$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/manipulation/pr2_object_manipulation_msgs/msg/IMGUIGoal.msg */ 00002 #ifndef PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIGOAL_H 00003 #define PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "pr2_object_manipulation_msgs/IMGUIOptions.h" 00018 #include "pr2_object_manipulation_msgs/IMGUICommand.h" 00019 00020 namespace pr2_object_manipulation_msgs 00021 { 00022 template <class ContainerAllocator> 00023 struct IMGUIGoal_ { 00024 typedef IMGUIGoal_<ContainerAllocator> Type; 00025 00026 IMGUIGoal_() 00027 : options() 00028 , command() 00029 { 00030 } 00031 00032 IMGUIGoal_(const ContainerAllocator& _alloc) 00033 : options(_alloc) 00034 , command(_alloc) 00035 { 00036 } 00037 00038 typedef ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> _options_type; 00039 ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> options; 00040 00041 typedef ::pr2_object_manipulation_msgs::IMGUICommand_<ContainerAllocator> _command_type; 00042 ::pr2_object_manipulation_msgs::IMGUICommand_<ContainerAllocator> command; 00043 00044 00045 private: 00046 static const char* __s_getDataType_() { return "pr2_object_manipulation_msgs/IMGUIGoal"; } 00047 public: 00048 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00049 00050 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00051 00052 private: 00053 static const char* __s_getMD5Sum_() { return "e75483c9fb89d8b0a48dfd33d36f2253"; } 00054 public: 00055 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00056 00057 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00058 00059 private: 00060 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00061 \n\ 00062 IMGUIOptions options\n\ 00063 IMGUICommand command\n\ 00064 \n\ 00065 \n\ 00066 ================================================================================\n\ 00067 MSG: pr2_object_manipulation_msgs/IMGUIOptions\n\ 00068 \n\ 00069 # collision checking enabled\n\ 00070 bool collision_checked\n\ 00071 \n\ 00072 # 0=call gripper click\n\ 00073 # 1=grasp the provided graspable object\n\ 00074 int32 grasp_selection\n\ 00075 \n\ 00076 # 0=right, 1=left arm\n\ 00077 int32 arm_selection\n\ 00078 \n\ 00079 # for RESET commands\n\ 00080 # 0=reset collision objects\n\ 00081 # 1=reset attached objects\n\ 00082 int32 reset_choice\n\ 00083 \n\ 00084 # for MOVE_ARM commands\n\ 00085 # 0=side\n\ 00086 # 1=front\n\ 00087 # 2=side handoff\n\ 00088 int32 arm_action_choice\n\ 00089 \n\ 00090 # for MOVE_ARM commands\n\ 00091 # 0=open-loop\n\ 00092 # 1=with planner\n\ 00093 int32 arm_planner_choice\n\ 00094 \n\ 00095 # for MOVE_GRIPPER commands\n\ 00096 # opening of gripper (0=closed..100=open)\n\ 00097 int32 gripper_slider_position\n\ 00098 \n\ 00099 # used if grasp_selection == 1\n\ 00100 object_manipulation_msgs/GraspableObject selected_object\n\ 00101 \n\ 00102 # indicates obstacles that can be moved during grasping\n\ 00103 # presumably, the operator has marked these in some fashion\n\ 00104 object_manipulation_msgs/GraspableObject[] movable_obstacles\n\ 00105 \n\ 00106 # more options..\n\ 00107 IMGUIAdvancedOptions adv_options\n\ 00108 \n\ 00109 ================================================================================\n\ 00110 MSG: object_manipulation_msgs/GraspableObject\n\ 00111 # an object that the object_manipulator can work on\n\ 00112 \n\ 00113 # a graspable object can be represented in multiple ways. This message\n\ 00114 # can contain all of them. Which one is actually used is up to the receiver\n\ 00115 # of this message. When adding new representations, one must be careful that\n\ 00116 # they have reasonable lightweight defaults indicating that that particular\n\ 00117 # representation is not available.\n\ 00118 \n\ 00119 # the tf frame to be used as a reference frame when combining information from\n\ 00120 # the different representations below\n\ 00121 string reference_frame_id\n\ 00122 \n\ 00123 # potential recognition results from a database of models\n\ 00124 # all poses are relative to the object reference pose\n\ 00125 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00126 \n\ 00127 # the point cloud itself\n\ 00128 sensor_msgs/PointCloud cluster\n\ 00129 \n\ 00130 # a region of a PointCloud2 of interest\n\ 00131 object_manipulation_msgs/SceneRegion region\n\ 00132 \n\ 00133 # the name that this object has in the collision environment\n\ 00134 string collision_name\n\ 00135 ================================================================================\n\ 00136 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00137 # Informs that a specific model from the Model Database has been \n\ 00138 # identified at a certain location\n\ 00139 \n\ 00140 # the database id of the model\n\ 00141 int32 model_id\n\ 00142 \n\ 00143 # the pose that it can be found in\n\ 00144 geometry_msgs/PoseStamped pose\n\ 00145 \n\ 00146 # a measure of the confidence level in this detection result\n\ 00147 float32 confidence\n\ 00148 \n\ 00149 # the name of the object detector that generated this detection result\n\ 00150 string detector_name\n\ 00151 \n\ 00152 ================================================================================\n\ 00153 MSG: geometry_msgs/PoseStamped\n\ 00154 # A Pose with reference coordinate frame and timestamp\n\ 00155 Header header\n\ 00156 Pose pose\n\ 00157 \n\ 00158 ================================================================================\n\ 00159 MSG: std_msgs/Header\n\ 00160 # Standard metadata for higher-level stamped data types.\n\ 00161 # This is generally used to communicate timestamped data \n\ 00162 # in a particular coordinate frame.