00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/GraspableObject.h"
00018 #include "object_manipulation_msgs/GripperTranslation.h"
00019 #include "trajectory_msgs/JointTrajectory.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ReactiveLiftGoal_ {
00025 typedef ReactiveLiftGoal_<ContainerAllocator> Type;
00026
00027 ReactiveLiftGoal_()
00028 : arm_name()
00029 , target()
00030 , lift()
00031 , trajectory()
00032 , collision_support_surface_name()
00033 {
00034 }
00035
00036 ReactiveLiftGoal_(const ContainerAllocator& _alloc)
00037 : arm_name(_alloc)
00038 , target(_alloc)
00039 , lift(_alloc)
00040 , trajectory(_alloc)
00041 , collision_support_surface_name(_alloc)
00042 {
00043 }
00044
00045 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00046 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00047
00048 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00049 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00050
00051 typedef ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> _lift_type;
00052 ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> lift;
00053
00054 typedef ::trajectory_msgs::JointTrajectory_<ContainerAllocator> _trajectory_type;
00055 ::trajectory_msgs::JointTrajectory_<ContainerAllocator> trajectory;
00056
00057 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00058 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00059
00060
00061 private:
00062 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveLiftGoal"; }
00063 public:
00064 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00065
00066 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00067
00068 private:
00069 static const char* __s_getMD5Sum_() { return "ccf1b7602acb55923fcdaeb7ef4ae5e8"; }
00070 public:
00071 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00072
00073 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00074
00075 private:
00076 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00077 \n\
00078 # the name of the arm being used\n\
00079 string arm_name\n\
00080 \n\
00081 # the object to be grasped\n\
00082 GraspableObject target\n\
00083 \n\
00084 # How the object should be lifted \n\
00085 GripperTranslation lift\n\
00086 \n\
00087 # the joint trajectory to use for the approach (if available)\n\
00088 # this trajectory is expected to start at the current pose of the gripper\n\
00089 # and end at the desired grasp pose\n\
00090 trajectory_msgs/JointTrajectory trajectory\n\
00091 \n\
00092 # the name of the support surface in the collision environment, if any\n\
00093 string collision_support_surface_name\n\
00094 \n\
00095 \n\
00096 ================================================================================\n\
00097 MSG: object_manipulation_msgs/GraspableObject\n\
00098 # an object that the object_manipulator can work on\n\
00099 \n\
00100 # a graspable object can be represented in multiple ways. This message\n\
00101 # can contain all of them. Which one is actually used is up to the receiver\n\
00102 # of this message. When adding new representations, one must be careful that\n\
00103 # they have reasonable lightweight defaults indicating that that particular\n\
00104 # representation is not available.\n\
00105 \n\
00106 # the tf frame to be used as a reference frame when combining information from\n\
00107 # the different representations below\n\
00108 string reference_frame_id\n\
00109 \n\
00110 # potential recognition results from a database of models\n\
00111 # all poses are relative to the object reference pose\n\
00112 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00113 \n\
00114 # the point cloud itself\n\
00115 sensor_msgs/PointCloud cluster\n\
00116 \n\
00117 # a region of a PointCloud2 of interest\n\
00118 object_manipulation_msgs/SceneRegion region\n\
00119 \n\
00120 # the name that this object has in the collision environment\n\
00121 string collision_name\n\
00122 ================================================================================\n\
00123 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00124 # Informs that a specific model from the Model Database has been \n\
00125 # identified at a certain location\n\
00126 \n\
00127 # the database id of the model\n\
00128 int32 model_id\n\
00129 \n\
00130 # the pose that it can be found in\n\
00131 geometry_msgs/PoseStamped pose\n\
00132 \n\
00133 # a measure of the confidence level in this detection result\n\
00134 float32 confidence\n\
00135 \n\
00136 # the name of the object detector that generated this detection result\n\
00137 string detector_name\n\
00138 \n\
