00001
00002 #ifndef PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEACTION_H
00003 #define PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "pr2_object_manipulation_msgs/GetGripperPoseActionGoal.h"
00018 #include "pr2_object_manipulation_msgs/GetGripperPoseActionResult.h"
00019 #include "pr2_object_manipulation_msgs/GetGripperPoseActionFeedback.h"
00020
00021 namespace pr2_object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GetGripperPoseAction_ {
00025 typedef GetGripperPoseAction_<ContainerAllocator> Type;
00026
00027 GetGripperPoseAction_()
00028 : action_goal()
00029 , action_result()
00030 , action_feedback()
00031 {
00032 }
00033
00034 GetGripperPoseAction_(const ContainerAllocator& _alloc)
00035 : action_goal(_alloc)
00036 , action_result(_alloc)
00037 , action_feedback(_alloc)
00038 {
00039 }
00040
00041 typedef ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> _action_goal_type;
00042 ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> action_goal;
00043
00044 typedef ::pr2_object_manipulation_msgs::GetGripperPoseActionResult_<ContainerAllocator> _action_result_type;
00045 ::pr2_object_manipulation_msgs::GetGripperPoseActionResult_<ContainerAllocator> action_result;
00046
00047 typedef ::pr2_object_manipulation_msgs::GetGripperPoseActionFeedback_<ContainerAllocator> _action_feedback_type;
00048 ::pr2_object_manipulation_msgs::GetGripperPoseActionFeedback_<ContainerAllocator> action_feedback;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "pr2_object_manipulation_msgs/GetGripperPoseAction"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "9c4f0d9b484c72e500359a2d08dcb181"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 GetGripperPoseActionGoal action_goal\n\
00069 GetGripperPoseActionResult action_result\n\
00070 GetGripperPoseActionFeedback action_feedback\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: pr2_object_manipulation_msgs/GetGripperPoseActionGoal\n\
00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00075 \n\
00076 Header header\n\
00077 actionlib_msgs/GoalID goal_id\n\
00078 GetGripperPoseGoal goal\n\
00079 \n\
00080 ================================================================================\n\
00081 MSG: std_msgs/Header\n\
00082 # Standard metadata for higher-level stamped data types.\n\
00083 # This is generally used to communicate timestamped data \n\
00084 # in a particular coordinate frame.\n\
00085 # \n\
00086 # sequence ID: consecutively increasing ID \n\
00087 uint32 seq\n\
00088 #Two-integer timestamp that is expressed as:\n\
00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00091 # time-handling sugar is provided by the client library\n\
00092 time stamp\n\
00093 #Frame this data is associated with\n\
00094 # 0: no frame\n\
00095 # 1: global frame\n\
00096 string frame_id\n\
00097 \n\
00098 ================================================================================\n\
00099 MSG: actionlib_msgs/GoalID\n\
00100 # The stamp should store the time at which this goal was requested.\n\
00101 # It is used by an action server when it tries to preempt all\n\
00102 # goals that were requested before a certain time\n\
00103 time stamp\n\
00104 \n\
00105 # The id provides a way to associate feedback and\n\
00106 # result message with specific goal requests. The id\n\
00107 # specified must be unique.\n\
00108 string id\n\
00109 \n\
00110 \n\
00111 ================================================================================\n\
00112 MSG: pr2_object_manipulation_msgs/GetGripperPoseGoal\n\
00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00114 \n\
00115 # for which arm are we requesting a pose\n\
00116 # useful for knowing which arm to initialize from when seed is empty\n\
00117 string arm_name\n\
00118 \n\
00119 # a seed position for the ghosted gripper. If emtpy (quaternion of norm 0)\n\
00120 # the ghosted gripper will be initialized at the current position of the gripper\n\
00121 geometry_msgs/PoseStamped gripper_pose\n\
00122 float32 gripper_opening\n\
00123 \n\
00124 # An object that the gripper is holding. May be empty.\n\
00125 object_manipulation_msgs/GraspableObject object\n\
00126 \n\
00127 # how we are holding the object, if any.\n\
00128 object_manipulation_msgs/Grasp grasp\n\
00129 \n\
00130 \n\
00131 ================================================================================\n\
00132 MSG: geometry_msgs/PoseStamped\n\
00133 # A Pose with reference coordinate frame and timestamp\n\
00134 Header header\n\
00135 Pose pose\n\
00136 \n\
00137 ================================================================================\n\
00138 MSG: geometry_msgs/Pose\n\
00139 # A representation of pose in free space, composed of postion and orientation. \n\
00140 Point position\n\
00141 Quaternion orientation\n\
00142 \n\
00143 ================================================================================\n\
00144 MSG: geometry_msgs/Point\n\
00145 # This contains the position of a point in free space\n\
00146 float64 x\n\
00147 float64 y\n\
00148 float64 z\n\
00149 \n\
00150 ================================================================================\n\
00151 MSG: geometry_msgs/Quaternion\n\
00152 # This represents an orientation in free space in quaternion form.\n\
00153 \n\
00154 float64 x\n\
00155 float64 y\n\
00156 float64 z\n\
00157 float64 w\n\
00158 \n\
00159 ================================================================================\n\
00160 MSG: object_manipulation_msgs/GraspableObject\n\
00161 # an object that the object_manipulator can work on\n\
00162 \n\
00163 # a graspable object can be represented in multiple ways. This message\n\
00164 # can contain all of them. Which one is actually used is up to the receiver\n\
00165 # of this message. When adding new representations, one must be careful that\n\
00166 # they have reasonable lightweight defaults indicating that that particular\n\
00167 # representation is not available.\n\
00168 \n\
00169 # the tf frame to be used as a reference frame when combining information from\n\
00170 # the different representations below\n\
00171 string reference_frame_id\n\
00172 \n\
00173 # potential recognition results from a database of models\n\
00174 # all poses are relative to the object reference pose\n\
00175 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00176 \n\
00177 # the point cloud itself\n\
00178 sensor_msgs/PointCloud cluster\n\
00179 \n\
00180 # a region of a PointCloud2 of interest\n\
00181 object_manipulation_msgs/SceneRegion region\n\
00182 \n\
00183 # the name that this object has in the collision environment\n\
00184 string collision_name\n\
00185 ================================================================================\n\
00186 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00187 # Informs that a specific model from the Model Database has been \n\
00188 # identified at a certain location\n\
00189 \n\
00190 # the database id of the model\n\
00191 int32 model_id\n\
00192 \n\
00193 # the pose that it can be found in\n\
00194 geometry_msgs/PoseStamped pose\n\
00195 \n\
00196 # a measure of the confidence level in this detection result\n\
00197 float32 confidence\n\
00198 \n\
00199 # the name of the object detector that generated this detection result\n\
00200 string detector_name\n\
00201 \n\
00202 ================================================================================\n\