\n\ 00163 # \n\ 00164 # sequence ID: consecutively increasing ID \n\ 00165 uint32 seq\n\ 00166 #Two-integer timestamp that is expressed as:\n\ 00167 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00168 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00169 # time-handling sugar is provided by the client library\n\ 00170 time stamp\n\ 00171 #Frame this data is associated with\n\ 00172 # 0: no frame\n\ 00173 # 1: global frame\n\ 00174 string frame_id\n\ 00175 \n\ 00176 ================================================================================\n\ 00177 MSG: geometry_msgs/Pose\n\ 00178 # A representation of pose in free space, composed of postion and orientation. \n\ 00179 Point position\n\ 00180 Quaternion orientation\n\ 00181 \n\ 00182 ================================================================================\n\ 00183 MSG: geometry_msgs/Point\n\ 00184 # This contains the position of a point in free space\n\ 00185 float64 x\n\ 00186 float64 y\n\ 00187 float64 z\n\ 00188 \n\ 00189 ================================================================================\n\ 00190 MSG: geometry_msgs/Quaternion\n\ 00191 # This represents an orientation in free space in quaternion form.\n\ 00192 \n\ 00193 float64 x\n\ 00194 float64 y\n\ 00195 float64 z\n\ 00196 float64 w\n\ 00197 \n\ 00198 ================================================================================\n\ 00199 MSG: sensor_msgs/PointCloud\n\ 00200 # This message holds a collection of 3d points, plus optional additional\n\ 00201 # information about each point.\n\ 00202 \n\ 00203 # Time of sensor data acquisition, coordinate frame ID.\n\ 00204 Header header\n\ 00205 \n\ 00206 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00207 # in the frame given in the header.\n\ 00208 geometry_msgs/Point32[] points\n\ 00209 \n\ 00210 # Each channel should have the same number of elements as points array,\n\ 00211 # and the data in each channel should correspond 1:1 with each point.\n\ 00212 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00213 ChannelFloat32[] channels\n\ 00214 \n\ 00215 ================================================================================\n\ 00216 MSG: geometry_msgs/Point32\n\ 00217 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00218 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00219 # \n\ 00220 # This recommendation is to promote interoperability. \n\ 00221 #\n\ 00222 # This message is designed to take up less space when sending\n\ 00223 # lots of points at once, as in the case of a PointCloud. \n\ 00224 \n\ 00225 float32 x\n\ 00226 float32 y\n\ 00227 float32 z\n\ 00228 ================================================================================\n\ 00229 MSG: sensor_msgs/ChannelFloat32\n\ 00230 # This message is used by the PointCloud message to hold optional data\n\ 00231 # associated with each point in the cloud. The length of the values\n\ 00232 # array should be the same as the length of the points array in the\n\ 00233 # PointCloud, and each value should be associated with the corresponding\n\ 00234 # point.\n\ 00235 \n\ 00236 # Channel names in existing practice include:\n\ 00237 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00238 # This is opposite to usual conventions but remains for\n\ 00239 # historical reasons. The newer PointCloud2 message has no\n\ 00240 # such problem.\n\ 00241 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00242 # (R,G,B) values packed into the least significant 24 bits,\n\ 00243 # in order.\n\ 00244 # \"intensity\" - laser or pixel intensity.\n\ 00245 # \"distance\"\n\ 00246 \n\ 00247 # The channel name should give semantics of the channel (e.g.\n\ 00248 # \"intensity\" instead of \"value\").\n\ 00249 string name\n\ 00250 \n\ 00251 # The values array should be 1-1 with the elements of the associated\n\ 00252 # PointCloud.\n\ 00253 float32[] values\n\ 00254 \n\ 00255 ================================================================================\n\ 00256 MSG: object_manipulation_msgs/SceneRegion\n\ 00257 # Point cloud\n\ 00258 sensor_msgs/PointCloud2 cloud\n\ 00259 \n\ 00260 # Indices for the region of interest\n\ 00261 int32[] mask\n\ 00262 \n\ 00263 # One of the corresponding 2D images, if applicable\n\ 00264 sensor_msgs/Image image\n\ 00265 \n\ 00266 # The disparity image, if applicable\n\ 00267 sensor_msgs/Image disparity_image\n\ 00268 \n\ 00269 # Camera info for the camera that took the image\n\ 00270 sensor_msgs/CameraInfo cam_info\n\ 00271 \n\ 00272 # a 3D region of interest for grasp planning\n\ 00273 geometry_msgs/PoseStamped roi_box_pose\n\ 00274 geometry_msgs/Vector3 roi_box_dims\n\ 00275 \n\ 00276 ================================================================================\n\ 00277 MSG: sensor_msgs/PointCloud2\n\ 00278 # This message holds a collection of N-dimensional points, which may\n\ 00279 # contain additional information such as normals, intensity, etc. The\n\ 00280 # point data is stored as a binary blob, its layout described by the\n\ 00281 # contents of the \"fields\" array.\n\ 00282 \n\ 00283 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00284 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00285 # camera depth sensors such as stereo or time-of-flight.\n\ 00286 \n\ 00287 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00288 # points).\n\ 00289 Header header\n\ 00290 \n\ 00291 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00292 # 1 and width is the length of the point cloud.\n\ 00293 uint32 height\n\ 00294 uint32 width\n\ 00295 \n\ 00296 # Describes the channels and their layout in the binary data blob.\n\ 00297 PointField[] fields\n\ 00298 \n\ 00299 bool is_bigendian # Is this data bigendian?\n\ 00300 uint32 point_step # Length of a point in bytes\n\ 00301 uint32 row_step # Length of a row in bytes\n\ 00302 uint8[] data # Actual point data, size is (row_step*height)\n\ 00303 \n\ 00304 bool is_dense # True if there are no invalid points\n\ 00305 \n\ 00306 ================================================================================\n\ 00307 MSG: sensor_msgs/PointField\n\ 00308 # This message holds the description of one point entry in the\n\ 00309 # PointCloud2 message format.