00139 ================================================================================\n\
00140 MSG: geometry_msgs/PoseStamped\n\
00141 # A Pose with reference coordinate frame and timestamp\n\
00142 Header header\n\
00143 Pose pose\n\
00144 \n\
00145 ================================================================================\n\
00146 MSG: std_msgs/Header\n\
00147 # Standard metadata for higher-level stamped data types.\n\
00148 # This is generally used to communicate timestamped data \n\
00149 # in a particular coordinate frame.\n\
00150 # \n\
00151 # sequence ID: consecutively increasing ID \n\
00152 uint32 seq\n\
00153 #Two-integer timestamp that is expressed as:\n\
00154 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00155 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00156 # time-handling sugar is provided by the client library\n\
00157 time stamp\n\
00158 #Frame this data is associated with\n\
00159 # 0: no frame\n\
00160 # 1: global frame\n\
00161 string frame_id\n\
00162 \n\
00163 ================================================================================\n\
00164 MSG: geometry_msgs/Pose\n\
00165 # A representation of pose in free space, composed of postion and orientation. \n\
00166 Point position\n\
00167 Quaternion orientation\n\
00168 \n\
00169 ================================================================================\n\
00170 MSG: geometry_msgs/Point\n\
00171 # This contains the position of a point in free space\n\
00172 float64 x\n\
00173 float64 y\n\
00174 float64 z\n\
00175 \n\
00176 ================================================================================\n\
00177 MSG: geometry_msgs/Quaternion\n\
00178 # This represents an orientation in free space in quaternion form.\n\
00179 \n\
00180 float64 x\n\
00181 float64 y\n\
00182 float64 z\n\
00183 float64 w\n\
00184 \n\
00185 ================================================================================\n\
00186 MSG: sensor_msgs/PointCloud\n\
00187 # This message holds a collection of 3d points, plus optional additional\n\
00188 # information about each point.\n\
00189 \n\
00190 # Time of sensor data acquisition, coordinate frame ID.\n\
00191 Header header\n\
00192 \n\
00193 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00194 # in the frame given in the header.\n\
00195 geometry_msgs/Point32[] points\n\
00196 \n\
00197 # Each channel should have the same number of elements as points array,\n\
00198 # and the data in each channel should correspond 1:1 with each point.\n\
00199 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00200 ChannelFloat32[] channels\n\
00201 \n\
00202 ================================================================================\n\
00203 MSG: geometry_msgs/Point32\n\
00204 # This contains the position of a point in free space(with 32 bits of precision).\n\
00205 # It is recommeded to use Point wherever possible instead of Point32. \n\
00206 # \n\
00207 # This recommendation is to promote interoperability. \n\
00208 #\n\
00209 # This message is designed to take up less space when sending\n\
00210 # lots of points at once, as in the case of a PointCloud. \n\
00211 \n\
00212 float32 x\n\
00213 float32 y\n\
00214 float32 z\n\
00215 ================================================================================\n\
00216 MSG: sensor_msgs/ChannelFloat32\n\
00217 # This message is used by the PointCloud message to hold optional data\n\
00218 # associated with each point in the cloud. The length of the values\n\
00219 # array should be the same as the length of the points array in the\n\
00220 # PointCloud, and each value should be associated with the corresponding\n\
00221 # point.\n\
00222 \n\
00223 # Channel names in existing practice include:\n\
00224 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00225 # This is opposite to usual conventions but remains for\n\
00226 # historical reasons. The newer PointCloud2 message has no\n\
00227 # such problem.\n\
00228 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00229 # (R,G,B) values packed into the least significant 24 bits,\n\
00230 # in order.\n\
00231 # \"intensity\" - laser or pixel intensity.\n\
00232 # \"distance\"\n\
00233 \n\
00234 # The channel name should give semantics of the channel (e.g.\n\
00235 # \"intensity\" instead of \"value\").\n\
00236 string name\n\
00237 \n\
00238 # The values array should be 1-1 with the elements of the associated\n\
00239 # PointCloud.\n\
00240 float32[] values\n\
00241 \n\
00242 ================================================================================\n\
00243 MSG: object_manipulation_msgs/SceneRegion\n\
00244 # Point cloud\n\
