$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/manipulation/pr2_object_manipulation_msgs/msg/GetGripperPoseGoal.msg */ 00002 #ifndef PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEGOAL_H 00003 #define PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "geometry_msgs/PoseStamped.h" 00018 #include "object_manipulation_msgs/GraspableObject.h" 00019 #include "object_manipulation_msgs/Grasp.h" 00020 00021 namespace pr2_object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct GetGripperPoseGoal_ { 00025 typedef GetGripperPoseGoal_<ContainerAllocator> Type; 00026 00027 GetGripperPoseGoal_() 00028 : arm_name() 00029 , gripper_pose() 00030 , gripper_opening(0.0) 00031 , object() 00032 , grasp() 00033 { 00034 } 00035 00036 GetGripperPoseGoal_(const ContainerAllocator& _alloc) 00037 : arm_name(_alloc) 00038 , gripper_pose(_alloc) 00039 , gripper_opening(0.0) 00040 , object(_alloc) 00041 , grasp(_alloc) 00042 { 00043 } 00044 00045 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type; 00046 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name; 00047 00048 typedef ::geometry_msgs::PoseStamped_<ContainerAllocator> _gripper_pose_type; 00049 ::geometry_msgs::PoseStamped_<ContainerAllocator> gripper_pose; 00050 00051 typedef float _gripper_opening_type; 00052 float gripper_opening; 00053 00054 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _object_type; 00055 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> object; 00056 00057 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type; 00058 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp; 00059 00060 00061 private: 00062 static const char* __s_getDataType_() { return "pr2_object_manipulation_msgs/GetGripperPoseGoal"; } 00063 public: 00064 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00065 00066 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00067 00068 private: 00069 static const char* __s_getMD5Sum_() { return "7ca516fef9c15991c035b01ff6268377"; } 00070 public: 00071 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00072 00073 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00074 00075 private: 00076 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00077 \n\ 00078 # for which arm are we requesting a pose\n\ 00079 # useful for knowing which arm to initialize from when seed is empty\n\ 00080 string arm_name\n\ 00081 \n\ 00082 # a seed position for the ghosted gripper. If emtpy (quaternion of norm 0)\n\ 00083 # the ghosted gripper will be initialized at the current position of the gripper\n\ 00084 geometry_msgs/PoseStamped gripper_pose\n\ 00085 float32 gripper_opening\n\ 00086 \n\ 00087 # An object that the gripper is holding. May be empty.\n\ 00088 object_manipulation_msgs/GraspableObject object\n\ 00089 \n\ 00090 # how we are holding the object, if any.\n\ 00091 object_manipulation_msgs/Grasp grasp\n\ 00092 \n\ 00093 \n\ 00094 ================================================================================\n\ 00095 MSG: geometry_msgs/PoseStamped\n\ 00096 # A Pose with reference coordinate frame and timestamp\n\ 00097 Header header\n\ 00098 Pose pose\n\ 00099 \n\ 00100 ================================================================================\n\ 00101 MSG: std_msgs/Header\n\ 00102 # Standard metadata for higher-level stamped data types.\n\ 00103 # This is generally used to communicate timestamped data \n\ 00104 # in a particular coordinate frame.\n\ 00105 # \n\ 00106 # sequence ID: consecutively increasing ID \n\ 00107 uint32 seq\n\ 00108 #Two-integer timestamp that is expressed as:\n\ 00109 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00110 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00111 # time-handling sugar is provided by the client library\n\ 00112 time stamp\n\ 00113 #Frame this data is associated with\n\ 00114 # 0: no frame\n\ 00115 # 1: global frame\n\ 00116 string frame_id\n\ 00117 \n\ 00118 ================================================================================\n\ 00119 MSG: geometry_msgs/Pose\n\ 00120 # A representation of pose in free space, composed of postion and orientation. \n\ 00121 Point position\n\ 00122 Quaternion orientation\n\ 00123 \n\ 00124 ================================================================================\n\ 00125 MSG: geometry_msgs/Point\n\ 00126 # This contains the position of a point in free space\n\ 00127 float64 x\n\ 00128 float64 y\n\ 00129 float64 z\n\ 00130 \n\ 00131 ================================================================================\n\ 00132 MSG: geometry_msgs/Quaternion\n\ 00133 # This represents an orientation in free space in quaternion form.\n\ 00134 \n\ 00135 float64 x\n\ 00136 float64 y\n\ 00137 float64 z\n\ 00138 float64 w\n\ 00139 \n\ 00140 ================================================================================\n\ 00141 MSG: object_manipulation_msgs/GraspableObject\n\ 00142 # an object that the object_manipulator can work on\n\ 00143 \n\ 00144 # a graspable object can be represented in multiple ways. This message\n\ 00145 # can contain all of them. Which one is actually used is up to the receiver\n\ 00146 # of this message. When adding new representations, one must be careful that\n\ 00147 # they have reasonable lightweight defaults indicating that that particular\n\ 00148 # representation is not available.\n\ 00149 \n\ 00150 # the tf frame to be used as a reference frame when combining information from\n\ 00151 # the different representations below\n\ 00152 string reference_frame_id\n\ 00153 \n\ 00154 # potential recognition results from a database of models\n\ 00155 # all poses are relative to the object reference pose\n\ 00156 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00157 \n\ 00158 # the point cloud itself\n\ 00159 sensor_msgs/PointCloud cluster\n\ 00160 \n\ 00161 # a region of a PointCloud2 of interest\n\ 00162 object_manipulation_msgs/SceneRegion region\n\ 00163 \n\ 00164 # the name that this object has in the collision environment\n\ 00165 string collision_name\n\ 00166 ================================================================================\n\ 00167 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00168 # Informs that a specific model from the Model Database has been \n\ 00169 # identified at a certain location\n\ 00170 \n\ 00171 # the database id of the model\n\ 00172 int32 model_id\n\ 00173 \n\ 00174 # the pose that it can be found in\n\ 00175 geometry_msgs/PoseStamped pose\n\ 00176 \n\ 00177 # a measure of the confidence level in this detection result\n\ 00178 float32 confidence\n\ 00179 \n\ 00180 # the name of the object detector that generated this detection result\n\ 00181 string detector_name\n\ 00182 \n\ 00183 ================================================================================\n\ 00184 MSG: sensor_msgs/PointCloud\n\ 00185 # This message holds a collection of 3d points, plus optional additional\n\ 00186 # information about each point.