\n\ 00310 uint8 INT8 = 1\n\ 00311 uint8 UINT8 = 2\n\ 00312 uint8 INT16 = 3\n\ 00313 uint8 UINT16 = 4\n\ 00314 uint8 INT32 = 5\n\ 00315 uint8 UINT32 = 6\n\ 00316 uint8 FLOAT32 = 7\n\ 00317 uint8 FLOAT64 = 8\n\ 00318 \n\ 00319 string name # Name of field\n\ 00320 uint32 offset # Offset from start of point struct\n\ 00321 uint8 datatype # Datatype enumeration, see above\n\ 00322 uint32 count # How many elements in the field\n\ 00323 \n\ 00324 ================================================================================\n\ 00325 MSG: sensor_msgs/Image\n\ 00326 # This message contains an uncompressed image\n\ 00327 # (0, 0) is at top-left corner of image\n\ 00328 #\n\ 00329 \n\ 00330 Header header # Header timestamp should be acquisition time of image\n\ 00331 # Header frame_id should be optical frame of camera\n\ 00332 # origin of frame should be optical center of cameara\n\ 00333 # +x should point to the right in the image\n\ 00334 # +y should point down in the image\n\ 00335 # +z should point into to plane of the image\n\ 00336 # If the frame_id here and the frame_id of the CameraInfo\n\ 00337 # message associated with the image conflict\n\ 00338 # the behavior is undefined\n\ 00339 \n\ 00340 uint32 height # image height, that is, number of rows\n\ 00341 uint32 width # image width, that is, number of columns\n\ 00342 \n\ 00343 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00344 # If you want to standardize a new string format, join\n\ 00345 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00346 \n\ 00347 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00348 # taken from the list of strings in src/image_encodings.cpp\n\ 00349 \n\ 00350 uint8 is_bigendian # is this data bigendian?\n\ 00351 uint32 step # Full row length in bytes\n\ 00352 uint8[] data # actual matrix data, size is (step * rows)\n\ 00353 \n\ 00354 ================================================================================\n\ 00355 MSG: sensor_msgs/CameraInfo\n\ 00356 # This message defines meta information for a camera. It should be in a\n\ 00357 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00358 # image topics named:\n\ 00359 #\n\ 00360 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00361 # image - monochrome, distorted\n\ 00362 # image_color - color, distorted\n\ 00363 # image_rect - monochrome, rectified\n\ 00364 # image_rect_color - color, rectified\n\ 00365 #\n\ 00366 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00367 # for producing the four processed image topics from image_raw and\n\ 00368 # camera_info. The meaning of the camera parameters are described in\n\ 00369 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00370 #\n\ 00371 # The image_geometry package provides a user-friendly interface to\n\ 00372 # common operations using this meta information. If you want to, e.g.,\n\ 00373 # project a 3d point into image coordinates, we strongly recommend\n\ 00374 # using image_geometry.\n\ 00375 #\n\ 00376 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00377 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00378 # indicates an uncalibrated camera.\n\ 00379 \n\ 00380 #######################################################################\n\ 00381 # Image acquisition info #\n\ 00382 #######################################################################\n\ 00383 \n\ 00384 # Time of image acquisition, camera coordinate frame ID\n\ 00385 Header header # Header timestamp should be acquisition time of image\n\ 00386 # Header frame_id should be optical frame of camera\n\ 00387 # origin of frame should be optical center of camera\n\ 00388 # +x should point to the right in the image\n\ 00389 # +y should point down in the image\n\ 00390 # +z should point into the plane of the image\n\ 00391 \n\ 00392 \n\ 00393 #######################################################################\n\ 00394 # Calibration Parameters #\n\ 00395 #######################################################################\n\ 00396 # These are fixed during camera calibration. Their values will be the #\n\ 00397 # same in all messages until the camera is recalibrated. Note that #\n\ 00398 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00399 # #\n\ 00400 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00401 # to: #\n\ 00402 # 1. An undistorted image (requires D and K) #\n\ 00403 # 2. A rectified image (requires D, K, R) #\n\ 00404 # The projection matrix P projects 3D points into the rectified image.#\n\ 00405 #######################################################################\n\ 00406 \n\ 00407 # The image dimensions with which the camera was calibrated. Normally\n\ 00408 # this will be the full camera resolution in pixels.\n\ 00409 uint32 height\n\ 00410 uint32 width\n\ 00411 \n\ 00412 # The distortion model used. Supported models are listed in\n\ 00413 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00414 # simple model of radial and tangential distortion - is sufficent.\n\ 00415 string distortion_model\n\ 00416 \n\ 00417 # The distortion parameters, size depending on the distortion model.\n\ 00418 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00419 float64[] D\n\ 00420 \n\ 00421 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00422 # [fx 0 cx]\n\ 00423 # K = [ 0 fy cy]\n\ 00424 # [ 0 0 1]\n\ 00425 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00426 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00427 # (cx, cy).\n\ 00428 float64[9] K # 3x3 row-major matrix\n\ 00429 \n\ 00430 # Rectification matrix (stereo cameras only)\n\ 00431 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00432 # stereo image plane so that epipolar lines in both stereo images are\n\ 00433 # parallel.\n\ 00434 float64[9] R # 3x3 row-major matrix\n\ 00435 \n\ 00436 # Projection/camera matrix\n\ 00437 # [fx' 0 cx' Tx]\n\ 00438 # P = [ 0 fy' cy' Ty]\n\ 00439 # [ 0 0 1 0]\n\ 00440 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00441 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00442 # is the normal camera intrinsic matrix for the rectified image.\n\ 00443 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00444 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00445 # (cx', cy') - these may differ from the values in K.