00001
00002 #ifndef PR2_CREATE_OBJECT_MODEL_MESSAGE_OBJECTINHAND_H
00003 #define PR2_CREATE_OBJECT_MODEL_MESSAGE_OBJECTINHAND_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "sensor_msgs/PointCloud2.h"
00018
00019 namespace pr2_create_object_model
00020 {
00021 template <class ContainerAllocator>
00022 struct ObjectInHand_ {
00023 typedef ObjectInHand_<ContainerAllocator> Type;
00024
00025 ObjectInHand_()
00026 : arm_name()
00027 , cluster()
00028 , collision_name()
00029 {
00030 }
00031
00032 ObjectInHand_(const ContainerAllocator& _alloc)
00033 : arm_name(_alloc)
00034 , cluster(_alloc)
00035 , collision_name(_alloc)
00036 {
00037 }
00038
00039 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00040 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00041
00042 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _cluster_type;
00043 ::sensor_msgs::PointCloud2_<ContainerAllocator> cluster;
00044
00045 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_name_type;
00046 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_name;
00047
00048
00049 private:
00050 static const char* __s_getDataType_() { return "pr2_create_object_model/ObjectInHand"; }
00051 public:
00052 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00053
00054 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00055
00056 private:
00057 static const char* __s_getMD5Sum_() { return "4fc0573025d65bdcd1b2ae03b3b53c3e"; }
00058 public:
00059 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00060
00061 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00062
00063 private:
00064 static const char* __s_getMessageDefinition_() { return "string arm_name\n\
00065 sensor_msgs/PointCloud2 cluster\n\
00066 string collision_name\n\
00067 \n\
00068 ================================================================================\n\
00069 MSG: sensor_msgs/PointCloud2\n\
00070 # This message holds a collection of N-dimensional points, which may\n\
00071 # contain additional information such as normals, intensity, etc. The\n\
00072 # point data is stored as a binary blob, its layout described by the\n\
00073 # contents of the \"fields\" array.\n\
00074 \n\
00075 # The point cloud data may be organized 2d (image-like) or 1d\n\
00076 # (unordered). Point clouds organized as 2d images may be produced by\n\
00077 # camera depth sensors such as stereo or time-of-flight.\n\
00078 \n\
00079 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00080 # points).\n\
00081 Header header\n\
00082 \n\
00083 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00084 # 1 and width is the length of the point cloud.\n\
00085 uint32 height\n\
00086 uint32 width\n\
00087 \n\
00088 # Describes the channels and their layout in the binary data blob.\n\
00089 PointField[] fields\n\
00090 \n\
00091 bool is_bigendian # Is this data bigendian?\n\
00092 uint32 point_step # Length of a point in bytes\n\
00093 uint32 row_step # Length of a row in bytes\n\
00094 uint8[] data # Actual point data, size is (row_step*height)\n\
00095 \n\
00096 bool is_dense # True if there are no invalid points\n\
00097 \n\
00098 ================================================================================\n\
00099 MSG: std_msgs/Header\n\
00100 # Standard metadata for higher-level stamped data types.\n\
00101 # This is generally used to communicate timestamped data \n\
00102 # in a particular coordinate frame.\n\
00103 # \n\
00104 # sequence ID: consecutively increasing ID \n\
00105 uint32 seq\n\
00106 #Two-integer timestamp that is expressed as:\n\
00107 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00108 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00109 # time-handling sugar is provided by the client library\n\
00110 time stamp\n\
00111 #Frame this data is associated with\n\
00112 # 0: no frame\n\
00113 # 1: global frame\n\
00114 string frame_id\n\
00115 \n\
00116 ================================================================================\n\
00117 MSG: sensor_msgs/PointField\n\
00118 # This message holds the description of one point entry in the\n\
00119 # PointCloud2 message format.\n\
00120 uint8 INT8 = 1\n\
00121 uint8 UINT8 = 2\n\
00122 uint8 INT16 = 3\n\
00123 uint8 UINT16 = 4\n\
00124 uint8 INT32 = 5\n\
00125 uint8 UINT32 = 6\n\
00126 uint8 FLOAT32 = 7\n\
00127 uint8 FLOAT64 = 8\n\
00128 \n\
00129 string name # Name of field\n\
00130 uint32 offset # Offset from start of point struct\n\
00131 uint8 datatype # Datatype enumeration, see above\n\
00132 uint32 count # How many elements in the field\n\
00133 \n\
00134 "; }
00135 public:
00136 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00137
00138 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00139
00140 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00141 {
00142 ros::serialization::OStream stream(write_ptr, 1000000000);
00143 ros::serialization::serialize(stream, arm_name);
00144 ros::serialization::serialize(stream, cluster);
00145 ros::serialization::serialize(stream, collision_name);
00146 return stream.getData();
00147 }
00148
00149 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00150 {
00151 ros::serialization::IStream stream(read_ptr, 1000000000);
00152 ros::serialization::deserialize(stream, arm_name);
00153 ros::serialization::deserialize(stream, cluster);
00154 ros::serialization::deserialize(stream, collision_name);
00155 return stream.getData();
00156 }
00157
00158 ROS_DEPRECATED virtual uint32_t serializationLength() const
00159 {
00160 uint32_t size = 0;
00161 size += ros::serialization::serializationLength(arm_name);
00162 size += ros::serialization::serializationLength(cluster);
00163 size += ros::serialization::serializationLength(collision_name);
00164 return size;
00165 }
00166
00167 typedef boost::shared_ptr< ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> > Ptr;
00168 typedef boost::shared_ptr< ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> const> ConstPtr;
00169 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00170 };
00171 typedef ::pr2_create_object_model::ObjectInHand_<std::allocator<void> > ObjectInHand;
00172