\n\ 00187 \n\ 00188 # Time of sensor data acquisition, coordinate frame ID.\n\ 00189 Header header\n\ 00190 \n\ 00191 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00192 # in the frame given in the header.\n\ 00193 geometry_msgs/Point32[] points\n\ 00194 \n\ 00195 # Each channel should have the same number of elements as points array,\n\ 00196 # and the data in each channel should correspond 1:1 with each point.\n\ 00197 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00198 ChannelFloat32[] channels\n\ 00199 \n\ 00200 ================================================================================\n\ 00201 MSG: geometry_msgs/Point32\n\ 00202 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00203 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00204 # \n\ 00205 # This recommendation is to promote interoperability. \n\ 00206 #\n\ 00207 # This message is designed to take up less space when sending\n\ 00208 # lots of points at once, as in the case of a PointCloud. \n\ 00209 \n\ 00210 float32 x\n\ 00211 float32 y\n\ 00212 float32 z\n\ 00213 ================================================================================\n\ 00214 MSG: sensor_msgs/ChannelFloat32\n\ 00215 # This message is used by the PointCloud message to hold optional data\n\ 00216 # associated with each point in the cloud. The length of the values\n\ 00217 # array should be the same as the length of the points array in the\n\ 00218 # PointCloud, and each value should be associated with the corresponding\n\ 00219 # point.\n\ 00220 \n\ 00221 # Channel names in existing practice include:\n\ 00222 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00223 # This is opposite to usual conventions but remains for\n\ 00224 # historical reasons. The newer PointCloud2 message has no\n\ 00225 # such problem.\n\ 00226 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00227 # (R,G,B) values packed into the least significant 24 bits,\n\ 00228 # in order.\n\ 00229 # \"intensity\" - laser or pixel intensity.\n\ 00230 # \"distance\"\n\ 00231 \n\ 00232 # The channel name should give semantics of the channel (e.g.\n\ 00233 # \"intensity\" instead of \"value\").\n\ 00234 string name\n\ 00235 \n\ 00236 # The values array should be 1-1 with the elements of the associated\n\ 00237 # PointCloud.\n\ 00238 float32[] values\n\ 00239 \n\ 00240 ================================================================================\n\ 00241 MSG: object_manipulation_msgs/SceneRegion\n\ 00242 # Point cloud\n\ 00243 sensor_msgs/PointCloud2 cloud\n\ 00244 \n\ 00245 # Indices for the region of interest\n\ 00246 int32[] mask\n\ 00247 \n\ 00248 # One of the corresponding 2D images, if applicable\n\ 00249 sensor_msgs/Image image\n\ 00250 \n\ 00251 # The disparity image, if applicable\n\ 00252 sensor_msgs/Image disparity_image\n\ 00253 \n\ 00254 # Camera info for the camera that took the image\n\ 00255 sensor_msgs/CameraInfo cam_info\n\ 00256 \n\ 00257 # a 3D region of interest for grasp planning\n\ 00258 geometry_msgs/PoseStamped roi_box_pose\n\ 00259 geometry_msgs/Vector3 roi_box_dims\n\ 00260 \n\ 00261 ================================================================================\n\ 00262 MSG: sensor_msgs/PointCloud2\n\ 00263 # This message holds a collection of N-dimensional points, which may\n\ 00264 # contain additional information such as normals, intensity, etc. The\n\ 00265 # point data is stored as a binary blob, its layout described by the\n\ 00266 # contents of the \"fields\" array.\n\ 00267 \n\ 00268 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00269 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00270 # camera depth sensors such as stereo or time-of-flight.\n\ 00271 \n\ 00272 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00273 # points).\n\ 00274 Header header\n\ 00275 \n\ 00276 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00277 # 1 and width is the length of the point cloud.\n\ 00278 uint32 height\n\ 00279 uint32 width\n\ 00280 \n\ 00281 # Describes the channels and their layout in the binary data blob.\n\ 00282 PointField[] fields\n\ 00283 \n\ 00284 bool is_bigendian # Is this data bigendian?\n\ 00285 uint32 point_step # Length of a point in bytes\n\ 00286 uint32 row_step # Length of a row in bytes\n\ 00287 uint8[] data # Actual point data, size is (row_step*height)\n\ 00288 \n\ 00289 bool is_dense # True if there are no invalid points\n\ 00290 \n\ 00291 ================================================================================\n\ 00292 MSG: sensor_msgs/PointField\n\ 00293 # This message holds the description of one point entry in the\n\ 00294 # PointCloud2 message format.\n\ 00295 uint8 INT8 = 1\n\ 00296 uint8 UINT8 = 2\n\ 00297 uint8 INT16 = 3\n\ 00298 uint8 UINT16 = 4\n\ 00299 uint8 INT32 = 5\n\ 00300 uint8 UINT32 = 6\n\ 00301 uint8 FLOAT32 = 7\n\ 00302 uint8 FLOAT64 = 8\n\ 00303 \n\ 00304 string name # Name of field\n\ 00305 uint32 offset # Offset from start of point struct\n\ 00306 uint8 datatype # Datatype enumeration, see above\n\ 00307 uint32 count # How many elements in the field\n\ 00308 \n\ 00309 ================================================================================\n\ 00310 MSG: sensor_msgs/Image\n\ 00311 # This message contains an uncompressed image\n\ 00312 # (0, 0) is at top-left corner of image\n\ 00313 #\n\ 00314 \n\ 00315 Header header # Header timestamp should be acquisition time of image\n\ 00316 # Header frame_id should be optical frame of camera\n\ 00317 # origin of frame should be optical center of cameara\n\ 00318 # +x should point to the right in the image\n\ 00319 # +y should point down in the image\n\ 00320 # +z should point into to plane of the image\n\ 00321 # If the frame_id here and the frame_id of the CameraInfo\n\ 00322 # message associated with the image conflict\n\ 00323 # the behavior is undefined\n\ 00324 \n\ 00325 uint32 height # image height, that is, number of rows\n\ 00326 uint32 width # image width, that is, number of columns\n\ 00327 \n\ 00328 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00329 # If you want to standardize a new string format, join\n\ 00330 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00331 \n\ 00332 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00333 # taken from the list of strings in src/image_encodings.cpp\n\ 00334 \n\ 00335 uint8 is_bigendian # is this data bigendian?