\n\ 00446 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00447 # also have R = the identity and P[1:3,1:3] = K.\n\ 00448 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00449 # position of the optical center of the second camera in the first\n\ 00450 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00451 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00452 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00453 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00454 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00455 # the rectified image is given by:\n\ 00456 # [u v w]' = P * [X Y Z 1]'\n\ 00457 # x = u / w\n\ 00458 # y = v / w\n\ 00459 # This holds for both images of a stereo pair.\n\ 00460 float64[12] P # 3x4 row-major matrix\n\ 00461 \n\ 00462 \n\ 00463 #######################################################################\n\ 00464 # Operational Parameters #\n\ 00465 #######################################################################\n\ 00466 # These define the image region actually captured by the camera #\n\ 00467 # driver. Although they affect the geometry of the output image, they #\n\ 00468 # may be changed freely without recalibrating the camera. #\n\ 00469 #######################################################################\n\ 00470 \n\ 00471 # Binning refers here to any camera setting which combines rectangular\n\ 00472 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00473 # resolution of the output image to\n\ 00474 # (width / binning_x) x (height / binning_y).\n\ 00475 # The default values binning_x = binning_y = 0 is considered the same\n\ 00476 # as binning_x = binning_y = 1 (no subsampling).\n\ 00477 uint32 binning_x\n\ 00478 uint32 binning_y\n\ 00479 \n\ 00480 # Region of interest (subwindow of full camera resolution), given in\n\ 00481 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00482 # always denotes the same window of pixels on the camera sensor,\n\ 00483 # regardless of binning settings.\n\ 00484 # The default setting of roi (all values 0) is considered the same as\n\ 00485 # full resolution (roi.width = width, roi.height = height).\n\ 00486 RegionOfInterest roi\n\ 00487 \n\ 00488 ================================================================================\n\ 00489 MSG: sensor_msgs/RegionOfInterest\n\ 00490 # This message is used to specify a region of interest within an image.\n\ 00491 #\n\ 00492 # When used to specify the ROI setting of the camera when the image was\n\ 00493 # taken, the height and width fields should either match the height and\n\ 00494 # width fields for the associated image; or height = width = 0\n\ 00495 # indicates that the full resolution image was captured.\n\ 00496 \n\ 00497 uint32 x_offset # Leftmost pixel of the ROI\n\ 00498 # (0 if the ROI includes the left edge of the image)\n\ 00499 uint32 y_offset # Topmost pixel of the ROI\n\ 00500 # (0 if the ROI includes the top edge of the image)\n\ 00501 uint32 height # Height of ROI\n\ 00502 uint32 width # Width of ROI\n\ 00503 \n\ 00504 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00505 # ROI in this message. Typically this should be False if the full image\n\ 00506 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00507 # used).\n\ 00508 bool do_rectify\n\ 00509 \n\ 00510 ================================================================================\n\ 00511 MSG: geometry_msgs/Vector3\n\ 00512 # This represents a vector in free space. \n\ 00513 \n\ 00514 float64 x\n\ 00515 float64 y\n\ 00516 float64 z\n\ 00517 ================================================================================\n\ 00518 MSG: pr2_object_manipulation_msgs/IMGUIAdvancedOptions\n\ 00519 \n\ 00520 bool reactive_grasping\n\ 00521 bool reactive_force \n\ 00522 bool reactive_place\n\ 00523 int32 lift_steps\n\ 00524 int32 retreat_steps\n\ 00525 int32 lift_direction_choice\n\ 00526 int32 desired_approach\n\ 00527 int32 min_approach\n\ 00528 float32 max_contact_force\n\ 00529 \n\ 00530 ================================================================================\n\ 00531 MSG: pr2_object_manipulation_msgs/IMGUICommand\n\ 00532 \n\ 00533 int32 PICKUP = 0\n\ 00534 int32 PLACE = 1\n\ 00535 int32 PLANNED_MOVE = 2\n\ 00536 int32 RESET = 3\n\ 00537 int32 MOVE_ARM = 4\n\ 00538 int32 LOOK_AT_TABLE = 5\n\ 00539 int32 MODEL_OBJECT = 6\n\ 00540 int32 MOVE_GRIPPER = 7\n\ 00541 int32 SCRIPTED_ACTION = 8\n\ 00542 int32 STOP_NAV = 9\n\ 00543 \n\ 00544 int32 command\n\ 00545 string script_name\n\ 00546 string script_group_name\n\ 00547 \n\ 00548 "; } 00549 public: 00550 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00551 00552 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00553 00554 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00555 { 00556 ros::serialization::OStream stream(write_ptr, 1000000000); 00557 ros::serialization::serialize(stream, options); 00558 ros::serialization::serialize(stream, command); 00559 return stream.getData(); 00560 } 00561 00562 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00563 { 00564 ros::serialization::IStream stream(read_ptr, 1000000000); 00565 ros::serialization::deserialize(stream, options); 00566 ros::serialization::deserialize(stream, command); 00567 return stream.getData(); 00568 } 00569 00570 ROS_DEPRECATED virtual uint32_t serializationLength() const 00571 { 00572 uint32_t size = 0; 00573 size += ros::serialization::serializationLength(options); 00574 size += ros::serialization::serializationLength(command); 00575 return size; 00576 } 00577 00578 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > Ptr; 00579 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> const> ConstPtr; 00580 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00581 }; // struct IMGUIGoal 00582 typedef ::pr2_object_manipulation_msgs::IMGUIGoal_<std::allocator<void> > IMGUIGoal; 00583 00584 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIGoal> IMGUIGoalPtr; 00585 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIGoal const> IMGUIGoalConstPtr; 