00292 {
00293 namespace serialization
00294 {
00295
00296 template<class ContainerAllocator> struct Serializer< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> >
00297 {
00298 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00299 {
00300 stream.next(m.table);
00301 stream.next(m.clusters);
00302 stream.next(m.result);
00303 }
00304
00305 ROS_DECLARE_ALLINONE_SERIALIZER;
00306 };
00307 }
00308 }
00309
00310 namespace ros
00311 {
00312 namespace message_operations
00313 {
00314
00315 template<class ContainerAllocator>
00316 struct Printer< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> >
00317 {
00318 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> & v)
00319 {
00320 s << indent << "table: ";
00321 s << std::endl;
00322 Printer< ::tabletop_object_detector::Table_<ContainerAllocator> >::stream(s, indent + " ", v.table);
00323 s << indent << "clusters[]" << std::endl;
00324 for (size_t i = 0; i < v.clusters.size(); ++i)
00325 {
00326 s << indent << " clusters[" << i << "]: ";
00327 s << std::endl;
00328 s << indent;
00329 Printer< ::sensor_msgs::PointCloud_<ContainerAllocator> >::stream(s, indent + " ", v.clusters[i]);
00330 }
00331 s << indent << "result: ";
00332 Printer<int32_t>::stream(s, indent + " ", v.result);
00333 }
00334 };
00335
00336
00337 }
00338 }
00339
00340 #endif // OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIRESULT_H
00341