\n\ 00336 uint32 step # Full row length in bytes\n\ 00337 uint8[] data # actual matrix data, size is (step * rows)\n\ 00338 \n\ 00339 ================================================================================\n\ 00340 MSG: sensor_msgs/CameraInfo\n\ 00341 # This message defines meta information for a camera. It should be in a\n\ 00342 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00343 # image topics named:\n\ 00344 #\n\ 00345 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00346 # image - monochrome, distorted\n\ 00347 # image_color - color, distorted\n\ 00348 # image_rect - monochrome, rectified\n\ 00349 # image_rect_color - color, rectified\n\ 00350 #\n\ 00351 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00352 # for producing the four processed image topics from image_raw and\n\ 00353 # camera_info. The meaning of the camera parameters are described in\n\ 00354 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00355 #\n\ 00356 # The image_geometry package provides a user-friendly interface to\n\ 00357 # common operations using this meta information. If you want to, e.g.,\n\ 00358 # project a 3d point into image coordinates, we strongly recommend\n\ 00359 # using image_geometry.\n\ 00360 #\n\ 00361 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00362 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00363 # indicates an uncalibrated camera.\n\ 00364 \n\ 00365 #######################################################################\n\ 00366 # Image acquisition info #\n\ 00367 #######################################################################\n\ 00368 \n\ 00369 # Time of image acquisition, camera coordinate frame ID\n\ 00370 Header header # Header timestamp should be acquisition time of image\n\ 00371 # Header frame_id should be optical frame of camera\n\ 00372 # origin of frame should be optical center of camera\n\ 00373 # +x should point to the right in the image\n\ 00374 # +y should point down in the image\n\ 00375 # +z should point into the plane of the image\n\ 00376 \n\ 00377 \n\ 00378 #######################################################################\n\ 00379 # Calibration Parameters #\n\ 00380 #######################################################################\n\ 00381 # These are fixed during camera calibration. Their values will be the #\n\ 00382 # same in all messages until the camera is recalibrated. Note that #\n\ 00383 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00384 # #\n\ 00385 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00386 # to: #\n\ 00387 # 1. An undistorted image (requires D and K) #\n\ 00388 # 2. A rectified image (requires D, K, R) #\n\ 00389 # The projection matrix P projects 3D points into the rectified image.#\n\ 00390 #######################################################################\n\ 00391 \n\ 00392 # The image dimensions with which the camera was calibrated. Normally\n\ 00393 # this will be the full camera resolution in pixels.\n\ 00394 uint32 height\n\ 00395 uint32 width\n\ 00396 \n\ 00397 # The distortion model used. Supported models are listed in\n\ 00398 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00399 # simple model of radial and tangential distortion - is sufficent.\n\ 00400 string distortion_model\n\ 00401 \n\ 00402 # The distortion parameters, size depending on the distortion model.\n\ 00403 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00404 float64[] D\n\ 00405 \n\ 00406 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00407 # [fx 0 cx]\n\ 00408 # K = [ 0 fy cy]\n\ 00409 # [ 0 0 1]\n\ 00410 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00411 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00412 # (cx, cy).\n\ 00413 float64[9] K # 3x3 row-major matrix\n\ 00414 \n\ 00415 # Rectification matrix (stereo cameras only)\n\ 00416 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00417 # stereo image plane so that epipolar lines in both stereo images are\n\ 00418 # parallel.\n\ 00419 float64[9] R # 3x3 row-major matrix\n\ 00420 \n\ 00421 # Projection/camera matrix\n\ 00422 # [fx' 0 cx' Tx]\n\ 00423 # P = [ 0 fy' cy' Ty]\n\ 00424 # [ 0 0 1 0]\n\ 00425 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00426 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00427 # is the normal camera intrinsic matrix for the rectified image.\n\ 00428 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00429 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00430 # (cx', cy') - these may differ from the values in K.\n\ 00431 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00432 # also have R = the identity and P[1:3,1:3] = K.\n\ 00433 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00434 # position of the optical center of the second camera in the first\n\ 00435 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00436 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00437 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00438 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00439 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00440 # the rectified image is given by:\n\ 00441 # [u v w]' = P * [X Y Z 1]'\n\ 00442 # x = u / w\n\ 00443 # y = v / w\n\ 00444 # This holds for both images of a stereo pair.\n\ 00445 float64[12] P # 3x4 row-major matrix\n\ 00446 \n\ 00447 \n\ 00448 #######################################################################\n\ 00449 # Operational Parameters #\n\ 00450 #######################################################################\n\ 00451 # These define the image region actually captured by the camera #\n\ 00452 # driver. Although they affect the geometry of the output image, they #\n\ 00453 # may be changed freely without recalibrating the camera. #\n\ 00454 #######################################################################\n\ 00455 \n\ 00456 # Binning refers here to any camera setting which combines rectangular\n\ 00457 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00458 # resolution of the output image to\n\ 00459 # (width / binning_x) x (height / binning_y).