00203 MSG: sensor_msgs/PointCloud\n\
00204 # This message holds a collection of 3d points, plus optional additional\n\
00205 # information about each point.\n\
00206 \n\
00207 # Time of sensor data acquisition, coordinate frame ID.\n\
00208 Header header\n\
00209 \n\
00210 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00211 # in the frame given in the header.\n\
00212 geometry_msgs/Point32[] points\n\
00213 \n\
00214 # Each channel should have the same number of elements as points array,\n\
00215 # and the data in each channel should correspond 1:1 with each point.\n\
00216 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00217 ChannelFloat32[] channels\n\
00218 \n\
00219 ================================================================================\n\
00220 MSG: geometry_msgs/Point32\n\
00221 # This contains the position of a point in free space(with 32 bits of precision).\n\
00222 # It is recommeded to use Point wherever possible instead of Point32. \n\
00223 # \n\
00224 # This recommendation is to promote interoperability. \n\
00225 #\n\
00226 # This message is designed to take up less space when sending\n\
00227 # lots of points at once, as in the case of a PointCloud. \n\
00228 \n\
00229 float32 x\n\
00230 float32 y\n\
00231 float32 z\n\
00232 ================================================================================\n\
00233 MSG: sensor_msgs/ChannelFloat32\n\
00234 # This message is used by the PointCloud message to hold optional data\n\
00235 # associated with each point in the cloud. The length of the values\n\
00236 # array should be the same as the length of the points array in the\n\
00237 # PointCloud, and each value should be associated with the corresponding\n\
00238 # point.\n\
00239 \n\
00240 # Channel names in existing practice include:\n\
00241 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00242 # This is opposite to usual conventions but remains for\n\
00243 # historical reasons. The newer PointCloud2 message has no\n\
00244 # such problem.\n\
00245 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00246 # (R,G,B) values packed into the least significant 24 bits,\n\
00247 # in order.\n\
00248 # \"intensity\" - laser or pixel intensity.\n\
00249 # \"distance\"\n\
00250 \n\
00251 # The channel name should give semantics of the channel (e.g.\n\
00252 # \"intensity\" instead of \"value\").\n\
00253 string name\n\
00254 \n\
00255 # The values array should be 1-1 with the elements of the associated\n\
00256 # PointCloud.\n\
00257 float32[] values\n\
00258 \n\
00259 ================================================================================\n\
00260 MSG: object_manipulation_msgs/SceneRegion\n\
00261 # Point cloud\n\
00262 sensor_msgs/PointCloud2 cloud\n\
00263 \n\
00264 # Indices for the region of interest\n\
00265 int32[] mask\n\
00266 \n\
00267 # One of the corresponding 2D images, if applicable\n\
00268 sensor_msgs/Image image\n\
00269 \n\
00270 # The disparity image, if applicable\n\
00271 sensor_msgs/Image disparity_image\n\
00272 \n\
00273 # Camera info for the camera that took the image\n\
00274 sensor_msgs/CameraInfo cam_info\n\
00275 \n\
00276 # a 3D region of interest for grasp planning\n\
00277 geometry_msgs/PoseStamped roi_box_pose\n\
00278 geometry_msgs/Vector3 roi_box_dims\n\
00279 \n\
00280 ================================================================================\n\
00281 MSG: sensor_msgs/PointCloud2\n\
00282 # This message holds a collection of N-dimensional points, which may\n\
00283 # contain additional information such as normals, intensity, etc. The\n\
00284 # point data is stored as a binary blob, its layout described by the\n\
00285 # contents of the \"fields\" array.\n\
00286 \n\
00287 # The point cloud data may be organized 2d (image-like) or 1d\n\
00288 # (unordered). Point clouds organized as 2d images may be produced by\n\
00289 # camera depth sensors such as stereo or time-of-flight.\n\
00290 \n\
00291 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00292 # points).\n\
00293 Header header\n\
00294 \n\
00295 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00296 # 1 and width is the length of the point cloud.\n\
00297 uint32 height\n\
00298 uint32 width\n\
00299 \n\
00300 # Describes the channels and their layout in the binary data blob.\n\
00301 PointField[] fields\n\
00302 \n\
00303 bool is_bigendian # Is this data bigendian?\n\
00304 uint32 point_step # Length of a point in bytes\n\
00305 uint32 row_step # Length of a row in bytes\n\
00306 uint8[] data # Actual point data, size is (row_step*height)\n\
00307 \n\
00308 bool is_dense # True if there are no invalid points\n\
00309 \n\
00310 ================================================================================\n\
00311 MSG: sensor_msgs/PointField\n\
00312 # This message holds the description of one point entry in the\n\
00313 # PointCloud2 message format.\n\
00314 uint8 INT8 = 1\n\
00315 uint8 UINT8 = 2\n\
00316 uint8 INT16 = 3\n\
00317 uint8 UINT16 = 4\n\
00318 uint8 INT32 = 5\n\
00319 uint8 UINT32 = 6\n\
00320 uint8 FLOAT32 = 7\n\
00321 uint8 FLOAT64 = 8\n\
00322 \n\
00323 string name # Name of field\n\
00324 uint32 offset # Offset from start of point struct\n\
00325 uint8 datatype # Datatype enumeration, see above\n\
00326 uint32 count # How many elements in the field\n\
00327 \n\
00328 ================================================================================\n\
00329 MSG: sensor_msgs/Image\n\
00330 # This message contains an uncompressed image\n\
00331 # (0, 0) is at top-left corner of image\n\
00332 #\n\
00333 \n\
00334 Header header # Header timestamp should be acquisition time of image\n\
00335 # Header frame_id should be optical frame of camera\n\
00336 # origin of frame should be optical center of cameara\n\
00337 # +x should point to the right in the image\n\
00338 # +y should point down in the image\n\
00339 # +z should point into to plane of the image\n\
00340 # If the frame_id here and the frame_id of the CameraInfo\n\
00341 # message associated with the image conflict\n\
00342 # the behavior is undefined\n\
00343 \n\
00344 uint32 height # image height, that is, number of rows\n\
00345 uint32 width # image width, that is, number of columns\n\
00346 \n\
00347 # The legal values for encoding are in file src/image_encodings.cpp\n\
00348 # If you want to standardize a new string format, join\n\
00349 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00350 \n\
00351 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00352 # taken from the list of strings in src/image_encodings.cpp\n\
00353 \n\
00354 uint8 is_bigendian # is this data bigendian?\n\
00355 uint32 step # Full row length in bytes\n\
00356 uint8[] data # actual matrix data, size is (step * rows)\n\
00357 \n\
00358 ================================================================================\n\
00359 MSG: sensor_msgs/CameraInfo\n\
00360 # This message defines meta information for a camera. It should be in a\n\
00361 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00362 # image topics named:\n\
00363 #\n\
00364 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00365 # image - monochrome, distorted\n\
00366 # image_color - color, distorted\n\
00367 # image_rect - monochrome, rectified\n\
00368 # image_rect_color - color, rectified\n\
00369 #\n\