00245 sensor_msgs/PointCloud2 cloud\n\
00246 \n\
00247 # Indices for the region of interest\n\
00248 int32[] mask\n\
00249 \n\
00250 # One of the corresponding 2D images, if applicable\n\
00251 sensor_msgs/Image image\n\
00252 \n\
00253 # The disparity image, if applicable\n\
00254 sensor_msgs/Image disparity_image\n\
00255 \n\
00256 # Camera info for the camera that took the image\n\
00257 sensor_msgs/CameraInfo cam_info\n\
00258 \n\
00259 # a 3D region of interest for grasp planning\n\
00260 geometry_msgs/PoseStamped roi_box_pose\n\
00261 geometry_msgs/Vector3 roi_box_dims\n\
00262 \n\
00263 ================================================================================\n\
00264 MSG: sensor_msgs/PointCloud2\n\
00265 # This message holds a collection of N-dimensional points, which may\n\
00266 # contain additional information such as normals, intensity, etc. The\n\
00267 # point data is stored as a binary blob, its layout described by the\n\
00268 # contents of the \"fields\" array.\n\
00269 \n\
00270 # The point cloud data may be organized 2d (image-like) or 1d\n\
00271 # (unordered). Point clouds organized as 2d images may be produced by\n\
00272 # camera depth sensors such as stereo or time-of-flight.\n\
00273 \n\
00274 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00275 # points).\n\
00276 Header header\n\
00277 \n\
00278 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00279 # 1 and width is the length of the point cloud.\n\
00280 uint32 height\n\
00281 uint32 width\n\
00282 \n\
00283 # Describes the channels and their layout in the binary data blob.\n\
00284 PointField[] fields\n\
00285 \n\
00286 bool is_bigendian # Is this data bigendian?\n\
00287 uint32 point_step # Length of a point in bytes\n\
00288 uint32 row_step # Length of a row in bytes\n\
00289 uint8[] data # Actual point data, size is (row_step*height)\n\
00290 \n\
00291 bool is_dense # True if there are no invalid points\n\
00292 \n\
00293 ================================================================================\n\
00294 MSG: sensor_msgs/PointField\n\
00295 # This message holds the description of one point entry in the\n\
00296 # PointCloud2 message format.\n\
00297 uint8 INT8 = 1\n\
00298 uint8 UINT8 = 2\n\
00299 uint8 INT16 = 3\n\
00300 uint8 UINT16 = 4\n\
00301 uint8 INT32 = 5\n\
00302 uint8 UINT32 = 6\n\
00303 uint8 FLOAT32 = 7\n\
00304 uint8 FLOAT64 = 8\n\
00305 \n\
00306 string name # Name of field\n\
00307 uint32 offset # Offset from start of point struct\n\
00308 uint8 datatype # Datatype enumeration, see above\n\
00309 uint32 count # How many elements in the field\n\
00310 \n\
00311 ================================================================================\n\
00312 MSG: sensor_msgs/Image\n\
00313 # This message contains an uncompressed image\n\
00314 # (0, 0) is at top-left corner of image\n\
00315 #\n\
00316 \n\
00317 Header header # Header timestamp should be acquisition time of image\n\
00318 # Header frame_id should be optical frame of camera\n\
00319 # origin of frame should be optical center of cameara\n\
00320 # +x should point to the right in the image\n\
00321 # +y should point down in the image\n\
00322 # +z should point into to plane of the image\n\
00323 # If the frame_id here and the frame_id of the CameraInfo\n\
00324 # message associated with the image conflict\n\
00325 # the behavior is undefined\n\
00326 \n\
00327 uint32 height # image height, that is, number of rows\n\
00328 uint32 width # image width, that is, number of columns\n\
00329 \n\
00330 # The legal values for encoding are in file src/image_encodings.cpp\n\
00331 # If you want to standardize a new string format, join\n\
00332 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00333 \n\
00334 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00335 # taken from the list of strings in src/image_encodings.cpp\n\
00336 \n\
00337 uint8 is_bigendian # is this data bigendian?\n\
00338 uint32 step # Full row length in bytes\n\
00339 uint8[] data # actual matrix data, size is (step * rows)\n\
00340 \n\
00341 ================================================================================\n\
00342 MSG: sensor_msgs/CameraInfo\n\
00343 # This message defines meta information for a camera. It should be in a\n\
00344 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00345 # image topics named:\n\
00346 #\n\
00347 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00348 # image - monochrome, distorted\n\
00349 # image_color - color, distorted\n\
00350 # image_rect - monochrome, rectified\n\
00351 # image_rect_color - color, rectified\n\
00352 #\n\
