dimreduce.py
Go to the documentation of this file.
00001 # Copyright (c) 2008, Willow Garage, Inc.
00002 # All rights reserved.
00003 # 
00004 # Redistribution and use in source and binary forms, with or without
00005 # modification, are permitted provided that the following conditions are met:
00006 # 
00007 #     * Redistributions of source code must retain the above copyright
00008 #       notice, this list of conditions and the following disclaimer.
00009 #     * Redistributions in binary form must reproduce the above copyright
00010 #       notice, this list of conditions and the following disclaimer in the
00011 #       documentation and/or other materials provided with the distribution.
00012 #     * Neither the name of the Willow Garage, Inc. nor the names of its
00013 #       contributors may be used to endorse or promote products derived from
00014 #       this software without specific prior written permission.
00015 # 
00016 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00017 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00018 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00019 # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00020 # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00021 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00022 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00023 # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00024 # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00025 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00026 # POSSIBILITY OF SUCH DAMAGE.
00027 #
00028 ## @author Hai Nguyen/hai@gatech.edu
00029 import numpy as np
00030 #from pylab import *
00031 
00032 def pca_gain_threshold(s, percentage_change_threshold=.15):
00033     if s.__class__ != np.ndarray:
00034         raise ValueError('Need ndarray as input.') 
00035     shifted      = np.concatenate((s[1:].copy(), np.array([s[-1]])), axis=1)
00036     diff         = s - shifted
00037     percent_diff = diff / s
00038     positions    = np.where(percent_diff < percentage_change_threshold)
00039     return positions[0][0]
00040 
00041 def pca_variance_threshold(eigen_values, percent_variance=.9):
00042     eigen_sum    = np.sum(eigen_values)
00043     #print 'pca_variance_threshold: eigen_sum', eigen_sum
00044     eigen_normed = np.cumsum(eigen_values) / eigen_sum
00045     positions    = np.where(eigen_normed > percent_variance)
00046     print 'pca_variance_threshold: percent_variance', percent_variance
00047     #print positions
00048     return positions[0][0]
00049 
00050 def pca(data):
00051     cov_data = np.cov(data)
00052     u, s, vh = np.linalg.svd(cov_data)
00053     return u,s,vh
00054 
00055 def pca_vectors(data, percent_variance):
00056     u, s, vh = pca(data)
00057     number_of_vectors = pca_variance_threshold(s, percent_variance=percent_variance)
00058     return np.matrix(u[:,0:number_of_vectors+1])
00059 
00060 def randomized_vectors(dataset, number_of_vectors):
00061     rvectors = np.matrix(np.random.random_sample((dataset.num_attributes(), number_of_vectors))) * 2 - 1.0
00062     lengths  = np.diag(1.0 / np.power(np.sum(np.power(rvectors, 2), axis=0), 0.5))
00063     return rvectors * lengths
00064 
00065 


laser_interface
Author(s): Hai Nguyen and Travis Deyle. Advisor: Prof. Charlie Kemp, Lab: Healthcare Robotics Lab at Georgia Tech
autogenerated on Wed Nov 27 2013 11:45:51