00370 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00371 # for producing the four processed image topics from image_raw and\n\
00372 # camera_info. The meaning of the camera parameters are described in\n\
00373 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00374 #\n\
00375 # The image_geometry package provides a user-friendly interface to\n\
00376 # common operations using this meta information. If you want to, e.g.,\n\
00377 # project a 3d point into image coordinates, we strongly recommend\n\
00378 # using image_geometry.\n\
00379 #\n\
00380 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00381 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00382 # indicates an uncalibrated camera.\n\
00383 \n\
00384 #######################################################################\n\
00385 # Image acquisition info #\n\
00386 #######################################################################\n\
00387 \n\
00388 # Time of image acquisition, camera coordinate frame ID\n\
00389 Header header # Header timestamp should be acquisition time of image\n\
00390 # Header frame_id should be optical frame of camera\n\
00391 # origin of frame should be optical center of camera\n\
00392 # +x should point to the right in the image\n\
00393 # +y should point down in the image\n\
00394 # +z should point into the plane of the image\n\
00395 \n\
00396 \n\
00397 #######################################################################\n\
00398 # Calibration Parameters #\n\
00399 #######################################################################\n\
00400 # These are fixed during camera calibration. Their values will be the #\n\
00401 # same in all messages until the camera is recalibrated. Note that #\n\
00402 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00403 # #\n\
00404 # The internal parameters can be used to warp a raw (distorted) image #\n\
00405 # to: #\n\
00406 # 1. An undistorted image (requires D and K) #\n\
00407 # 2. A rectified image (requires D, K, R) #\n\
00408 # The projection matrix P projects 3D points into the rectified image.#\n\
00409 #######################################################################\n\
00410 \n\
00411 # The image dimensions with which the camera was calibrated. Normally\n\
00412 # this will be the full camera resolution in pixels.\n\
00413 uint32 height\n\
00414 uint32 width\n\
00415 \n\
00416 # The distortion model used. Supported models are listed in\n\
00417 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00418 # simple model of radial and tangential distortion - is sufficent.\n\
00419 string distortion_model\n\
00420 \n\
00421 # The distortion parameters, size depending on the distortion model.\n\
00422 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00423 float64[] D\n\
00424 \n\
00425 # Intrinsic camera matrix for the raw (distorted) images.\n\
00426 # [fx 0 cx]\n\
00427 # K = [ 0 fy cy]\n\
00428 # [ 0 0 1]\n\
00429 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00430 # coordinates using the focal lengths (fx, fy) and principal point\n\
00431 # (cx, cy).\n\
00432 float64[9] K # 3x3 row-major matrix\n\
00433 \n\
00434 # Rectification matrix (stereo cameras only)\n\
00435 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00436 # stereo image plane so that epipolar lines in both stereo images are\n\
00437 # parallel.\n\
00438 float64[9] R # 3x3 row-major matrix\n\
00439 \n\
00440 # Projection/camera matrix\n\
00441 # [fx' 0 cx' Tx]\n\
00442 # P = [ 0 fy' cy' Ty]\n\
00443 # [ 0 0 1 0]\n\
00444 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00445 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00446 # is the normal camera intrinsic matrix for the rectified image.\n\
00447 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00448 # coordinates using the focal lengths (fx', fy') and principal point\n\
00449 # (cx', cy') - these may differ from the values in K.\n\
00450 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00451 # also have R = the identity and P[1:3,1:3] = K.\n\
00452 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00453 # position of the optical center of the second camera in the first\n\
00454 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00455 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00456 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00457 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00458 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00459 # the rectified image is given by:\n\
00460 # [u v w]' = P * [X Y Z 1]'\n\
00461 # x = u / w\n\
00462 # y = v / w\n\
00463 # This holds for both images of a stereo pair.\n\
00464 float64[12] P # 3x4 row-major matrix\n\
00465 \n\
00466 \n\
00467 #######################################################################\n\
00468 # Operational Parameters #\n\
00469 #######################################################################\n\
00470 # These define the image region actually captured by the camera #\n\
00471 # driver. Although they affect the geometry of the output image, they #\n\
00472 # may be changed freely without recalibrating the camera. #\n\
00473 #######################################################################\n\
00474 \n\
00475 # Binning refers here to any camera setting which combines rectangular\n\
00476 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00477 # resolution of the output image to\n\
00478 # (width / binning_x) x (height / binning_y).\n\
00479 # The default values binning_x = binning_y = 0 is considered the same\n\
00480 # as binning_x = binning_y = 1 (no subsampling).\n\
00481 uint32 binning_x\n\
00482 uint32 binning_y\n\
00483 \n\
00484 # Region of interest (subwindow of full camera resolution), given in\n\
00485 # full resolution (unbinned) image coordinates. A particular ROI\n\
00486 # always denotes the same window of pixels on the camera sensor,\n\
00487 # regardless of binning settings.\n\
00488 # The default setting of roi (all values 0) is considered the same as\n\
00489 # full resolution (roi.width = width, roi.height = height).\n\
00490 RegionOfInterest roi\n\
00491 \n\
00492 ================================================================================\n\
00493 MSG: sensor_msgs/RegionOfInterest\n\
00494 # This message is used to specify a region of interest within an image.\n\
00495 #\n\
00496 # When used to specify the ROI setting of the camera when the image was\n\
00497 # taken, the height and width fields should either match the height and\n\
00498 # width fields for the associated image; or height = width = 0\n\
00499 # indicates that the full resolution image was captured.\n\
00500 \n\
00501 uint32 x_offset # Leftmost pixel of the ROI\n\
00502 # (0 if the ROI includes the left edge of the image)\n\
00503 uint32 y_offset # Topmost pixel of the ROI\n\
00504 # (0 if the ROI includes the top edge of the image)\n\
00505 uint32 height # Height of ROI\n\
00506 uint32 width # Width of ROI\n\
00507 \n\
00508 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00509 # ROI in this message. Typically this should be False if the full image\n\
00510 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00511 # used).\n\
00512 bool do_rectify\n\
00513 \n\
00514 ================================================================================\n\
00515 MSG: geometry_msgs/Vector3\n\
00516 # This represents a vector in free space. \n\
00517 \n\