00353 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00354 # for producing the four processed image topics from image_raw and\n\
00355 # camera_info. The meaning of the camera parameters are described in\n\
00356 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00357 #\n\
00358 # The image_geometry package provides a user-friendly interface to\n\
00359 # common operations using this meta information. If you want to, e.g.,\n\
00360 # project a 3d point into image coordinates, we strongly recommend\n\
00361 # using image_geometry.\n\
00362 #\n\
00363 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00364 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00365 # indicates an uncalibrated camera.\n\
00366 \n\
00367 #######################################################################\n\
00368 # Image acquisition info #\n\
00369 #######################################################################\n\
00370 \n\
00371 # Time of image acquisition, camera coordinate frame ID\n\
00372 Header header # Header timestamp should be acquisition time of image\n\
00373 # Header frame_id should be optical frame of camera\n\
00374 # origin of frame should be optical center of camera\n\
00375 # +x should point to the right in the image\n\
00376 # +y should point down in the image\n\
00377 # +z should point into the plane of the image\n\
00378 \n\
00379 \n\
00380 #######################################################################\n\
00381 # Calibration Parameters #\n\
00382 #######################################################################\n\
00383 # These are fixed during camera calibration. Their values will be the #\n\
00384 # same in all messages until the camera is recalibrated. Note that #\n\
00385 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00386 # #\n\
00387 # The internal parameters can be used to warp a raw (distorted) image #\n\
00388 # to: #\n\
00389 # 1. An undistorted image (requires D and K) #\n\
00390 # 2. A rectified image (requires D, K, R) #\n\
00391 # The projection matrix P projects 3D points into the rectified image.#\n\
00392 #######################################################################\n\
00393 \n\
00394 # The image dimensions with which the camera was calibrated. Normally\n\
00395 # this will be the full camera resolution in pixels.\n\
00396 uint32 height\n\
00397 uint32 width\n\
00398 \n\
00399 # The distortion model used. Supported models are listed in\n\
00400 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00401 # simple model of radial and tangential distortion - is sufficent.\n\
00402 string distortion_model\n\
00403 \n\
00404 # The distortion parameters, size depending on the distortion model.\n\
00405 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00406 float64[] D\n\
00407 \n\
00408 # Intrinsic camera matrix for the raw (distorted) images.\n\
00409 # [fx 0 cx]\n\
00410 # K = [ 0 fy cy]\n\
00411 # [ 0 0 1]\n\
00412 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00413 # coordinates using the focal lengths (fx, fy) and principal point\n\
00414 # (cx, cy).\n\
00415 float64[9] K # 3x3 row-major matrix\n\
00416 \n\
00417 # Rectification matrix (stereo cameras only)\n\
00418 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00419 # stereo image plane so that epipolar lines in both stereo images are\n\
00420 # parallel.\n\
00421 float64[9] R # 3x3 row-major matrix\n\
00422 \n\
00423 # Projection/camera matrix\n\
00424 # [fx' 0 cx' Tx]\n\
00425 # P = [ 0 fy' cy' Ty]\n\
00426 # [ 0 0 1 0]\n\
00427 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00428 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00429 # is the normal camera intrinsic matrix for the rectified image.\n\
00430 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00431 # coordinates using the focal lengths (fx', fy') and principal point\n\
00432 # (cx', cy') - these may differ from the values in K.\n\
00433 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00434 # also have R = the identity and P[1:3,1:3] = K.\n\
00435 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00436 # position of the optical center of the second camera in the first\n\
00437 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00438 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00439 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00440 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00441 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00442 # the rectified image is given by:\n\
00443 # [u v w]' = P * [X Y Z 1]'\n\
00444 # x = u / w\n\
00445 # y = v / w\n\