00586 00587 00588 template<typename ContainerAllocator> 00589 std::ostream& operator<<(std::ostream& s, const ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> & v) 00590 { 00591 ros::message_operations::Printer< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> >::stream(s, "", v); 00592 return s;} 00593 00594 } // namespace pr2_object_manipulation_msgs 00595 00596 namespace ros 00597 { 00598 namespace message_traits 00599 { 00600 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > : public TrueType {}; 00601 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> const> : public TrueType {}; 00602 template<class ContainerAllocator> 00603 struct MD5Sum< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > { 00604 static const char* value() 00605 { 00606 return "e75483c9fb89d8b0a48dfd33d36f2253"; 00607 } 00608 00609 static const char* value(const ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> &) { return value(); } 00610 static const uint64_t static_value1 = 0xe75483c9fb89d8b0ULL; 00611 static const uint64_t static_value2 = 0xa48dfd33d36f2253ULL; 00612 }; 00613 00614 template<class ContainerAllocator> 00615 struct DataType< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > { 00616 static const char* value() 00617 { 00618 return "pr2_object_manipulation_msgs/IMGUIGoal"; 00619 } 00620 00621 static const char* value(const ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> &) { return value(); } 00622 }; 00623 00624 template<class ContainerAllocator> 00625 struct Definition< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > { 00626 static const char* value() 00627 { 00628 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00629 \n\ 00630 IMGUIOptions options\n\ 00631 IMGUICommand command\n\ 00632 \n\ 00633 \n\ 00634 ================================================================================\n\ 00635 MSG: pr2_object_manipulation_msgs/IMGUIOptions\n\ 00636 \n\ 00637 # collision checking enabled\n\ 00638 bool collision_checked\n\ 00639 \n\ 00640 # 0=call gripper click\n\ 00641 # 1=grasp the provided graspable object\n\ 00642 int32 grasp_selection\n\ 00643 \n\ 00644 # 0=right, 1=left arm\n\ 00645 int32 arm_selection\n\ 00646 \n\ 00647 # for RESET commands\n\ 00648 # 0=reset collision objects\n\ 00649 # 1=reset attached objects\n\ 00650 int32 reset_choice\n\ 00651 \n\ 00652 # for MOVE_ARM commands\n\ 00653 # 0=side\n\ 00654 # 1=front\n\ 00655 # 2=side handoff\n\ 00656 int32 arm_action_choice\n\ 00657 \n\ 00658 # for MOVE_ARM commands\n\ 00659 # 0=open-loop\n\ 00660 # 1=with planner\n\ 00661 int32 arm_planner_choice\n\ 00662 \n\ 00663 # for MOVE_GRIPPER commands\n\ 00664 # opening of gripper (0=closed..100=open)\n\ 00665 int32 gripper_slider_position\n\ 00666 \n\ 00667 # used if grasp_selection == 1\n\ 00668 object_manipulation_msgs/GraspableObject selected_object\n\ 00669 \n\ 00670 # indicates obstacles that can be moved during grasping\n\ 00671 # presumably, the operator has marked these in some fashion\n\ 00672 object_manipulation_msgs/GraspableObject[] movable_obstacles\n\ 00673 \n\ 00674 # more options..\n\ 00675 IMGUIAdvancedOptions adv_options\n\ 00676 \n\ 00677 ================================================================================\n\ 00678 MSG: object_manipulation_msgs/GraspableObject\n\ 00679 # an object that the object_manipulator can work on\n\ 00680 \n\ 00681 # a graspable object can be represented in multiple ways. This message\n\ 00682 # can contain all of them. Which one is actually used is up to the receiver\n\ 00683 # of this message. When adding new representations, one must be careful that\n\ 00684 # they have reasonable lightweight defaults indicating that that particular\n\ 00685 # representation is not available.\n\ 00686 \n\ 00687 # the tf frame to be used as a reference frame when combining information from\n\ 00688 # the different representations below\n\ 00689 string reference_frame_id\n\ 00690 \n\ 00691 # potential recognition results from a database of models\n\ 00692 # all poses are relative to the object reference pose\n\ 00693 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00694 \n\ 00695 # the point cloud itself\n\ 00696 sensor_msgs/PointCloud cluster\n\ 00697 \n\ 00698 # a region of a PointCloud2 of interest\n\ 00699 object_manipulation_msgs/SceneRegion region\n\ 00700 \n\ 00701 # the name that this object has in the collision environment\n\ 00702 string collision_name\n\ 00703 ================================================================================\n\ 00704 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00705 # Informs that a specific model from the Model Database has been \n\ 00706 # identified at a certain location\n\ 00707 \n\ 00708 # the database id of the model\n\ 00709 int32 model_id\n\ 00710 \n\ 00711 # the pose that it can be found in\n\ 00712 geometry_msgs/PoseStamped pose\n\ 00713 \n\ 00714 # a measure of the confidence level in this detection result\n\ 00715 float32 confidence\n\ 00716 \n\ 00717 # the name of the object detector that generated this detection result\n\ 00718 string detector_name\n\ 00719 \n\ 00720 ================================================================================\n\ 00721 MSG: geometry_msgs/PoseStamped\n\ 00722 # A Pose with reference coordinate frame and timestamp\n\ 00723 Header header\n\ 00724 Pose pose\n\ 00725 \n\ 00726 ================================================================================\n\ 00727 MSG: std_msgs/Header\n\ 00728 # Standard metadata for higher-level stamped data types.\n\ 00729 # This is generally used to communicate timestamped data \n\ 00730 # in a particular coordinate frame.