00518 float64 x\n\
00519 float64 y\n\
00520 float64 z\n\
00521 ================================================================================\n\
00522 MSG: object_manipulation_msgs/Grasp\n\
00523 \n\
00524 # The internal posture of the hand for the pre-grasp\n\
00525 # only positions are used\n\
00526 sensor_msgs/JointState pre_grasp_posture\n\
00527 \n\
00528 # The internal posture of the hand for the grasp\n\
00529 # positions and efforts are used\n\
00530 sensor_msgs/JointState grasp_posture\n\
00531 \n\
00532 # The position of the end-effector for the grasp relative to a reference frame \n\
00533 # (that is always specified elsewhere, not in this message)\n\
00534 geometry_msgs/Pose grasp_pose\n\
00535 \n\
00536 # The estimated probability of success for this grasp\n\
00537 float64 success_probability\n\
00538 \n\
00539 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00540 bool cluster_rep\n\
00541 \n\
00542 # how far the pre-grasp should ideally be away from the grasp\n\
00543 float32 desired_approach_distance\n\
00544 \n\
00545 # how much distance between pre-grasp and grasp must actually be feasible \n\
00546 # for the grasp not to be rejected\n\
00547 float32 min_approach_distance\n\
00548 \n\
00549 # an optional list of obstacles that we have semantic information about\n\
00550 # and that we expect might move in the course of executing this grasp\n\
00551 # the grasp planner is expected to make sure they move in an OK way; during\n\
00552 # execution, grasp executors will not check for collisions against these objects\n\
00553 GraspableObject[] moved_obstacles\n\
00554 \n\
00555 ================================================================================\n\
00556 MSG: sensor_msgs/JointState\n\
00557 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00558 #\n\
00559 # The state of each joint (revolute or prismatic) is defined by:\n\
00560 # * the position of the joint (rad or m),\n\
00561 # * the velocity of the joint (rad/s or m/s) and \n\
00562 # * the effort that is applied in the joint (Nm or N).\n\
00563 #\n\
00564 # Each joint is uniquely identified by its name\n\
00565 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00566 # in one message have to be recorded at the same time.\n\
00567 #\n\
00568 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00569 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00570 # effort associated with them, you can leave the effort array empty. \n\
00571 #\n\
00572 # All arrays in this message should have the same size, or be empty.\n\
00573 # This is the only way to uniquely associate the joint name with the correct\n\
00574 # states.\n\
00575 \n\
00576 \n\
00577 Header header\n\
00578 \n\
00579 string[] name\n\
00580 float64[] position\n\
00581 float64[] velocity\n\
00582 float64[] effort\n\
00583 \n\
00584 ================================================================================\n\
00585 MSG: pr2_object_manipulation_msgs/GetGripperPoseActionResult\n\
00586 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00587 \n\
00588 Header header\n\
00589 actionlib_msgs/GoalStatus status\n\
00590 GetGripperPoseResult result\n\
00591 \n\
00592 ================================================================================\n\
00593 MSG: actionlib_msgs/GoalStatus\n\
00594 GoalID goal_id\n\
00595 uint8 status\n\
00596 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00597 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00598 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00599 # and has since completed its execution (Terminal State)\n\
00600 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00601 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00602 # to some failure (Terminal State)\n\
00603 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00604 # because the goal was unattainable or invalid (Terminal State)\n\
00605 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00606 # and has not yet completed execution\n\
00607 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00608 # but the action server has not yet confirmed that the goal is canceled\n\
00609 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00610 # and was successfully cancelled (Terminal State)\n\
00611 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00612 # sent over the wire by an action server\n\
00613 \n\
00614 #Allow for the user to associate a string with GoalStatus for debugging\n\
00615 string text\n\
00616 \n\
00617 \n\
00618 ================================================================================\n\
00619 MSG: pr2_object_manipulation_msgs/GetGripperPoseResult\n\
00620 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00621 # the returned gripper pose, assuming the user has clicked \"accept\"\n\
00622 # if the user clicks \"cancel\" the action aborts\n\
00623 geometry_msgs/PoseStamped gripper_pose\n\
00624 float32 gripper_opening\n\
00625 \n\
00626 ================================================================================\n\
00627 MSG: pr2_object_manipulation_msgs/GetGripperPoseActionFeedback\n\
00628 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00629 \n\
00630 Header header\n\
00631 actionlib_msgs/GoalStatus status\n\
00632 GetGripperPoseFeedback feedback\n\
00633 \n\
00634 ================================================================================\n\
00635 MSG: pr2_object_manipulation_msgs/GetGripperPoseFeedback\n\
00636 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00637 \n\
00638 # the feedback gripper pose, which is basically raw and unfiltered but may be useful\n\
00639 geometry_msgs/PoseStamped gripper_pose\n\
00640 float32 gripper_opening\n\
00641 \n\
00642 \n\
00643 "; }
00644 public:
00645 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00646
00647 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00648
00649 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00650 {
00651 ros::serialization::OStream stream(write_ptr, 1000000000);
00652 ros::serialization::serialize(stream, action_goal);
00653 ros::serialization::serialize(stream, action_result);
00654 ros::serialization::serialize(stream, action_feedback);
00655 return stream.getData();
00656 }
00657
00658 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00659 {
00660 ros::serialization::IStream stream(read_ptr, 1000000000);
00661 ros::serialization::deserialize(stream, action_goal);
00662 ros::serialization::deserialize(stream, action_result);
00663 ros::serialization::deserialize(stream, action_feedback);
00664 return stream.getData();
00665 }
00666
00667 ROS_DEPRECATED virtual uint32_t serializationLength() const
00668 {
00669 uint32_t size = 0;
00670 size += ros::serialization::serializationLength(action_goal);
00671 size += ros::serialization::serializationLength(action_result);
00672 size += ros::serialization::serializationLength(action_feedback);
00673 return size;
00674 }
00675
00676 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> > Ptr;
00677 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> const> ConstPtr;
00678 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00679 };
00680 typedef ::pr2_object_manipulation_msgs::GetGripperPoseAction_<std::allocator<void> > GetGripperPoseAction;
00681
00682 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseAction> GetGripperPoseActionPtr;