\n\ 00460 # The default values binning_x = binning_y = 0 is considered the same\n\ 00461 # as binning_x = binning_y = 1 (no subsampling).\n\ 00462 uint32 binning_x\n\ 00463 uint32 binning_y\n\ 00464 \n\ 00465 # Region of interest (subwindow of full camera resolution), given in\n\ 00466 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00467 # always denotes the same window of pixels on the camera sensor,\n\ 00468 # regardless of binning settings.\n\ 00469 # The default setting of roi (all values 0) is considered the same as\n\ 00470 # full resolution (roi.width = width, roi.height = height).\n\ 00471 RegionOfInterest roi\n\ 00472 \n\ 00473 ================================================================================\n\ 00474 MSG: sensor_msgs/RegionOfInterest\n\ 00475 # This message is used to specify a region of interest within an image.\n\ 00476 #\n\ 00477 # When used to specify the ROI setting of the camera when the image was\n\ 00478 # taken, the height and width fields should either match the height and\n\ 00479 # width fields for the associated image; or height = width = 0\n\ 00480 # indicates that the full resolution image was captured.\n\ 00481 \n\ 00482 uint32 x_offset # Leftmost pixel of the ROI\n\ 00483 # (0 if the ROI includes the left edge of the image)\n\ 00484 uint32 y_offset # Topmost pixel of the ROI\n\ 00485 # (0 if the ROI includes the top edge of the image)\n\ 00486 uint32 height # Height of ROI\n\ 00487 uint32 width # Width of ROI\n\ 00488 \n\ 00489 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00490 # ROI in this message. Typically this should be False if the full image\n\ 00491 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00492 # used).\n\ 00493 bool do_rectify\n\ 00494 \n\ 00495 ================================================================================\n\ 00496 MSG: geometry_msgs/Vector3\n\ 00497 # This represents a vector in free space. \n\ 00498 \n\ 00499 float64 x\n\ 00500 float64 y\n\ 00501 float64 z\n\ 00502 ================================================================================\n\ 00503 MSG: object_manipulation_msgs/Grasp\n\ 00504 \n\ 00505 # The internal posture of the hand for the pre-grasp\n\ 00506 # only positions are used\n\ 00507 sensor_msgs/JointState pre_grasp_posture\n\ 00508 \n\ 00509 # The internal posture of the hand for the grasp\n\ 00510 # positions and efforts are used\n\ 00511 sensor_msgs/JointState grasp_posture\n\ 00512 \n\ 00513 # The position of the end-effector for the grasp relative to a reference frame \n\ 00514 # (that is always specified elsewhere, not in this message)\n\ 00515 geometry_msgs/Pose grasp_pose\n\ 00516 \n\ 00517 # The estimated probability of success for this grasp\n\ 00518 float64 success_probability\n\ 00519 \n\ 00520 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00521 bool cluster_rep\n\ 00522 \n\ 00523 # how far the pre-grasp should ideally be away from the grasp\n\ 00524 float32 desired_approach_distance\n\ 00525 \n\ 00526 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00527 # for the grasp not to be rejected\n\ 00528 float32 min_approach_distance\n\ 00529 \n\ 00530 # an optional list of obstacles that we have semantic information about\n\ 00531 # and that we expect might move in the course of executing this grasp\n\ 00532 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00533 # execution, grasp executors will not check for collisions against these objects\n\ 00534 GraspableObject[] moved_obstacles\n\ 00535 \n\ 00536 ================================================================================\n\ 00537 MSG: sensor_msgs/JointState\n\ 00538 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00539 #\n\ 00540 # The state of each joint (revolute or prismatic) is defined by:\n\ 00541 # * the position of the joint (rad or m),\n\ 00542 # * the velocity of the joint (rad/s or m/s) and \n\ 00543 # * the effort that is applied in the joint (Nm or N).\n\ 00544 #\n\ 00545 # Each joint is uniquely identified by its name\n\ 00546 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00547 # in one message have to be recorded at the same time.\n\ 00548 #\n\ 00549 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00550 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00551 # effort associated with them, you can leave the effort array empty. \n\ 00552 #\n\ 00553 # All arrays in this message should have the same size, or be empty.\n\ 00554 # This is the only way to uniquely associate the joint name with the correct\n\ 00555 # states.\n\ 00556 \n\ 00557 \n\ 00558 Header header\n\ 00559 \n\ 00560 string[] name\n\ 00561 float64[] position\n\ 00562 float64[] velocity\n\ 00563 float64[] effort\n\ 00564 \n\ 00565 "; } 00566 public: 00567 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00568 00569 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00570 00571 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00572 { 00573 ros::serialization::OStream stream(write_ptr, 1000000000); 00574 ros::serialization::serialize(stream, arm_name); 00575 ros::serialization::serialize(stream, gripper_pose); 00576 ros::serialization::serialize(stream, gripper_opening); 00577 ros::serialization::serialize(stream, object); 00578 ros::serialization::serialize(stream, grasp); 00579 return stream.getData(); 00580 } 00581 00582 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00583 { 00584 ros::serialization::IStream stream(read_ptr, 1000000000); 00585 ros::serialization::deserialize(stream, arm_name); 00586 ros::serialization::deserialize(stream, gripper_pose); 00587 ros::serialization::deserialize(stream, gripper_opening); 00588 ros::serialization::deserialize(stream, object); 00589 ros::serialization::deserialize(stream, grasp); 00590 return stream.getData(); 00591 } 00592 00593 ROS_DEPRECATED virtual uint32_t serializationLength() const 00594 { 00595 uint32_t size = 0; 00596 size += ros::serialization::serializationLength(arm_name); 00597 size += ros::serialization::serializationLength(gripper_pose); 00598 size += ros::serialization::serializationLength(gripper_opening); 00599 size += ros::serialization::serializationLength(object); 00600 size += ros::serialization::serializationLength(grasp); 00601 return size; 00602 } 00603 00604 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > Ptr; 00605 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> const> ConstPtr; 00606 