\n\ 00731 # \n\ 00732 # sequence ID: consecutively increasing ID \n\ 00733 uint32 seq\n\ 00734 #Two-integer timestamp that is expressed as:\n\ 00735 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00736 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00737 # time-handling sugar is provided by the client library\n\ 00738 time stamp\n\ 00739 #Frame this data is associated with\n\ 00740 # 0: no frame\n\ 00741 # 1: global frame\n\ 00742 string frame_id\n\ 00743 \n\ 00744 ================================================================================\n\ 00745 MSG: geometry_msgs/Pose\n\ 00746 # A representation of pose in free space, composed of postion and orientation. \n\ 00747 Point position\n\ 00748 Quaternion orientation\n\ 00749 \n\ 00750 ================================================================================\n\ 00751 MSG: geometry_msgs/Point\n\ 00752 # This contains the position of a point in free space\n\ 00753 float64 x\n\ 00754 float64 y\n\ 00755 float64 z\n\ 00756 \n\ 00757 ================================================================================\n\ 00758 MSG: geometry_msgs/Quaternion\n\ 00759 # This represents an orientation in free space in quaternion form.\n\ 00760 \n\ 00761 float64 x\n\ 00762 float64 y\n\ 00763 float64 z\n\ 00764 float64 w\n\ 00765 \n\ 00766 ================================================================================\n\ 00767 MSG: sensor_msgs/PointCloud\n\ 00768 # This message holds a collection of 3d points, plus optional additional\n\ 00769 # information about each point.\n\ 00770 \n\ 00771 # Time of sensor data acquisition, coordinate frame ID.\n\ 00772 Header header\n\ 00773 \n\ 00774 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00775 # in the frame given in the header.\n\ 00776 geometry_msgs/Point32[] points\n\ 00777 \n\ 00778 # Each channel should have the same number of elements as points array,\n\ 00779 # and the data in each channel should correspond 1:1 with each point.\n\ 00780 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00781 ChannelFloat32[] channels\n\ 00782 \n\ 00783 ================================================================================\n\ 00784 MSG: geometry_msgs/Point32\n\ 00785 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00786 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00787 # \n\ 00788 # This recommendation is to promote interoperability. \n\ 00789 #\n\ 00790 # This message is designed to take up less space when sending\n\ 00791 # lots of points at once, as in the case of a PointCloud. \n\ 00792 \n\ 00793 float32 x\n\ 00794 float32 y\n\ 00795 float32 z\n\ 00796 ================================================================================\n\ 00797 MSG: sensor_msgs/ChannelFloat32\n\ 00798 # This message is used by the PointCloud message to hold optional data\n\ 00799 # associated with each point in the cloud. The length of the values\n\ 00800 # array should be the same as the length of the points array in the\n\ 00801 # PointCloud, and each value should be associated with the corresponding\n\ 00802 # point.\n\ 00803 \n\ 00804 # Channel names in existing practice include:\n\ 00805 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00806 # This is opposite to usual conventions but remains for\n\ 00807 # historical reasons. The newer PointCloud2 message has no\n\ 00808 # such problem.\n\ 00809 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00810 # (R,G,B) values packed into the least significant 24 bits,\n\ 00811 # in order.\n\ 00812 # \"intensity\" - laser or pixel intensity.\n\ 00813 # \"distance\"\n\ 00814 \n\ 00815 # The channel name should give semantics of the channel (e.g.\n\ 00816 # \"intensity\" instead of \"value\").\n\ 00817 string name\n\ 00818 \n\ 00819 # The values array should be 1-1 with the elements of the associated\n\ 00820 # PointCloud.\n\ 00821 float32[] values\n\ 00822 \n\ 00823 ================================================================================\n\ 00824 MSG: object_manipulation_msgs/SceneRegion\n\ 00825 # Point cloud\n\ 00826 sensor_msgs/PointCloud2 cloud\n\ 00827 \n\ 00828 # Indices for the region of interest\n\ 00829 int32[] mask\n\ 00830 \n\ 00831 # One of the corresponding 2D images, if applicable\n\ 00832 sensor_msgs/Image image\n\ 00833 \n\ 00834 # The disparity image, if applicable\n\ 00835 sensor_msgs/Image disparity_image\n\ 00836 \n\ 00837 # Camera info for the camera that took the image\n\ 00838 sensor_msgs/CameraInfo cam_info\n\ 00839 \n\ 00840 # a 3D region of interest for grasp planning\n\ 00841 geometry_msgs/PoseStamped roi_box_pose\n\ 00842 geometry_msgs/Vector3 roi_box_dims\n\ 00843 \n\ 00844 ================================================================================\n\ 00845 MSG: sensor_msgs/PointCloud2\n\ 00846 # This message holds a collection of N-dimensional points, which may\n\ 00847 # contain additional information such as normals, intensity, etc. The\n\ 00848 # point data is stored as a binary blob, its layout described by the\n\ 00849 # contents of the \"fields\" array.\n\ 00850 \n\ 00851 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00852 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00853 # camera depth sensors such as stereo or time-of-flight.\n\ 00854 \n\ 00855 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00856 # points).\n\ 00857 Header header\n\ 00858 \n\ 00859 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00860 # 1 and width is the length of the point cloud.\n\ 00861 uint32 height\n\ 00862 uint32 width\n\ 00863 \n\ 00864 # Describes the channels and their layout in the binary data blob.\n\ 00865 PointField[] fields\n\ 00866 \n\ 00867 bool is_bigendian # Is this data bigendian?\n\ 00868 uint32 point_step # Length of a point in bytes\n\ 00869 uint32 row_step # Length of a row in bytes\n\ 00870 uint8[] data # Actual point data, size is (row_step*height)\n\ 00871 \n\ 00872 bool is_dense # True if there are no invalid points\n\ 00873 \n\ 00874 ================================================================================\n\ 00875 MSG: sensor_msgs/PointField\n\ 00876 # This message holds the description of one point entry in the\n\ 00877 # PointCloud2 message format.