00446 # This holds for both images of a stereo pair.\n\
00447 float64[12] P # 3x4 row-major matrix\n\
00448 \n\
00449 \n\
00450 #######################################################################\n\
00451 # Operational Parameters #\n\
00452 #######################################################################\n\
00453 # These define the image region actually captured by the camera #\n\
00454 # driver. Although they affect the geometry of the output image, they #\n\
00455 # may be changed freely without recalibrating the camera. #\n\
00456 #######################################################################\n\
00457 \n\
00458 # Binning refers here to any camera setting which combines rectangular\n\
00459 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00460 # resolution of the output image to\n\
00461 # (width / binning_x) x (height / binning_y).\n\
00462 # The default values binning_x = binning_y = 0 is considered the same\n\
00463 # as binning_x = binning_y = 1 (no subsampling).\n\
00464 uint32 binning_x\n\
00465 uint32 binning_y\n\
00466 \n\
00467 # Region of interest (subwindow of full camera resolution), given in\n\
00468 # full resolution (unbinned) image coordinates. A particular ROI\n\
00469 # always denotes the same window of pixels on the camera sensor,\n\
00470 # regardless of binning settings.\n\
00471 # The default setting of roi (all values 0) is considered the same as\n\
00472 # full resolution (roi.width = width, roi.height = height).\n\
00473 RegionOfInterest roi\n\
00474 \n\
00475 ================================================================================\n\
00476 MSG: sensor_msgs/RegionOfInterest\n\
00477 # This message is used to specify a region of interest within an image.\n\
00478 #\n\
00479 # When used to specify the ROI setting of the camera when the image was\n\
00480 # taken, the height and width fields should either match the height and\n\
00481 # width fields for the associated image; or height = width = 0\n\
00482 # indicates that the full resolution image was captured.\n\
00483 \n\
00484 uint32 x_offset # Leftmost pixel of the ROI\n\
00485 # (0 if the ROI includes the left edge of the image)\n\
00486 uint32 y_offset # Topmost pixel of the ROI\n\
00487 # (0 if the ROI includes the top edge of the image)\n\
00488 uint32 height # Height of ROI\n\
00489 uint32 width # Width of ROI\n\
00490 \n\
00491 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00492 # ROI in this message. Typically this should be False if the full image\n\
00493 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00494 # used).\n\
00495 bool do_rectify\n\
00496 \n\
00497 ================================================================================\n\
00498 MSG: geometry_msgs/Vector3\n\
00499 # This represents a vector in free space. \n\
00500 \n\
00501 float64 x\n\
00502 float64 y\n\
00503 float64 z\n\
00504 ================================================================================\n\
00505 MSG: object_manipulation_msgs/GripperTranslation\n\
00506 # defines a translation for the gripper, used in pickup or place tasks\n\
00507 # for example for lifting an object off a table or approaching the table for placing\n\
00508 \n\
00509 # the direction of the translation\n\
00510 geometry_msgs/Vector3Stamped direction\n\
00511 \n\
00512 # the desired translation distance\n\
00513 float32 desired_distance\n\
00514 \n\
00515 # the min distance that must be considered feasible before the\n\
00516 # grasp is even attempted\n\
00517 float32 min_distance\n\
00518 ================================================================================\n\
00519 MSG: geometry_msgs/Vector3Stamped\n\
00520 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00521 Header header\n\
00522 Vector3 vector\n\
00523 \n\
00524 ================================================================================\n\
00525 MSG: trajectory_msgs/JointTrajectory\n\
00526 Header header\n\
00527 string[] joint_names\n\
00528 JointTrajectoryPoint[] points\n\
00529 ================================================================================\n\
00530 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00531 float64[] positions\n\
00532 float64[] velocities\n\
00533 float64[] accelerations\n\
00534 duration time_from_start\n\
00535 "; }
00536 public:
00537 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00538
00539 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00540
00541 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00542 {
00543 ros::serialization::OStream stream(write_ptr, 1000000000);
00544 ros::serialization::serialize(stream, arm_name);