00683 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseAction const> GetGripperPoseActionConstPtr;
00684
00685
00686 template<typename ContainerAllocator>
00687 std::ostream& operator<<(std::ostream& s, const ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> & v)
00688 {
00689 ros::message_operations::Printer< ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> >::stream(s, "", v);
00690 return s;}
00691
00692 }
00693
00694 namespace ros
00695 {
00696 namespace message_traits
00697 {
00698 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> > : public TrueType {};
00699 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> const> : public TrueType {};
00700 template<class ContainerAllocator>
00701 struct MD5Sum< ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> > {
00702 static const char* value()
00703 {
00704 return "9c4f0d9b484c72e500359a2d08dcb181";
00705 }
00706
00707 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> &) { return value(); }
00708 static const uint64_t static_value1 = 0x9c4f0d9b484c72e5ULL;
00709 static const uint64_t static_value2 = 0x00359a2d08dcb181ULL;
00710 };
00711
00712 template<class ContainerAllocator>
00713 struct DataType< ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> > {
00714 static const char* value()
00715 {
00716 return "pr2_object_manipulation_msgs/GetGripperPoseAction";
00717 }
00718
00719 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> &) { return value(); }
00720 };
00721
00722 template<class ContainerAllocator>
00723 struct Definition< ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> > {
00724 static const char* value()
00725 {
00726 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00727 \n\
00728 GetGripperPoseActionGoal action_goal\n\
00729 GetGripperPoseActionResult action_result\n\
00730 GetGripperPoseActionFeedback action_feedback\n\
00731 \n\
00732 ================================================================================\n\
00733 MSG: pr2_object_manipulation_msgs/GetGripperPoseActionGoal\n\
00734 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00735 \n\
00736 Header header\n\
00737 actionlib_msgs/GoalID goal_id\n\
00738 GetGripperPoseGoal goal\n\
00739 \n\
00740 ================================================================================\n\
00741 MSG: std_msgs/Header\n\
00742 # Standard metadata for higher-level stamped data types.\n\
00743 # This is generally used to communicate timestamped data \n\
00744 # in a particular coordinate frame.\n\
00745 # \n\
00746 # sequence ID: consecutively increasing ID \n\
00747 uint32 seq\n\
00748 #Two-integer timestamp that is expressed as:\n\
00749 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00750 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00751 # time-handling sugar is provided by the client library\n\
00752 time stamp\n\
00753 #Frame this data is associated with\n\
00754 # 0: no frame\n\
00755 # 1: global frame\n\
00756 string frame_id\n\
00757 \n\
00758 ================================================================================\n\
00759 MSG: actionlib_msgs/GoalID\n\
00760 # The stamp should store the time at which this goal was requested.\n\
00761 # It is used by an action server when it tries to preempt all\n\
00762 # goals that were requested before a certain time\n\
00763 time stamp\n\
00764 \n\
00765 # The id provides a way to associate feedback and\n\
00766 # result message with specific goal requests. The id\n\
00767 # specified must be unique.\n\
00768 string id\n\
00769 \n\
00770 \n\
00771 ================================================================================\n\
00772 MSG: pr2_object_manipulation_msgs/GetGripperPoseGoal\n\
00773 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00774 \n\
00775 # for which arm are we requesting a pose\n\
00776 # useful for knowing which arm to initialize from when seed is empty\n\
00777 string arm_name\n\
00778 \n\
00779 # a seed position for the ghosted gripper. If emtpy (quaternion of norm 0)\n\
00780 # the ghosted gripper will be initialized at the current position of the gripper\n\
00781 geometry_msgs/PoseStamped gripper_pose\n\
00782 float32 gripper_opening\n\
00783 \n\
00784 # An object that the gripper is holding. May be empty.\n\
00785 object_manipulation_msgs/GraspableObject object\n\
00786 \n\
00787 # how we are holding the object, if any.\n\
00788 object_manipulation_msgs/Grasp grasp\n\
00789 \n\
00790 \n\
00791 ================================================================================\n\
00792 MSG: geometry_msgs/PoseStamped\n\
00793 # A Pose with reference coordinate frame and timestamp\n\
00794 Header header\n\
00795 Pose pose\n\
00796 \n\
00797 ================================================================================\n\
00798 MSG: geometry_msgs/Pose\n\
00799 # A representation of pose in free space, composed of postion and orientation. \n\
00800 Point position\n\
00801 Quaternion orientation\n\
00802 \n\
00803 ================================================================================\n\
00804 MSG: geometry_msgs/Point\n\
00805 # This contains the position of a point in free space\n\
00806 float64 x\n\
00807 float64 y\n\
00808 float64 z\n\
00809 \n\
00810 ================================================================================\n\
00811 MSG: geometry_msgs/Quaternion\n\
00812 # This represents an orientation in free space in quaternion form.\n\
00813 \n\
00814 float64 x\n\
00815 float64 y\n\
00816 float64 z\n\
00817 float64 w\n\
00818 \n\
00819 ================================================================================\n\
00820 MSG: object_manipulation_msgs/GraspableObject\n\
00821 # an object that the object_manipulator can work on\n\
00822 \n\
00823 # a graspable object can be represented in multiple ways. This message\n\
00824 # can contain all of them. Which one is actually used is up to the receiver\n\
00825 # of this message. When adding new representations, one must be careful that\n\
00826 # they have reasonable lightweight defaults indicating that that particular\n\
00827 # representation is not available.\n\
00828 \n\
00829 # the tf frame to be used as a reference frame when combining information from\n\
00830 # the different representations below\n\
00831 string reference_frame_id\n\
00832 \n\
00833 # potential recognition results from a database of models\n\
00834 # all poses are relative to the object reference pose\n\
00835 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00836 \n\
00837 # the point cloud itself\n\
00838 sensor_msgs/PointCloud cluster\n\
00839 \n\
00840 # a region of a PointCloud2 of interest\n\
00841 object_manipulation_msgs/SceneRegion region\n\
00842 \n\
00843 # the name that this object has in the collision environment\n\
00844 string collision_name\n\
00845 ================================================================================\n\
00846 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00847 # Informs that a specific model from the Model Database has been \n\
00848 # identified at a certain location\n\
00849 \n\
00850 # the database id of the model\n\
00851 int32 model_id\n\
00852 \n\
00853 # the pose that it can be found in\n\
00854 geometry_msgs/PoseStamped pose\n\
00855 \n\
00856 # a measure of the confidence level in this detection result\n\
00857 float32 confidence\n\
00858 \n\
00859 # the name of the object detector that generated this detection result\n\