\n\ 00878 uint8 INT8 = 1\n\ 00879 uint8 UINT8 = 2\n\ 00880 uint8 INT16 = 3\n\ 00881 uint8 UINT16 = 4\n\ 00882 uint8 INT32 = 5\n\ 00883 uint8 UINT32 = 6\n\ 00884 uint8 FLOAT32 = 7\n\ 00885 uint8 FLOAT64 = 8\n\ 00886 \n\ 00887 string name # Name of field\n\ 00888 uint32 offset # Offset from start of point struct\n\ 00889 uint8 datatype # Datatype enumeration, see above\n\ 00890 uint32 count # How many elements in the field\n\ 00891 \n\ 00892 ================================================================================\n\ 00893 MSG: sensor_msgs/Image\n\ 00894 # This message contains an uncompressed image\n\ 00895 # (0, 0) is at top-left corner of image\n\ 00896 #\n\ 00897 \n\ 00898 Header header # Header timestamp should be acquisition time of image\n\ 00899 # Header frame_id should be optical frame of camera\n\ 00900 # origin of frame should be optical center of cameara\n\ 00901 # +x should point to the right in the image\n\ 00902 # +y should point down in the image\n\ 00903 # +z should point into to plane of the image\n\ 00904 # If the frame_id here and the frame_id of the CameraInfo\n\ 00905 # message associated with the image conflict\n\ 00906 # the behavior is undefined\n\ 00907 \n\ 00908 uint32 height # image height, that is, number of rows\n\ 00909 uint32 width # image width, that is, number of columns\n\ 00910 \n\ 00911 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00912 # If you want to standardize a new string format, join\n\ 00913 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00914 \n\ 00915 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00916 # taken from the list of strings in src/image_encodings.cpp\n\ 00917 \n\ 00918 uint8 is_bigendian # is this data bigendian?\n\ 00919 uint32 step # Full row length in bytes\n\ 00920 uint8[] data # actual matrix data, size is (step * rows)\n\ 00921 \n\ 00922 ================================================================================\n\ 00923 MSG: sensor_msgs/CameraInfo\n\ 00924 # This message defines meta information for a camera. It should be in a\n\ 00925 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00926 # image topics named:\n\ 00927 #\n\ 00928 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00929 # image - monochrome, distorted\n\ 00930 # image_color - color, distorted\n\ 00931 # image_rect - monochrome, rectified\n\ 00932 # image_rect_color - color, rectified\n\ 00933 #\n\ 00934 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00935 # for producing the four processed image topics from image_raw and\n\ 00936 # camera_info. The meaning of the camera parameters are described in\n\ 00937 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00938 #\n\ 00939 # The image_geometry package provides a user-friendly interface to\n\ 00940 # common operations using this meta information. If you want to, e.g.,\n\ 00941 # project a 3d point into image coordinates, we strongly recommend\n\ 00942 # using image_geometry.\n\ 00943 #\n\ 00944 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00945 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00946 # indicates an uncalibrated camera.\n\ 00947 \n\ 00948 #######################################################################\n\ 00949 # Image acquisition info #\n\ 00950 #######################################################################\n\ 00951 \n\ 00952 # Time of image acquisition, camera coordinate frame ID\n\ 00953 Header header # Header timestamp should be acquisition time of image\n\ 00954 # Header frame_id should be optical frame of camera\n\ 00955 # origin of frame should be optical center of camera\n\ 00956 # +x should point to the right in the image\n\ 00957 # +y should point down in the image\n\ 00958 # +z should point into the plane of the image\n\ 00959 \n\ 00960 \n\ 00961 #######################################################################\n\ 00962 # Calibration Parameters #\n\ 00963 #######################################################################\n\ 00964 # These are fixed during camera calibration. Their values will be the #\n\ 00965 # same in all messages until the camera is recalibrated. Note that #\n\ 00966 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00967 # #\n\ 00968 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00969 # to: #\n\ 00970 # 1. An undistorted image (requires D and K) #\n\ 00971 # 2. A rectified image (requires D, K, R) #\n\ 00972 # The projection matrix P projects 3D points into the rectified image.#\n\ 00973 #######################################################################\n\ 00974 \n\ 00975 # The image dimensions with which the camera was calibrated. Normally\n\ 00976 # this will be the full camera resolution in pixels.\n\ 00977 uint32 height\n\ 00978 uint32 width\n\ 00979 \n\ 00980 # The distortion model used. Supported models are listed in\n\ 00981 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00982 # simple model of radial and tangential distortion - is sufficent.\n\ 00983 string distortion_model\n\ 00984 \n\ 00985 # The distortion parameters, size depending on the distortion model.\n\ 00986 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00987 float64[] D\n\ 00988 \n\ 00989 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00990 # [fx 0 cx]\n\ 00991 # K = [ 0 fy cy]\n\ 00992 # [ 0 0 1]\n\ 00993 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00994 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00995 # (cx, cy).\n\ 00996 float64[9] K # 3x3 row-major matrix\n\ 00997 \n\ 00998 # Rectification matrix (stereo cameras only)\n\ 00999 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01000 # stereo image plane so that epipolar lines in both stereo images are\n\ 01001 # parallel.\n\ 01002 float64[9] R # 3x3 row-major matrix\n\ 01003 \n\ 01004 # Projection/camera matrix\n\ 01005 # [fx' 0 cx' Tx]\n\ 01006 # P = [ 0 fy' cy' Ty]\n\ 01007 # [ 0 0 1 0]\n\ 01008 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01009 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01010 # is the normal camera intrinsic matrix for the rectified image.\n\ 01011 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01012 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01013 # (cx', cy') - these may differ from the values in K.