Classes | Namespaces | Functions | Variables
perception_monitor.py File Reference

Go to the source code of this file.

Classes

class  kelsey_sandbox.perception_monitor.ArmPerceptionMonitor
 Monitors perception channels on the robot arms. More...
class  kelsey_sandbox.perception_monitor.PeriodicLogger
 Periodically logs the output of a callback function by calling it at a certain rate and gathering up the results into a list. More...
class  kelsey_sandbox.perception_monitor.PeriodicMonitor
 Periodically monitors the output of a callback function by calling it at a certain rate and compares it with a provided model to insure the value doesn't vary greatly within a degree of tolerance provided by the variance function. More...

Namespaces

namespace  kelsey_sandbox::perception_monitor

Functions

def kelsey_sandbox::perception_monitor.accel_state_processor
 Processes the AccelerometerState message, returning an average of the sample values and the timestamp in nanoseconds.
def kelsey_sandbox::perception_monitor.generate_mean_grasp
 Generates model functions of all the perceptions over several identical trajectories.
def kelsey_sandbox::perception_monitor.joints_state_processor
 Callback for /joint_states topic.
def kelsey_sandbox::perception_monitor.log
def kelsey_sandbox::perception_monitor.pressure_state_processor
def kelsey_sandbox::perception_monitor.split_signals

Variables

tuple kelsey_sandbox::perception_monitor.apm = ArmPerceptionMonitor(0, 0.001)
list kelsey_sandbox::perception_monitor.joint_nm_list
list kelsey_sandbox::perception_monitor.l_jt_idx_list = [31, 32, 30, 34, 33, 35, 36]
list kelsey_sandbox::perception_monitor.means = models["accelerometer"]
tuple kelsey_sandbox::perception_monitor.models = apm.generate_models()
string kelsey_sandbox::perception_monitor.node_name = "arm_perception_monitor"
list kelsey_sandbox::perception_monitor.r_jt_idx_list = [17, 18, 16, 20, 19, 21, 22]
float kelsey_sandbox::perception_monitor.std_dev = 2.5
list kelsey_sandbox::perception_monitor.vars = models["accelerometer"]
list kelsey_sandbox::perception_monitor.xmmax = [m + np.sqrt(v) * std_dev for m, v in zip(xm, xv)]
list kelsey_sandbox::perception_monitor.xmmin = [m - np.sqrt(v) * std_dev for m, v in zip(xm, xv)]
tuple kelsey_sandbox::perception_monitor.xv = map(np.sqrt, xv)
list kelsey_sandbox::perception_monitor.ymmax = [m + np.sqrt(v) * std_dev for m, v in zip(ym, yv)]
list kelsey_sandbox::perception_monitor.ymmin = [m - np.sqrt(v) * std_dev for m, v in zip(ym, yv)]
tuple kelsey_sandbox::perception_monitor.yv = map(np.sqrt, yv)
list kelsey_sandbox::perception_monitor.zmmax = [m + np.sqrt(v) * std_dev for m, v in zip(zm, zv)]
list kelsey_sandbox::perception_monitor.zmmin = [m - np.sqrt(v) * std_dev for m, v in zip(zm, zv)]
tuple kelsey_sandbox::perception_monitor.zv = map(np.sqrt, zv)


kelsey_sandbox
Author(s): kelsey
autogenerated on Wed Nov 27 2013 11:52:04