00545 ros::serialization::serialize(stream, target);
00546 ros::serialization::serialize(stream, lift);
00547 ros::serialization::serialize(stream, trajectory);
00548 ros::serialization::serialize(stream, collision_support_surface_name);
00549 return stream.getData();
00550 }
00551
00552 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00553 {
00554 ros::serialization::IStream stream(read_ptr, 1000000000);
00555 ros::serialization::deserialize(stream, arm_name);
00556 ros::serialization::deserialize(stream, target);
00557 ros::serialization::deserialize(stream, lift);
00558 ros::serialization::deserialize(stream, trajectory);
00559 ros::serialization::deserialize(stream, collision_support_surface_name);
00560 return stream.getData();
00561 }
00562
00563 ROS_DEPRECATED virtual uint32_t serializationLength() const
00564 {
00565 uint32_t size = 0;
00566 size += ros::serialization::serializationLength(arm_name);
00567 size += ros::serialization::serializationLength(target);
00568 size += ros::serialization::serializationLength(lift);
00569 size += ros::serialization::serializationLength(trajectory);
00570 size += ros::serialization::serializationLength(collision_support_surface_name);
00571 return size;
00572 }
00573
00574 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > Ptr;
00575 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> const> ConstPtr;
00576 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00577 };
00578 typedef ::object_manipulation_msgs::ReactiveLiftGoal_<std::allocator<void> > ReactiveLiftGoal;
00579
00580 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal> ReactiveLiftGoalPtr;
00581 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal const> ReactiveLiftGoalConstPtr;
00582
00583
00584 template<typename ContainerAllocator>
00585 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> & v)
00586 {
00587 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >::stream(s, "", v);
00588 return s;}
00589
00590 }
00591
00592 namespace ros
00593 {
00594 namespace message_traits
00595 {
00596 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > : public TrueType {};
00597 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> const> : public TrueType {};
00598 template<class ContainerAllocator>
00599 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > {
00600 static const char* value()
00601 {
00602 return "ccf1b7602acb55923fcdaeb7ef4ae5e8";
00603 }
00604
00605 static const char* value(const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); }
00606 static const uint64_t static_value1 = 0xccf1b7602acb5592ULL;
00607 static const uint64_t static_value2 = 0x3fcdaeb7ef4ae5e8ULL;
00608 };
00609
00610 template<class ContainerAllocator>
00611 struct DataType< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > {
00612 static const char* value()
00613 {
00614 return "object_manipulation_msgs/ReactiveLiftGoal";
00615 }
00616
00617 static const char* value(const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); }
00618 };
00619
00620 template<class ContainerAllocator>
00621 struct Definition< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > {
00622 static const char* value()
00623 {
00624 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00625 \n\
00626 # the name of the arm being used\n\
00627 string arm_name\n\
00628 \n\
00629 # the object to be grasped\n\
00630 GraspableObject target\n\
00631 \n\
00632 # How the object should be lifted \n\
00633 GripperTranslation lift\n\
00634 \n\
00635 # the joint trajectory to use for the approach (if available)\n\
00636 # this trajectory is expected to start at the current pose of the gripper\n\
00637 # and end at the desired grasp pose\n\
00638 trajectory_msgs/JointTrajectory trajectory\n\
00639 \n\
00640 # the name of the support surface in the collision environment, if any\n\
00641 string collision_support_surface_name\n\
00642 \n\
00643 \n\
00644 ================================================================================\n\
00645 MSG: object_manipulation_msgs/GraspableObject\n\
00646 # an object that the object_manipulator can work on\n\
00647 \n\
00648 # a graspable object can be represented in multiple ways. This message\n\
00649 # can contain all of them. Which one is actually used is up to the receiver\n\
00650 # of this message. When adding new representations, one must be careful that\n\
00651 # they have reasonable lightweight defaults indicating that that particular\n\
00652 # representation is not available.\n\
00653 \n\
00654 # the tf frame to be used as a reference frame when combining information from\n\
00655 # the different representations below\n\