\n\ 01014 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01015 # also have R = the identity and P[1:3,1:3] = K.\n\ 01016 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01017 # position of the optical center of the second camera in the first\n\ 01018 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01019 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01020 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01021 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01022 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01023 # the rectified image is given by:\n\ 01024 # [u v w]' = P * [X Y Z 1]'\n\ 01025 # x = u / w\n\ 01026 # y = v / w\n\ 01027 # This holds for both images of a stereo pair.\n\ 01028 float64[12] P # 3x4 row-major matrix\n\ 01029 \n\ 01030 \n\ 01031 #######################################################################\n\ 01032 # Operational Parameters #\n\ 01033 #######################################################################\n\ 01034 # These define the image region actually captured by the camera #\n\ 01035 # driver. Although they affect the geometry of the output image, they #\n\ 01036 # may be changed freely without recalibrating the camera. #\n\ 01037 #######################################################################\n\ 01038 \n\ 01039 # Binning refers here to any camera setting which combines rectangular\n\ 01040 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01041 # resolution of the output image to\n\ 01042 # (width / binning_x) x (height / binning_y).\n\ 01043 # The default values binning_x = binning_y = 0 is considered the same\n\ 01044 # as binning_x = binning_y = 1 (no subsampling).\n\ 01045 uint32 binning_x\n\ 01046 uint32 binning_y\n\ 01047 \n\ 01048 # Region of interest (subwindow of full camera resolution), given in\n\ 01049 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01050 # always denotes the same window of pixels on the camera sensor,\n\ 01051 # regardless of binning settings.\n\ 01052 # The default setting of roi (all values 0) is considered the same as\n\ 01053 # full resolution (roi.width = width, roi.height = height).\n\ 01054 RegionOfInterest roi\n\ 01055 \n\ 01056 ================================================================================\n\ 01057 MSG: sensor_msgs/RegionOfInterest\n\ 01058 # This message is used to specify a region of interest within an image.\n\ 01059 #\n\ 01060 # When used to specify the ROI setting of the camera when the image was\n\ 01061 # taken, the height and width fields should either match the height and\n\ 01062 # width fields for the associated image; or height = width = 0\n\ 01063 # indicates that the full resolution image was captured.\n\ 01064 \n\ 01065 uint32 x_offset # Leftmost pixel of the ROI\n\ 01066 # (0 if the ROI includes the left edge of the image)\n\ 01067 uint32 y_offset # Topmost pixel of the ROI\n\ 01068 # (0 if the ROI includes the top edge of the image)\n\ 01069 uint32 height # Height of ROI\n\ 01070 uint32 width # Width of ROI\n\ 01071 \n\ 01072 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01073 # ROI in this message. Typically this should be False if the full image\n\ 01074 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01075 # used).\n\ 01076 bool do_rectify\n\ 01077 \n\ 01078 ================================================================================\n\ 01079 MSG: geometry_msgs/Vector3\n\ 01080 # This represents a vector in free space. \n\ 01081 \n\ 01082 float64 x\n\ 01083 float64 y\n\ 01084 float64 z\n\ 01085 ================================================================================\n\ 01086 MSG: pr2_object_manipulation_msgs/IMGUIAdvancedOptions\n\ 01087 \n\ 01088 bool reactive_grasping\n\ 01089 bool reactive_force \n\ 01090 bool reactive_place\n\ 01091 int32 lift_steps\n\ 01092 int32 retreat_steps\n\ 01093 int32 lift_direction_choice\n\ 01094 int32 desired_approach\n\ 01095 int32 min_approach\n\ 01096 float32 max_contact_force\n\ 01097 \n\ 01098 ================================================================================\n\ 01099 MSG: pr2_object_manipulation_msgs/IMGUICommand\n\ 01100 \n\ 01101 int32 PICKUP = 0\n\ 01102 int32 PLACE = 1\n\ 01103 int32 PLANNED_MOVE = 2\n\ 01104 int32 RESET = 3\n\ 01105 int32 MOVE_ARM = 4\n\ 01106 int32 LOOK_AT_TABLE = 5\n\ 01107 int32 MODEL_OBJECT = 6\n\ 01108 int32 MOVE_GRIPPER = 7\n\ 01109 int32 SCRIPTED_ACTION = 8\n\ 01110 int32 STOP_NAV = 9\n\ 01111 \n\ 01112 int32 command\n\ 01113 string script_name\n\ 01114 string script_group_name\n\ 01115 \n\ 01116 "; 01117 } 01118 01119 static const char* value(const ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> &) { return value(); } 01120 }; 01121 01122 } // namespace message_traits 01123 } // namespace ros 01124 01125 namespace ros 01126 { 01127 namespace serialization 01128 { 01129 01130 template<class ContainerAllocator> struct Serializer< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > 01131 { 01132 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01133 { 01134 stream.next(m.options); 01135 stream.next(m.command); 01136 } 01137 01138 ROS_DECLARE_ALLINONE_SERIALIZER; 01139 }; // struct IMGUIGoal_ 01140 } // namespace serialization 01141 } // namespace ros 01142 01143 namespace ros 01144 { 01145 namespace message_operations 01146 { 01147 01148 template<class ContainerAllocator> 01149 struct Printer< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > 01150 { 01151 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> & v) 01152 { 01153 s << indent << "options: "; 01154 s << std::endl; 01155 Printer< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> >::stream(s, indent + " ", v.options); 01156 s << indent << "command: "; 01157 s << std::endl; 01158 Printer< ::pr2_object_manipulation_msgs::IMGUICommand_<ContainerAllocator> >::stream(s, indent + " ", v.command); 01159 } 01160 }; 01161 01162 01163 } // namespace message_operations 01164 } // namespace ros 01165 01166 #endif // PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIGOAL_H 01167