00173 typedef boost::shared_ptr< ::pr2_create_object_model::ObjectInHand> ObjectInHandPtr;
00174 typedef boost::shared_ptr< ::pr2_create_object_model::ObjectInHand const> ObjectInHandConstPtr;
00175
00176
00177 template<typename ContainerAllocator>
00178 std::ostream& operator<<(std::ostream& s, const ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> & v)
00179 {
00180 ros::message_operations::Printer< ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> >::stream(s, "", v);
00181 return s;}
00182
00183 }
00184
00185 namespace ros
00186 {
00187 namespace message_traits
00188 {
00189 template<class ContainerAllocator> struct IsMessage< ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> > : public TrueType {};
00190 template<class ContainerAllocator> struct IsMessage< ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> const> : public TrueType {};
00191 template<class ContainerAllocator>
00192 struct MD5Sum< ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> > {
00193 static const char* value()
00194 {
00195 return "4fc0573025d65bdcd1b2ae03b3b53c3e";
00196 }
00197
00198 static const char* value(const ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> &) { return value(); }
00199 static const uint64_t static_value1 = 0x4fc0573025d65bdcULL;
00200 static const uint64_t static_value2 = 0xd1b2ae03b3b53c3eULL;
00201 };
00202
00203 template<class ContainerAllocator>
00204 struct DataType< ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> > {
00205 static const char* value()
00206 {
00207 return "pr2_create_object_model/ObjectInHand";
00208 }
00209
00210 static const char* value(const ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> &) { return value(); }
00211 };
00212
00213 template<class ContainerAllocator>
00214 struct Definition< ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> > {
00215 static const char* value()
00216 {
00217 return "string arm_name\n\
00218 sensor_msgs/PointCloud2 cluster\n\
00219 string collision_name\n\
00220 \n\
00221 ================================================================================\n\
00222 MSG: sensor_msgs/PointCloud2\n\
00223 # This message holds a collection of N-dimensional points, which may\n\
00224 # contain additional information such as normals, intensity, etc. The\n\
00225 # point data is stored as a binary blob, its layout described by the\n\
00226 # contents of the \"fields\" array.\n\
00227 \n\
00228 # The point cloud data may be organized 2d (image-like) or 1d\n\
00229 # (unordered). Point clouds organized as 2d images may be produced by\n\
00230 # camera depth sensors such as stereo or time-of-flight.\n\
00231 \n\
00232 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00233 # points).\n\
00234 Header header\n\
00235 \n\
00236 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00237 # 1 and width is the length of the point cloud.\n\
00238 uint32 height\n\
00239 uint32 width\n\
00240 \n\
00241 # Describes the channels and their layout in the binary data blob.\n\
00242 PointField[] fields\n\
00243 \n\
00244 bool is_bigendian # Is this data bigendian?\n\
00245 uint32 point_step # Length of a point in bytes\n\
00246 uint32 row_step # Length of a row in bytes\n\
00247 uint8[] data # Actual point data, size is (row_step*height)\n\
00248 \n\
00249 bool is_dense # True if there are no invalid points\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: std_msgs/Header\n\
00253 # Standard metadata for higher-level stamped data types.\n\
00254 # This is generally used to communicate timestamped data \n\
00255 # in a particular coordinate frame.\n\
00256 # \n\
00257 # sequence ID: consecutively increasing ID \n\
00258 uint32 seq\n\
00259 #Two-integer timestamp that is expressed as:\n\
00260 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00261 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00262 # time-handling sugar is provided by the client library\n\
00263 time stamp\n\
00264 #Frame this data is associated with\n\
00265 # 0: no frame\n\
00266 # 1: global frame\n\
00267 string frame_id\n\
00268 \n\
00269 ================================================================================\n\
00270 MSG: sensor_msgs/PointField\n\
00271 # This message holds the description of one point entry in the\n\
00272 # PointCloud2 message format.\n\
00273 uint8 INT8 = 1\n\
00274 uint8 UINT8 = 2\n\
00275 uint8 INT16 = 3\n\
00276 uint8 UINT16 = 4\n\
00277 uint8 INT32 = 5\n\
00278 uint8 UINT32 = 6\n\
00279 uint8 FLOAT32 = 7\n\
00280 uint8 FLOAT64 = 8\n\
00281 \n\
00282 string name # Name of field\n\
00283 uint32 offset # Offset from start of point struct\n\
00284 uint8 datatype # Datatype enumeration, see above\n\
00285 uint32 count # How many elements in the field\n\
00286 \n\
00287 ";
00288 }
00289
00290 static const char* value(const ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> &) { return value(); }
00291 };
00292
00293 }
00294 }
00295
00296 namespace ros
00297 {
00298 namespace serialization
00299 {
00300
00301 template<class ContainerAllocator> struct Serializer< ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> >
00302 {
00303 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00304 {
00305 stream.next(m.arm_name);
00306 stream.next(m.cluster);
00307 stream.next(m.collision_name);
00308 }
00309
00310 ROS_DECLARE_ALLINONE_SERIALIZER;
00311 };
00312 }
00313 }
00314
00315 namespace ros
00316 {
00317 namespace message_operations
00318 {
00319
00320 template<class ContainerAllocator>
00321 struct Printer< ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> >
00322 {
00323 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_create_object_model::ObjectInHand_<ContainerAllocator> & v)
00324 {
00325 s << indent << "arm_name: ";
00326 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
00327 s << indent << "cluster: ";
00328 s << std::endl;
00329 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.cluster);
00330 s << indent << "collision_name: ";
00331 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_name);
00332 }
00333 };
00334
00335
00336 }
00337 }
00338
00339 #endif // PR2_CREATE_OBJECT_MODEL_MESSAGE_OBJECTINHAND_H
00340