00860 string detector_name\n\
00861 \n\
00862 ================================================================================\n\
00863 MSG: sensor_msgs/PointCloud\n\
00864 # This message holds a collection of 3d points, plus optional additional\n\
00865 # information about each point.\n\
00866 \n\
00867 # Time of sensor data acquisition, coordinate frame ID.\n\
00868 Header header\n\
00869 \n\
00870 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00871 # in the frame given in the header.\n\
00872 geometry_msgs/Point32[] points\n\
00873 \n\
00874 # Each channel should have the same number of elements as points array,\n\
00875 # and the data in each channel should correspond 1:1 with each point.\n\
00876 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00877 ChannelFloat32[] channels\n\
00878 \n\
00879 ================================================================================\n\
00880 MSG: geometry_msgs/Point32\n\
00881 # This contains the position of a point in free space(with 32 bits of precision).\n\
00882 # It is recommeded to use Point wherever possible instead of Point32. \n\
00883 # \n\
00884 # This recommendation is to promote interoperability. \n\
00885 #\n\
00886 # This message is designed to take up less space when sending\n\
00887 # lots of points at once, as in the case of a PointCloud. \n\
00888 \n\
00889 float32 x\n\
00890 float32 y\n\
00891 float32 z\n\
00892 ================================================================================\n\
00893 MSG: sensor_msgs/ChannelFloat32\n\
00894 # This message is used by the PointCloud message to hold optional data\n\
00895 # associated with each point in the cloud. The length of the values\n\
00896 # array should be the same as the length of the points array in the\n\
00897 # PointCloud, and each value should be associated with the corresponding\n\
00898 # point.\n\
00899 \n\
00900 # Channel names in existing practice include:\n\
00901 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00902 # This is opposite to usual conventions but remains for\n\
00903 # historical reasons. The newer PointCloud2 message has no\n\
00904 # such problem.\n\
00905 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00906 # (R,G,B) values packed into the least significant 24 bits,\n\
00907 # in order.\n\
00908 # \"intensity\" - laser or pixel intensity.\n\
00909 # \"distance\"\n\
00910 \n\
00911 # The channel name should give semantics of the channel (e.g.\n\
00912 # \"intensity\" instead of \"value\").\n\
00913 string name\n\
00914 \n\
00915 # The values array should be 1-1 with the elements of the associated\n\
00916 # PointCloud.\n\
00917 float32[] values\n\
00918 \n\
00919 ================================================================================\n\
00920 MSG: object_manipulation_msgs/SceneRegion\n\
00921 # Point cloud\n\
00922 sensor_msgs/PointCloud2 cloud\n\
00923 \n\
00924 # Indices for the region of interest\n\
00925 int32[] mask\n\
00926 \n\
00927 # One of the corresponding 2D images, if applicable\n\
00928 sensor_msgs/Image image\n\
00929 \n\
00930 # The disparity image, if applicable\n\
00931 sensor_msgs/Image disparity_image\n\
00932 \n\
00933 # Camera info for the camera that took the image\n\
00934 sensor_msgs/CameraInfo cam_info\n\
00935 \n\
00936 # a 3D region of interest for grasp planning\n\
00937 geometry_msgs/PoseStamped roi_box_pose\n\
00938 geometry_msgs/Vector3 roi_box_dims\n\
00939 \n\
00940 ================================================================================\n\
00941 MSG: sensor_msgs/PointCloud2\n\
00942 # This message holds a collection of N-dimensional points, which may\n\
00943 # contain additional information such as normals, intensity, etc. The\n\
00944 # point data is stored as a binary blob, its layout described by the\n\
00945 # contents of the \"fields\" array.\n\
00946 \n\
00947 # The point cloud data may be organized 2d (image-like) or 1d\n\
00948 # (unordered). Point clouds organized as 2d images may be produced by\n\
00949 # camera depth sensors such as stereo or time-of-flight.\n\
00950 \n\
00951 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00952 # points).\n\
00953 Header header\n\
00954 \n\
00955 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00956 # 1 and width is the length of the point cloud.\n\
00957 uint32 height\n\
00958 uint32 width\n\
00959 \n\
00960 # Describes the channels and their layout in the binary data blob.\n\
00961 PointField[] fields\n\
00962 \n\
00963 bool is_bigendian # Is this data bigendian?\n\
00964 uint32 point_step # Length of a point in bytes\n\
00965 uint32 row_step # Length of a row in bytes\n\
00966 uint8[] data # Actual point data, size is (row_step*height)\n\
00967 \n\
00968 bool is_dense # True if there are no invalid points\n\
00969 \n\
00970 ================================================================================\n\
00971 MSG: sensor_msgs/PointField\n\
00972 # This message holds the description of one point entry in the\n\
00973 # PointCloud2 message format.\n\
00974 uint8 INT8 = 1\n\
00975 uint8 UINT8 = 2\n\
00976 uint8 INT16 = 3\n\
00977 uint8 UINT16 = 4\n\
00978 uint8 INT32 = 5\n\
00979 uint8 UINT32 = 6\n\
00980 uint8 FLOAT32 = 7\n\
00981 uint8 FLOAT64 = 8\n\
00982 \n\
00983 string name # Name of field\n\
00984 uint32 offset # Offset from start of point struct\n\
00985 uint8 datatype # Datatype enumeration, see above\n\
00986 uint32 count # How many elements in the field\n\
00987 \n\
00988 ================================================================================\n\
00989 MSG: sensor_msgs/Image\n\
00990 # This message contains an uncompressed image\n\
00991 # (0, 0) is at top-left corner of image\n\
00992 #\n\
00993 \n\
00994 Header header # Header timestamp should be acquisition time of image\n\
00995 # Header frame_id should be optical frame of camera\n\
00996 # origin of frame should be optical center of cameara\n\
00997 # +x should point to the right in the image\n\
00998 # +y should point down in the image\n\
00999 # +z should point into to plane of the image\n\
01000 # If the frame_id here and the frame_id of the CameraInfo\n\
01001 # message associated with the image conflict\n\
01002 # the behavior is undefined\n\
01003 \n\
01004 uint32 height # image height, that is, number of rows\n\
01005 uint32 width # image width, that is, number of columns\n\
01006 \n\
01007 # The legal values for encoding are in file src/image_encodings.cpp\n\
01008 # If you want to standardize a new string format, join\n\
01009 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01010 \n\
01011 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01012 # taken from the list of strings in src/image_encodings.cpp\n\
01013 \n\
01014 uint8 is_bigendian # is this data bigendian?\n\
01015 uint32 step # Full row length in bytes\n\
01016 uint8[] data # actual matrix data, size is (step * rows)\n\
01017 \n\
01018 ================================================================================\n\
01019 MSG: sensor_msgs/CameraInfo\n\
01020 # This message defines meta information for a camera. It should be in a\n\
01021 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01022 # image topics named:\n\
01023 #\n\
01024 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01025 # image - monochrome, distorted\n\
01026 # image_color - color, distorted\n\
01027 # image_rect - monochrome, rectified\n\