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00607 }; // struct GetGripperPoseGoal 00608 typedef ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<std::allocator<void> > GetGripperPoseGoal; 00609 00610 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseGoal> GetGripperPoseGoalPtr; 00611 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseGoal const> GetGripperPoseGoalConstPtr; 00612 00613 00614 template<typename ContainerAllocator> 00615 std::ostream& operator<<(std::ostream& s, const ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> & v) 00616 { 00617 ros::message_operations::Printer< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> >::stream(s, "", v); 00618 return s;} 00619 00620 } // namespace pr2_object_manipulation_msgs 00621 00622 namespace ros 00623 { 00624 namespace message_traits 00625 { 00626 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > : public TrueType {}; 00627 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> const> : public TrueType {}; 00628 template<class ContainerAllocator> 00629 struct MD5Sum< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > { 00630 static const char* value() 00631 { 00632 return "7ca516fef9c15991c035b01ff6268377"; 00633 } 00634 00635 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> &) { return value(); } 00636 static const uint64_t static_value1 = 0x7ca516fef9c15991ULL; 00637 static const uint64_t static_value2 = 0xc035b01ff6268377ULL; 00638 }; 00639 00640 template<class ContainerAllocator> 00641 struct DataType< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > { 00642 static const char* value() 00643 { 00644 return "pr2_object_manipulation_msgs/GetGripperPoseGoal"; 00645 } 00646 00647 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> &) { return value(); } 00648 }; 00649 00650 template<class ContainerAllocator> 00651 struct Definition< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > { 00652 static const char* value() 00653 { 00654 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00655 \n\ 00656 # for which arm are we requesting a pose\n\ 00657 # useful for knowing which arm to initialize from when seed is empty\n\ 00658 string arm_name\n\ 00659 \n\ 00660 # a seed position for the ghosted gripper. If emtpy (quaternion of norm 0)\n\ 00661 # the ghosted gripper will be initialized at the current position of the gripper\n\ 00662 geometry_msgs/PoseStamped gripper_pose\n\ 00663 float32 gripper_opening\n\ 00664 \n\ 00665 # An object that the gripper is holding. May be empty.\n\ 00666 object_manipulation_msgs/GraspableObject object\n\ 00667 \n\ 00668 # how we are holding the object, if any.\n\ 00669 object_manipulation_msgs/Grasp grasp\n\ 00670 \n\ 00671 \n\ 00672 ================================================================================\n\ 00673 MSG: geometry_msgs/PoseStamped\n\ 00674 # A Pose with reference coordinate frame and timestamp\n\ 00675 Header header\n\ 00676 Pose pose\n\ 00677 \n\ 00678 ================================================================================\n\ 00679 MSG: std_msgs/Header\n\ 00680 # Standard metadata for higher-level stamped data types.\n\ 00681 # This is generally used to communicate timestamped data \n\ 00682 # in a particular coordinate frame.\n\ 00683 # \n\ 00684 # sequence ID: consecutively increasing ID \n\ 00685 uint32 seq\n\ 00686 #Two-integer timestamp that is expressed as:\n\ 00687 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00688 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00689 # time-handling sugar is provided by the client library\n\ 00690 time stamp\n\ 00691 #Frame this data is associated with\n\ 00692 # 0: no frame\n\ 00693 # 1: global frame\n\ 00694 string frame_id\n\ 00695 \n\ 00696 ================================================================================\n\ 00697 MSG: geometry_msgs/Pose\n\ 00698 # A representation of pose in free space, composed of postion and orientation. \n\ 00699 Point position\n\ 00700 Quaternion orientation\n\ 00701 \n\ 00702 ================================================================================\n\ 00703 MSG: geometry_msgs/Point\n\ 00704 # This contains the position of a point in free space\n\ 00705 float64 x\n\ 00706 float64 y\n\ 00707 float64 z\n\ 00708 \n\ 00709 ================================================================================\n\ 00710 MSG: geometry_msgs/Quaternion\n\ 00711 # This represents an orientation in free space in quaternion form.\n\ 00712 \n\ 00713 float64 x\n\ 00714 float64 y\n\ 00715 float64 z\n\ 00716 float64 w\n\ 00717 \n\ 00718 ================================================================================\n\ 00719 MSG: object_manipulation_msgs/GraspableObject\n\ 00720 # an object that the object_manipulator can work on\n\ 00721 \n\ 00722 # a graspable object can be represented in multiple ways. This message\n\ 00723 # can contain all of them. Which one is actually used is up to the receiver\n\ 00724 # of this message. When adding new representations, one must be careful that\n\ 00725 # they have reasonable lightweight defaults indicating that that particular\n\ 00726 # representation is not available.\n\ 00727 \n\ 00728 # the tf frame to be used as a reference frame when combining information from\n\ 00729 # the different representations below\n\ 00730 string reference_frame_id\n\ 00731 \n\ 00732 # potential recognition results from a database of models\n\ 00733 # all poses are relative to the object reference pose\n\ 00734 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00735 \n\ 00736 # the point cloud itself\n\ 00737 sensor_msgs/PointCloud cluster\n\ 00738 \n\ 00739 # a region of a PointCloud2 of interest\n\ 00740 object_manipulation_msgs/SceneRegion region\n\ 00741 \n\ 00742 # the name that this object has in the collision environment\n\ 00743 string collision_name\n\ 00744 ================================================================================\n\ 00745 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00746 # Informs that a specific model from the Model Database has been \n\ 00747 # identified at a certain location\n\ 00748 \n\ 00749 # the database id of the model\n\ 00750 int32 model_id\n\ 00751 \n\ 00752 # the pose that it can be found in\n\ 00753 geometry_msgs/PoseStamped pose\n\ 00754 \n\ 00755 # a measure of the confidence level in this detection result\n\ 00756 float32 confidence\n\ 00757 \n\ 00758 # the name of the object detector that generated this detection result\n\ 00759 string detector_name\n\ 00760 \n\ 00761 ================================================================================\n\ 00762 MSG: sensor_msgs/PointCloud\n\ 00763 # This message holds a collection of 3d points, plus optional additional\n\ 00764 # information about each point.