00656 string reference_frame_id\n\
00657 \n\
00658 # potential recognition results from a database of models\n\
00659 # all poses are relative to the object reference pose\n\
00660 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00661 \n\
00662 # the point cloud itself\n\
00663 sensor_msgs/PointCloud cluster\n\
00664 \n\
00665 # a region of a PointCloud2 of interest\n\
00666 object_manipulation_msgs/SceneRegion region\n\
00667 \n\
00668 # the name that this object has in the collision environment\n\
00669 string collision_name\n\
00670 ================================================================================\n\
00671 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00672 # Informs that a specific model from the Model Database has been \n\
00673 # identified at a certain location\n\
00674 \n\
00675 # the database id of the model\n\
00676 int32 model_id\n\
00677 \n\
00678 # the pose that it can be found in\n\
00679 geometry_msgs/PoseStamped pose\n\
00680 \n\
00681 # a measure of the confidence level in this detection result\n\
00682 float32 confidence\n\
00683 \n\
00684 # the name of the object detector that generated this detection result\n\
00685 string detector_name\n\
00686 \n\
00687 ================================================================================\n\
00688 MSG: geometry_msgs/PoseStamped\n\
00689 # A Pose with reference coordinate frame and timestamp\n\
00690 Header header\n\
00691 Pose pose\n\
00692 \n\
00693 ================================================================================\n\
00694 MSG: std_msgs/Header\n\
00695 # Standard metadata for higher-level stamped data types.\n\
00696 # This is generally used to communicate timestamped data \n\
00697 # in a particular coordinate frame.\n\
00698 # \n\
00699 # sequence ID: consecutively increasing ID \n\
00700 uint32 seq\n\
00701 #Two-integer timestamp that is expressed as:\n\
00702 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00703 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00704 # time-handling sugar is provided by the client library\n\
00705 time stamp\n\
00706 #Frame this data is associated with\n\
00707 # 0: no frame\n\
00708 # 1: global frame\n\
00709 string frame_id\n\
00710 \n\
00711 ================================================================================\n\
00712 MSG: geometry_msgs/Pose\n\
00713 # A representation of pose in free space, composed of postion and orientation. \n\
00714 Point position\n\
00715 Quaternion orientation\n\
00716 \n\
00717 ================================================================================\n\
00718 MSG: geometry_msgs/Point\n\
00719 # This contains the position of a point in free space\n\
00720 float64 x\n\
00721 float64 y\n\
00722 float64 z\n\
00723 \n\
00724 ================================================================================\n\
00725 MSG: geometry_msgs/Quaternion\n\
00726 # This represents an orientation in free space in quaternion form.\n\
00727 \n\
00728 float64 x\n\
00729 float64 y\n\
00730 float64 z\n\
00731 float64 w\n\
00732 \n\
00733 ================================================================================\n\
00734 MSG: sensor_msgs/PointCloud\n\
00735 # This message holds a collection of 3d points, plus optional additional\n\
00736 # information about each point.\n\
00737 \n\
00738 # Time of sensor data acquisition, coordinate frame ID.\n\
00739 Header header\n\
00740 \n\
00741 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00742 # in the frame given in the header.\n\
00743 geometry_msgs/Point32[] points\n\
00744 \n\
00745 # Each channel should have the same number of elements as points array,\n\
00746 # and the data in each channel should correspond 1:1 with each point.\n\
00747 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00748 ChannelFloat32[] channels\n\
00749 \n\
00750 ================================================================================\n\
00751 MSG: geometry_msgs/Point32\n\
00752 # This contains the position of a point in free space(with 32 bits of precision).\n\
00753 # It is recommeded to use Point wherever possible instead of Point32. \n\
00754 # \n\
00755 # This recommendation is to promote interoperability. \n\
00756 #\n\
00757 # This message is designed to take up less space when sending\n\
00758 # lots of points at once, as in the case of a PointCloud. \n\
00759 \n\
00760 float32 x\n\
00761 float32 y\n\
00762 float32 z\n\
00763 ================================================================================\n\
00764 MSG: sensor_msgs/ChannelFloat32\n\
