Classes | Namespaces | Functions | Variables
boosted_tree_classifier.py File Reference

Go to the source code of this file.

Classes

class  boosted_tree_classifier.boosted_tree_classifier

Namespaces

namespace  boosted_tree_classifier

Functions

def boosted_tree_classifier.load
def boosted_tree_classifier.postprocess
def boosted_tree_classifier.release_train_datastructures
def boosted_tree_classifier.save
def boosted_tree_classifier.test
def boosted_tree_classifier.test_postprocess
def boosted_tree_classifier.train

Variables

 boosted_tree_classifier::cv_classifier
 boosted_tree_classifier::test_feature_dict
 boosted_tree_classifier.test_labels
tuple boosted_tree_classifier.type_mask = cv.cvCreateMat(1, feature_vector_length+1, cv.CV_8UC1)
 subsample from the features, NOT USED/NOT WORKING? else: print ut.getTime(), 'more than',max_traning_size,'features, sample from them...' select 2040000 features: all_data = [] all_labels = [] for dict in data: for index in range(dict['set_size']): if dict['labels'][index] == processor.LABEL_SURFACE or dict['labels'][index]== processor.LABEL_CLUTTER: fv = (dict['features'][index])[self.processor.features.get_indexvector(self.features)] all_data += [fv] all_labels += [dict['labels'][index]]


clutter_segmentation
Author(s): Jason Okerman, Martin Schuster, Advisors: Prof. Charlie Kemp and Jim Regh, Lab: Healthcare Robotics Lab at Georgia Tech
autogenerated on Wed Nov 27 2013 12:07:15