\n\ 00765 \n\ 00766 # Time of sensor data acquisition, coordinate frame ID.\n\ 00767 Header header\n\ 00768 \n\ 00769 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00770 # in the frame given in the header.\n\ 00771 geometry_msgs/Point32[] points\n\ 00772 \n\ 00773 # Each channel should have the same number of elements as points array,\n\ 00774 # and the data in each channel should correspond 1:1 with each point.\n\ 00775 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00776 ChannelFloat32[] channels\n\ 00777 \n\ 00778 ================================================================================\n\ 00779 MSG: geometry_msgs/Point32\n\ 00780 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00781 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00782 # \n\ 00783 # This recommendation is to promote interoperability. \n\ 00784 #\n\ 00785 # This message is designed to take up less space when sending\n\ 00786 # lots of points at once, as in the case of a PointCloud. \n\ 00787 \n\ 00788 float32 x\n\ 00789 float32 y\n\ 00790 float32 z\n\ 00791 ================================================================================\n\ 00792 MSG: sensor_msgs/ChannelFloat32\n\ 00793 # This message is used by the PointCloud message to hold optional data\n\ 00794 # associated with each point in the cloud. The length of the values\n\ 00795 # array should be the same as the length of the points array in the\n\ 00796 # PointCloud, and each value should be associated with the corresponding\n\ 00797 # point.\n\ 00798 \n\ 00799 # Channel names in existing practice include:\n\ 00800 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00801 # This is opposite to usual conventions but remains for\n\ 00802 # historical reasons. The newer PointCloud2 message has no\n\ 00803 # such problem.\n\ 00804 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00805 # (R,G,B) values packed into the least significant 24 bits,\n\ 00806 # in order.\n\ 00807 # \"intensity\" - laser or pixel intensity.\n\ 00808 # \"distance\"\n\ 00809 \n\ 00810 # The channel name should give semantics of the channel (e.g.\n\ 00811 # \"intensity\" instead of \"value\").\n\ 00812 string name\n\ 00813 \n\ 00814 # The values array should be 1-1 with the elements of the associated\n\ 00815 # PointCloud.\n\ 00816 float32[] values\n\ 00817 \n\ 00818 ================================================================================\n\ 00819 MSG: object_manipulation_msgs/SceneRegion\n\ 00820 # Point cloud\n\ 00821 sensor_msgs/PointCloud2 cloud\n\ 00822 \n\ 00823 # Indices for the region of interest\n\ 00824 int32[] mask\n\ 00825 \n\ 00826 # One of the corresponding 2D images, if applicable\n\ 00827 sensor_msgs/Image image\n\ 00828 \n\ 00829 # The disparity image, if applicable\n\ 00830 sensor_msgs/Image disparity_image\n\ 00831 \n\ 00832 # Camera info for the camera that took the image\n\ 00833 sensor_msgs/CameraInfo cam_info\n\ 00834 \n\ 00835 # a 3D region of interest for grasp planning\n\ 00836 geometry_msgs/PoseStamped roi_box_pose\n\ 00837 geometry_msgs/Vector3 roi_box_dims\n\ 00838 \n\ 00839 ================================================================================\n\ 00840 MSG: sensor_msgs/PointCloud2\n\ 00841 # This message holds a collection of N-dimensional points, which may\n\ 00842 # contain additional information such as normals, intensity, etc. The\n\ 00843 # point data is stored as a binary blob, its layout described by the\n\ 00844 # contents of the \"fields\" array.\n\ 00845 \n\ 00846 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00847 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00848 # camera depth sensors such as stereo or time-of-flight.\n\ 00849 \n\ 00850 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00851 # points).\n\ 00852 Header header\n\ 00853 \n\ 00854 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00855 # 1 and width is the length of the point cloud.\n\ 00856 uint32 height\n\ 00857 uint32 width\n\ 00858 \n\ 00859 # Describes the channels and their layout in the binary data blob.\n\ 00860 PointField[] fields\n\ 00861 \n\ 00862 bool is_bigendian # Is this data bigendian?\n\ 00863 uint32 point_step # Length of a point in bytes\n\ 00864 uint32 row_step # Length of a row in bytes\n\ 00865 uint8[] data # Actual point data, size is (row_step*height)\n\ 00866 \n\ 00867 bool is_dense # True if there are no invalid points\n\ 00868 \n\ 00869 ================================================================================\n\ 00870 MSG: sensor_msgs/PointField\n\ 00871 # This message holds the description of one point entry in the\n\ 00872 # PointCloud2 message format.\n\ 00873 uint8 INT8 = 1\n\ 00874 uint8 UINT8 = 2\n\ 00875 uint8 INT16 = 3\n\ 00876 uint8 UINT16 = 4\n\ 00877 uint8 INT32 = 5\n\ 00878 uint8 UINT32 = 6\n\ 00879 uint8 FLOAT32 = 7\n\ 00880 uint8 FLOAT64 = 8\n\ 00881 \n\ 00882 string name # Name of field\n\ 00883 uint32 offset # Offset from start of point struct\n\ 00884 uint8 datatype # Datatype enumeration, see above\n\ 00885 uint32 count # How many elements in the field\n\ 00886 \n\ 00887 ================================================================================\n\ 00888 MSG: sensor_msgs/Image\n\ 00889 # This message contains an uncompressed image\n\ 00890 # (0, 0) is at top-left corner of image\n\ 00891 #\n\ 00892 \n\ 00893 Header header # Header timestamp should be acquisition time of image\n\ 00894 # Header frame_id should be optical frame of camera\n\ 00895 # origin of frame should be optical center of cameara\n\ 00896 # +x should point to the right in the image\n\ 00897 # +y should point down in the image\n\ 00898 # +z should point into to plane of the image\n\ 00899 # If the frame_id here and the frame_id of the CameraInfo\n\ 00900 # message associated with the image conflict\n\ 00901 # the behavior is undefined\n\ 00902 \n\ 00903 uint32 height # image height, that is, number of rows\n\ 00904 uint32 width # image width, that is, number of columns\n\ 00905 \n\ 00906 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00907 # If you want to standardize a new string format, join\n\ 00908 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00909 \n\ 00910 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00911 # taken from the list of strings in src/image_encodings.cpp\n\ 00912 \n\ 00913 uint8 is_bigendian # is this data bigendian?