Go to the source code of this file.
Classes | |
| class | SeedMea.Channel | 
| Data structure for a MEA channel pad neurons: list of neurons within range of the pad total_weight: combined weights of all the neurons.  More... | |
| class | SeedMea.CloseNeuron | 
| Data structure for a neuron that is close to a channel pad.  More... | |
Namespaces | |
| namespace | SeedMea | 
This is a ROS node that is used by itself to generate network connectivity pickle files for the brian_recv.py and brian_to_csv.py nodes.  | |
Functions | |
| def | SeedMea.countCells | 
| def | SeedMea.densityReap | 
| def | SeedMea.displace | 
| def | SeedMea.diSqPlasma | 
| def | SeedMea.gaussConnect | 
| Calculate the probability of a connection between two neurons, based on their distance apart.   | |
| def | SeedMea.genPCell | 
| Takes a 2-D Numpy array and fill it in with a density map.   | |
| def | SeedMea.grimReap | 
| def | SeedMea.nextPowTwo | 
| Find the next highest power of two, to get a shape that's good for plasma fractal generation.   | |
| def | SeedMea.renderMap | 
| Use pygame to render an array.   | |
| def | SeedMea.squarePlasma | 
Variables | |
| int | SeedMea.axon_growth = 220 | 
| SeedMea.axon_max = dish_width | |
| tuple | SeedMea.Ce = Connection(P, P, 'ge') | 
| int | SeedMea.cell_density = 900 | 
| tuple | SeedMea.cells_per_edge = int(dish_width/soma_dia) | 
| tuple | SeedMea.Ci = Connection(P, P, 'gi') | 
| tuple | SeedMea.close_neurons = Channel() | 
| tuple | SeedMea.conn_graph = nx.DiGraph() | 
| list | SeedMea.conn_list = [] | 
| int | SeedMea.connectivity_rate = 55 | 
| int | SeedMea.dendrite_max = 180 | 
| tuple | SeedMea.density_map = np.zeros((edge_len, edge_len)) | 
| int | SeedMea.dish_width = 2500 | 
| tuple | SeedMea.dist = math.sqrt((neuron_x_loc - pad_x_loc)**2 + (neuron_y_loc - pad_y_loc)**2) | 
| tuple | SeedMea.distance = math.sqrt((from_neuron[0][0] - to_neuron[0][0])**2 + (from_neuron[0][1] - to_neuron[0][1])**2) | 
| tuple | SeedMea.edge_len = nextPowTwo(cells_per_edge) | 
| string | SeedMea.eqs | 
| tuple | SeedMea.excitory_count = int(neuron_count * 0.75) | 
| tuple | SeedMea.expected_cells = (dish_width/1000) | 
| string | SeedMea.file_date = "{0}-{1}-{2}-{3}:{4}:{5}" | 
| SeedMea.ignore_corners = True | |
| SeedMea.inhib_count = neuron_count-excitory_count | |
| tuple | SeedMea.inhib_neurons = random.sample(xrange(neuron_count), inhib_count) | 
| tuple | SeedMea.neuron_count = int(countCells(density_map)) | 
| int | SeedMea.neuron_id = 0 | 
| list | SeedMea.neuron_list = [] | 
| list | SeedMea.neuron_x_loc = neuron[0] | 
| list | SeedMea.neuron_y_loc = neuron[0] | 
| tuple | SeedMea.now = datetime.datetime.now() | 
| tuple | SeedMea.P = NeuronGroup(neuron_count, eqs, threshold=-50*mV, reset=-60*mV) | 
| int | SeedMea.pad_cols = 8 | 
| int | SeedMea.pad_dia = 30 | 
| dictionary | SeedMea.pad_neuron_map = {} | 
| int | SeedMea.pad_rows = 8 | 
| int | SeedMea.pad_spacing = 200 | 
| int | SeedMea.pad_threshold = 40 | 
| SeedMea.pad_x_loc = pad_x*pad_spacing | |
| SeedMea.pad_y_loc = pad_y*pad_spacing | |
| int | SeedMea.soma_dia = 30 | 
| int | SeedMea.survival_rate = 65 |