01028 # image_rect_color - color, rectified\n\
01029 #\n\
01030 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01031 # for producing the four processed image topics from image_raw and\n\
01032 # camera_info. The meaning of the camera parameters are described in\n\
01033 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01034 #\n\
01035 # The image_geometry package provides a user-friendly interface to\n\
01036 # common operations using this meta information. If you want to, e.g.,\n\
01037 # project a 3d point into image coordinates, we strongly recommend\n\
01038 # using image_geometry.\n\
01039 #\n\
01040 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01041 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01042 # indicates an uncalibrated camera.\n\
01043 \n\
01044 #######################################################################\n\
01045 # Image acquisition info #\n\
01046 #######################################################################\n\
01047 \n\
01048 # Time of image acquisition, camera coordinate frame ID\n\
01049 Header header # Header timestamp should be acquisition time of image\n\
01050 # Header frame_id should be optical frame of camera\n\
01051 # origin of frame should be optical center of camera\n\
01052 # +x should point to the right in the image\n\
01053 # +y should point down in the image\n\
01054 # +z should point into the plane of the image\n\
01055 \n\
01056 \n\
01057 #######################################################################\n\
01058 # Calibration Parameters #\n\
01059 #######################################################################\n\
01060 # These are fixed during camera calibration. Their values will be the #\n\
01061 # same in all messages until the camera is recalibrated. Note that #\n\
01062 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01063 # #\n\
01064 # The internal parameters can be used to warp a raw (distorted) image #\n\
01065 # to: #\n\
01066 # 1. An undistorted image (requires D and K) #\n\
01067 # 2. A rectified image (requires D, K, R) #\n\
01068 # The projection matrix P projects 3D points into the rectified image.#\n\
01069 #######################################################################\n\
01070 \n\
01071 # The image dimensions with which the camera was calibrated. Normally\n\
01072 # this will be the full camera resolution in pixels.\n\
01073 uint32 height\n\
01074 uint32 width\n\
01075 \n\
01076 # The distortion model used. Supported models are listed in\n\
01077 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01078 # simple model of radial and tangential distortion - is sufficent.\n\
01079 string distortion_model\n\
01080 \n\
01081 # The distortion parameters, size depending on the distortion model.\n\
01082 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01083 float64[] D\n\
01084 \n\
01085 # Intrinsic camera matrix for the raw (distorted) images.\n\
01086 # [fx 0 cx]\n\
01087 # K = [ 0 fy cy]\n\
01088 # [ 0 0 1]\n\
01089 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01090 # coordinates using the focal lengths (fx, fy) and principal point\n\
01091 # (cx, cy).\n\
01092 float64[9] K # 3x3 row-major matrix\n\
01093 \n\
01094 # Rectification matrix (stereo cameras only)\n\
01095 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01096 # stereo image plane so that epipolar lines in both stereo images are\n\
01097 # parallel.\n\
01098 float64[9] R # 3x3 row-major matrix\n\
01099 \n\
01100 # Projection/camera matrix\n\
01101 # [fx' 0 cx' Tx]\n\
01102 # P = [ 0 fy' cy' Ty]\n\
01103 # [ 0 0 1 0]\n\
01104 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01105 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01106 # is the normal camera intrinsic matrix for the rectified image.\n\
01107 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01108 # coordinates using the focal lengths (fx', fy') and principal point\n\
01109 # (cx', cy') - these may differ from the values in K.\n\
01110 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01111 # also have R = the identity and P[1:3,1:3] = K.\n\
01112 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01113 # position of the optical center of the second camera in the first\n\
01114 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01115 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01116 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01117 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01118 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01119 # the rectified image is given by:\n\
01120 # [u v w]' = P * [X Y Z 1]'\n\
01121 # x = u / w\n\
01122 # y = v / w\n\
01123 # This holds for both images of a stereo pair.\n\
01124 float64[12] P # 3x4 row-major matrix\n\
01125 \n\
01126 \n\
01127 #######################################################################\n\
01128 # Operational Parameters #\n\
01129 #######################################################################\n\
01130 # These define the image region actually captured by the camera #\n\
01131 # driver. Although they affect the geometry of the output image, they #\n\
01132 # may be changed freely without recalibrating the camera. #\n\
01133 #######################################################################\n\
01134 \n\
01135 # Binning refers here to any camera setting which combines rectangular\n\
01136 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01137 # resolution of the output image to\n\
01138 # (width / binning_x) x (height / binning_y).\n\
01139 # The default values binning_x = binning_y = 0 is considered the same\n\
01140 # as binning_x = binning_y = 1 (no subsampling).\n\
01141 uint32 binning_x\n\
01142 uint32 binning_y\n\
01143 \n\
01144 # Region of interest (subwindow of full camera resolution), given in\n\
01145 # full resolution (unbinned) image coordinates. A particular ROI\n\
01146 # always denotes the same window of pixels on the camera sensor,\n\
01147 # regardless of binning settings.\n\
01148 # The default setting of roi (all values 0) is considered the same as\n\
01149 # full resolution (roi.width = width, roi.height = height).\n\
01150 RegionOfInterest roi\n\
01151 \n\
01152 ================================================================================\n\
01153 MSG: sensor_msgs/RegionOfInterest\n\
01154 # This message is used to specify a region of interest within an image.\n\
01155 #\n\
01156 # When used to specify the ROI setting of the camera when the image was\n\
01157 # taken, the height and width fields should either match the height and\n\
01158 # width fields for the associated image; or height = width = 0\n\
01159 # indicates that the full resolution image was captured.\n\
01160 \n\
01161 uint32 x_offset # Leftmost pixel of the ROI\n\
01162 # (0 if the ROI includes the left edge of the image)\n\
01163 uint32 y_offset # Topmost pixel of the ROI\n\
01164 # (0 if the ROI includes the top edge of the image)\n\
01165 uint32 height # Height of ROI\n\
01166 uint32 width # Width of ROI\n\
01167 \n\
01168 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01169 # ROI in this message. Typically this should be False if the full image\n\
01170 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01171 # used).\n\
01172 bool do_rectify\n\
01173 \n\
01174 ================================================================================\n\