\n\ 00914 uint32 step # Full row length in bytes\n\ 00915 uint8[] data # actual matrix data, size is (step * rows)\n\ 00916 \n\ 00917 ================================================================================\n\ 00918 MSG: sensor_msgs/CameraInfo\n\ 00919 # This message defines meta information for a camera. It should be in a\n\ 00920 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00921 # image topics named:\n\ 00922 #\n\ 00923 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00924 # image - monochrome, distorted\n\ 00925 # image_color - color, distorted\n\ 00926 # image_rect - monochrome, rectified\n\ 00927 # image_rect_color - color, rectified\n\ 00928 #\n\ 00929 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00930 # for producing the four processed image topics from image_raw and\n\ 00931 # camera_info. The meaning of the camera parameters are described in\n\ 00932 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00933 #\n\ 00934 # The image_geometry package provides a user-friendly interface to\n\ 00935 # common operations using this meta information. If you want to, e.g.,\n\ 00936 # project a 3d point into image coordinates, we strongly recommend\n\ 00937 # using image_geometry.\n\ 00938 #\n\ 00939 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00940 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00941 # indicates an uncalibrated camera.\n\ 00942 \n\ 00943 #######################################################################\n\ 00944 # Image acquisition info #\n\ 00945 #######################################################################\n\ 00946 \n\ 00947 # Time of image acquisition, camera coordinate frame ID\n\ 00948 Header header # Header timestamp should be acquisition time of image\n\ 00949 # Header frame_id should be optical frame of camera\n\ 00950 # origin of frame should be optical center of camera\n\ 00951 # +x should point to the right in the image\n\ 00952 # +y should point down in the image\n\ 00953 # +z should point into the plane of the image\n\ 00954 \n\ 00955 \n\ 00956 #######################################################################\n\ 00957 # Calibration Parameters #\n\ 00958 #######################################################################\n\ 00959 # These are fixed during camera calibration. Their values will be the #\n\ 00960 # same in all messages until the camera is recalibrated. Note that #\n\ 00961 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00962 # #\n\ 00963 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00964 # to: #\n\ 00965 # 1. An undistorted image (requires D and K) #\n\ 00966 # 2. A rectified image (requires D, K, R) #\n\ 00967 # The projection matrix P projects 3D points into the rectified image.#\n\ 00968 #######################################################################\n\ 00969 \n\ 00970 # The image dimensions with which the camera was calibrated. Normally\n\ 00971 # this will be the full camera resolution in pixels.\n\ 00972 uint32 height\n\ 00973 uint32 width\n\ 00974 \n\ 00975 # The distortion model used. Supported models are listed in\n\ 00976 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00977 # simple model of radial and tangential distortion - is sufficent.\n\ 00978 string distortion_model\n\ 00979 \n\ 00980 # The distortion parameters, size depending on the distortion model.\n\ 00981 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00982 float64[] D\n\ 00983 \n\ 00984 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00985 # [fx 0 cx]\n\ 00986 # K = [ 0 fy cy]\n\ 00987 # [ 0 0 1]\n\ 00988 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00989 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00990 # (cx, cy).\n\ 00991 float64[9] K # 3x3 row-major matrix\n\ 00992 \n\ 00993 # Rectification matrix (stereo cameras only)\n\ 00994 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00995 # stereo image plane so that epipolar lines in both stereo images are\n\ 00996 # parallel.\n\ 00997 float64[9] R # 3x3 row-major matrix\n\ 00998 \n\ 00999 # Projection/camera matrix\n\ 01000 # [fx' 0 cx' Tx]\n\ 01001 # P = [ 0 fy' cy' Ty]\n\ 01002 # [ 0 0 1 0]\n\ 01003 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01004 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01005 # is the normal camera intrinsic matrix for the rectified image.\n\ 01006 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01007 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01008 # (cx', cy') - these may differ from the values in K.\n\ 01009 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01010 # also have R = the identity and P[1:3,1:3] = K.\n\ 01011 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01012 # position of the optical center of the second camera in the first\n\ 01013 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01014 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01015 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01016 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01017 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01018 # the rectified image is given by:\n\ 01019 # [u v w]' = P * [X Y Z 1]'\n\ 01020 # x = u / w\n\ 01021 # y = v / w\n\ 01022 # This holds for both images of a stereo pair.\n\ 01023 float64[12] P # 3x4 row-major matrix\n\ 01024 \n\ 01025 \n\ 01026 #######################################################################\n\ 01027 # Operational Parameters #\n\ 01028 #######################################################################\n\ 01029 # These define the image region actually captured by the camera #\n\ 01030 # driver. Although they affect the geometry of the output image, they #\n\ 01031 # may be changed freely without recalibrating the camera. #\n\ 01032 #######################################################################\n\ 01033 \n\ 01034 # Binning refers here to any camera setting which combines rectangular\n\ 01035 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01036 # resolution of the output image to\n\ 01037 # (width / binning_x) x (height / binning_y).\n\ 01038 # The default values binning_x = binning_y = 0 is considered the same\n\ 01039 # as binning_x = binning_y = 1 (no subsampling).\n\ 01040 uint32 binning_x\n\ 01041 uint32 binning_y\n\ 01042 \n\ 01043 # Region of interest (subwindow of full camera resolution), given in\n\ 01044 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01045 # always denotes the same window of pixels on the camera sensor,\n\ 01046 # regardless of binning settings.\n\ 01047 # The default setting of roi (all values 0) is considered the same as\n\ 01048 # full resolution (roi.width = width, roi.height = height).\n\ 01049 RegionOfInterest roi\n\ 01050 \n\ 01051 ================================================================================\n\ 01052 MSG: sensor_msgs/RegionOfInterest\n\ 01053 # This message is used to specify a region of interest within an image.\n\ 01054 #\n\ 01055 # When used to specify the ROI setting of the camera when the image was\n\ 01056 # taken, the height and width fields should either match the height and\n\ 01057 # width fields for the associated image; or height = width = 0\n\ 01058 # indicates that the full resolution image was captured.\n\ 01059 \n\ 01060 uint32 x_offset # Leftmost pixel of the ROI\n\ 01061 # (0 if the ROI includes the left edge of the image)\n\ 01062 uint32 y_offset # Topmost pixel of the ROI\n\ 01063 # (0 if the ROI includes the top edge of the image)\n\ 01064 uint32 height # Height of ROI\n\ 01065 uint32 width # Width of ROI\n\ 01066 \n\ 01067 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01068 # ROI in this message. Typically this should be False if the full image\n\ 01069 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01070 # used).\n\ 01071 bool do_rectify\n\ 01072 \n\ 01073 ================================================================================\n\ 01074 MSG: geometry_msgs/Vector3\n\ 01075 # This represents a vector in free space. \n\ 01076 \n\ 01077 float64 x\n\ 01078 float64 y\n\ 01079 float64 z\n\ 01080 ================================================================================\n\ 01081 MSG: object_manipulation_msgs/Grasp\n\ 01082 \n\ 01083 # The internal posture of the hand for the pre-grasp\n\ 01084 # only positions are used\n\ 01085 sensor_msgs/JointState pre_grasp_posture\n\ 01086 \n\ 01087 # The internal posture of the hand for the grasp\n\ 01088 # positions and efforts are used\n\ 01089 sensor_msgs/JointState grasp_posture\n\ 01090 \n\ 01091 # The position of the end-effector for the grasp relative to a reference frame \n\ 01092 # (that is always specified elsewhere, not in this message)\n\ 01093 geometry_msgs/Pose grasp_pose\n\ 01094 \n\ 01095 # The estimated probability of success for this grasp\n\ 01096 float64 success_probability\n\ 01097 \n\ 01098 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 01099 bool cluster_rep\n\ 01100 \n\ 01101 # how far the pre-grasp should ideally be away from the grasp\n\ 01102 float32 desired_approach_distance\n\ 01103 \n\ 01104 # how much distance between pre-grasp and grasp must actually be feasible \n\ 01105 # for the grasp not to be rejected\n\ 01106 float32 min_approach_distance\n\ 01107 \n\ 01108 # an optional list of obstacles that we have semantic information about\n\ 01109 # and that we expect might move in the course of executing this grasp\n\ 01110 # the grasp planner is expected to make sure they move in an OK way; during\n\ 01111 # execution, grasp executors will not check for collisions against these objects\n\ 01112 GraspableObject[] moved_obstacles\n\ 01113 \n\ 01114 ================================================================================\n\ 01115 MSG: sensor_msgs/JointState\n\ 01116 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01117 #\n\ 01118 # The state of each joint (revolute or prismatic) is defined by:\n\ 01119 # * the position of the joint (rad or m),\n\ 01120 # * the velocity of the joint (rad/s or m/s) and \n\ 01121 # * the effort that is applied in the joint (Nm or N).\n\ 01122 #\n\ 01123 # Each joint is uniquely identified by its name\n\ 01124 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01125 # in one message have to be recorded at the same time.\n\ 01126 #\n\ 01127 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01128 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01129 # effort associated with them, you can leave the effort array empty. \n\ 01130 #\n\ 01131 # All arrays in this message should have the same size, or be empty.\n\ 01132 # This is the only way to uniquely associate the joint name with the correct\n\ 01133 # states.\n\ 01134 \n\ 01135 \n\ 01136 Header header\n\ 01137 \n\ 01138 string[] name\n\ 01139 float64[] position\n\ 01140 float64[] velocity\n\ 01141 float64[] effort\n\ 01142 \n\ 01143 "; 01144 } 01145 01146 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> &) { return value(); } 01147 }; 01148 01149 } // namespace message_traits 01150 } // namespace ros 01151 01152 namespace ros 01153 { 01154 namespace serialization 01155 { 01156 01157 template<class ContainerAllocator> struct Serializer< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > 01158 { 01159 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01160 { 01161 stream.next(m.arm_name); 01162 stream.next(m.gripper_pose); 01163 stream.next(m.gripper_opening); 01164 stream.next(m.object); 01165 stream.next(m.grasp); 01166 } 01167 01168 ROS_DECLARE_ALLINONE_SERIALIZER; 01169 }; // struct GetGripperPoseGoal_ 01170 } // namespace serialization 01171 } // namespace ros 01172 01173 namespace ros 01174 { 01175 namespace message_operations 01176 { 01177 01178 template<class ContainerAllocator> 01179 struct Printer< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > 01180 { 01181 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> & v) 01182 { 01183 s << indent << "arm_name: "; 01184 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name); 01185 s << indent << "gripper_pose: "; 01186 s << std::endl; 01187 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.gripper_pose); 01188 s << indent << "gripper_opening: "; 01189 Printer<float>::stream(s, indent + " ", v.gripper_opening); 01190 s << indent << "object: "; 01191 s << std::endl; 01192 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.object); 01193 s << indent << "grasp: "; 01194 s << std::endl; 01195 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasp); 01196 } 01197 }; 01198 01199 01200 } // namespace message_operations 01201 } // namespace ros 01202 01203 #endif // PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEGOAL_H 01204