01175 MSG: geometry_msgs/Vector3\n\
01176 # This represents a vector in free space. \n\
01177 \n\
01178 float64 x\n\
01179 float64 y\n\
01180 float64 z\n\
01181 ================================================================================\n\
01182 MSG: object_manipulation_msgs/Grasp\n\
01183 \n\
01184 # The internal posture of the hand for the pre-grasp\n\
01185 # only positions are used\n\
01186 sensor_msgs/JointState pre_grasp_posture\n\
01187 \n\
01188 # The internal posture of the hand for the grasp\n\
01189 # positions and efforts are used\n\
01190 sensor_msgs/JointState grasp_posture\n\
01191 \n\
01192 # The position of the end-effector for the grasp relative to a reference frame \n\
01193 # (that is always specified elsewhere, not in this message)\n\
01194 geometry_msgs/Pose grasp_pose\n\
01195 \n\
01196 # The estimated probability of success for this grasp\n\
01197 float64 success_probability\n\
01198 \n\
01199 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01200 bool cluster_rep\n\
01201 \n\
01202 # how far the pre-grasp should ideally be away from the grasp\n\
01203 float32 desired_approach_distance\n\
01204 \n\
01205 # how much distance between pre-grasp and grasp must actually be feasible \n\
01206 # for the grasp not to be rejected\n\
01207 float32 min_approach_distance\n\
01208 \n\
01209 # an optional list of obstacles that we have semantic information about\n\
01210 # and that we expect might move in the course of executing this grasp\n\
01211 # the grasp planner is expected to make sure they move in an OK way; during\n\
01212 # execution, grasp executors will not check for collisions against these objects\n\
01213 GraspableObject[] moved_obstacles\n\
01214 \n\
01215 ================================================================================\n\
01216 MSG: sensor_msgs/JointState\n\
01217 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01218 #\n\
01219 # The state of each joint (revolute or prismatic) is defined by:\n\
01220 # * the position of the joint (rad or m),\n\
01221 # * the velocity of the joint (rad/s or m/s) and \n\
01222 # * the effort that is applied in the joint (Nm or N).\n\
01223 #\n\
01224 # Each joint is uniquely identified by its name\n\
01225 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01226 # in one message have to be recorded at the same time.\n\
01227 #\n\
01228 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01229 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01230 # effort associated with them, you can leave the effort array empty. \n\
01231 #\n\
01232 # All arrays in this message should have the same size, or be empty.\n\
01233 # This is the only way to uniquely associate the joint name with the correct\n\
01234 # states.\n\
01235 \n\
01236 \n\
01237 Header header\n\
01238 \n\
01239 string[] name\n\
01240 float64[] position\n\
01241 float64[] velocity\n\
01242 float64[] effort\n\
01243 \n\
01244 ================================================================================\n\
01245 MSG: pr2_object_manipulation_msgs/GetGripperPoseActionResult\n\
01246 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01247 \n\
01248 Header header\n\
01249 actionlib_msgs/GoalStatus status\n\
01250 GetGripperPoseResult result\n\
01251 \n\
01252 ================================================================================\n\
01253 MSG: actionlib_msgs/GoalStatus\n\
01254 GoalID goal_id\n\
01255 uint8 status\n\
01256 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
01257 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
01258 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
01259 # and has since completed its execution (Terminal State)\n\
01260 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
01261 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
01262 # to some failure (Terminal State)\n\
01263 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
01264 # because the goal was unattainable or invalid (Terminal State)\n\
01265 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
01266 # and has not yet completed execution\n\
01267 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
01268 # but the action server has not yet confirmed that the goal is canceled\n\
01269 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
01270 # and was successfully cancelled (Terminal State)\n\
01271 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
01272 # sent over the wire by an action server\n\
01273 \n\
01274 #Allow for the user to associate a string with GoalStatus for debugging\n\
01275 string text\n\
01276 \n\
01277 \n\
01278 ================================================================================\n\
01279 MSG: pr2_object_manipulation_msgs/GetGripperPoseResult\n\
01280 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01281 # the returned gripper pose, assuming the user has clicked \"accept\"\n\
01282 # if the user clicks \"cancel\" the action aborts\n\
01283 geometry_msgs/PoseStamped gripper_pose\n\
01284 float32 gripper_opening\n\
01285 \n\
01286 ================================================================================\n\
01287 MSG: pr2_object_manipulation_msgs/GetGripperPoseActionFeedback\n\
01288 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01289 \n\
01290 Header header\n\
01291 actionlib_msgs/GoalStatus status\n\
01292 GetGripperPoseFeedback feedback\n\
01293 \n\
01294 ================================================================================\n\
01295 MSG: pr2_object_manipulation_msgs/GetGripperPoseFeedback\n\
01296 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01297 \n\
01298 # the feedback gripper pose, which is basically raw and unfiltered but may be useful\n\
01299 geometry_msgs/PoseStamped gripper_pose\n\
01300 float32 gripper_opening\n\
01301 \n\
01302 \n\
01303 ";
01304 }
01305
01306 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> &) { return value(); }
01307 };
01308
01309 }
01310 }
01311
01312 namespace ros
01313 {
01314 namespace serialization
01315 {
01316
01317 template<class ContainerAllocator> struct Serializer< ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> >
01318 {
01319 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01320 {
01321 stream.next(m.action_goal);
01322 stream.next(m.action_result);
01323 stream.next(m.action_feedback);
01324 }
01325
01326 ROS_DECLARE_ALLINONE_SERIALIZER;
01327 };
01328 }
01329 }
01330
01331 namespace ros
01332 {
01333 namespace message_operations
01334 {
01335
01336 template<class ContainerAllocator>
01337 struct Printer< ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> >
01338 {
01339 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_object_manipulation_msgs::GetGripperPoseAction_<ContainerAllocator> & v)
01340 {
01341 s << indent << "action_goal: ";
01342 s << std::endl;
01343 Printer< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
01344 s << indent << "action_result: ";
01345 s << std::endl;
01346 Printer< ::pr2_object_manipulation_msgs::GetGripperPoseActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
01347 s << indent << "action_feedback: ";
01348 s << std::endl;
01349 Printer< ::pr2_object_manipulation_msgs::GetGripperPoseActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
01350 }
01351 };
01352
01353
01354 }
01355 }
01356
01357 #endif // PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEACTION_H
01358