00765 # This message is used by the PointCloud message to hold optional data\n\
00766 # associated with each point in the cloud. The length of the values\n\
00767 # array should be the same as the length of the points array in the\n\
00768 # PointCloud, and each value should be associated with the corresponding\n\
00769 # point.\n\
00770 \n\
00771 # Channel names in existing practice include:\n\
00772 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00773 # This is opposite to usual conventions but remains for\n\
00774 # historical reasons. The newer PointCloud2 message has no\n\
00775 # such problem.\n\
00776 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00777 # (R,G,B) values packed into the least significant 24 bits,\n\
00778 # in order.\n\
00779 # \"intensity\" - laser or pixel intensity.\n\
00780 # \"distance\"\n\
00781 \n\
00782 # The channel name should give semantics of the channel (e.g.\n\
00783 # \"intensity\" instead of \"value\").\n\
00784 string name\n\
00785 \n\
00786 # The values array should be 1-1 with the elements of the associated\n\
00787 # PointCloud.\n\
00788 float32[] values\n\
00789 \n\
00790 ================================================================================\n\
00791 MSG: object_manipulation_msgs/SceneRegion\n\
00792 # Point cloud\n\
00793 sensor_msgs/PointCloud2 cloud\n\
00794 \n\
00795 # Indices for the region of interest\n\
00796 int32[] mask\n\
00797 \n\
00798 # One of the corresponding 2D images, if applicable\n\
00799 sensor_msgs/Image image\n\
00800 \n\
00801 # The disparity image, if applicable\n\
00802 sensor_msgs/Image disparity_image\n\
00803 \n\
00804 # Camera info for the camera that took the image\n\
00805 sensor_msgs/CameraInfo cam_info\n\
00806 \n\
00807 # a 3D region of interest for grasp planning\n\
00808 geometry_msgs/PoseStamped roi_box_pose\n\
00809 geometry_msgs/Vector3 roi_box_dims\n\
00810 \n\
00811 ================================================================================\n\
00812 MSG: sensor_msgs/PointCloud2\n\
00813 # This message holds a collection of N-dimensional points, which may\n\
00814 # contain additional information such as normals, intensity, etc. The\n\
00815 # point data is stored as a binary blob, its layout described by the\n\
00816 # contents of the \"fields\" array.\n\
00817 \n\
00818 # The point cloud data may be organized 2d (image-like) or 1d\n\
00819 # (unordered). Point clouds organized as 2d images may be produced by\n\
00820 # camera depth sensors such as stereo or time-of-flight.\n\
00821 \n\
00822 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00823 # points).\n\
00824 Header header\n\
00825 \n\
00826 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00827 # 1 and width is the length of the point cloud.\n\
00828 uint32 height\n\
00829 uint32 width\n\
00830 \n\
00831 # Describes the channels and their layout in the binary data blob.\n\
00832 PointField[] fields\n\
00833 \n\
00834 bool is_bigendian # Is this data bigendian?\n\
00835 uint32 point_step # Length of a point in bytes\n\
00836 uint32 row_step # Length of a row in bytes\n\
00837 uint8[] data # Actual point data, size is (row_step*height)\n\
00838 \n\
00839 bool is_dense # True if there are no invalid points\n\
00840 \n\
00841 ================================================================================\n\
00842 MSG: sensor_msgs/PointField\n\
00843 # This message holds the description of one point entry in the\n\
00844 # PointCloud2 message format.\n\
00845 uint8 INT8 = 1\n\
00846 uint8 UINT8 = 2\n\
00847 uint8 INT16 = 3\n\
00848 uint8 UINT16 = 4\n\
00849 uint8 INT32 = 5\n\
00850 uint8 UINT32 = 6\n\
00851 uint8 FLOAT32 = 7\n\
00852 uint8 FLOAT64 = 8\n\
00853 \n\
00854 string name # Name of field\n\
00855 uint32 offset # Offset from start of point struct\n\
00856 uint8 datatype # Datatype enumeration, see above\n\
00857 uint32 count # How many elements in the field\n\
00858 \n\
00859 ================================================================================\n\
00860 MSG: sensor_msgs/Image\n\
00861 # This message contains an uncompressed image\n\
00862 # (0, 0) is at top-left corner of image\n\
00863 #\n\
00864 \n\
00865 Header header # Header timestamp should be acquisition time of image\n\
00866 # Header frame_id should be optical frame of camera\n\
00867 # origin of frame should be optical center of cameara\n\
00868 # +x should point to the right in the image\n\
00869 # +y should point down in the image\n\
00870 # +z should point into to plane of the image\n\
00871 # If the frame_id here and the frame_id of the CameraInfo\n\
00872 # message associated with the image conflict\n\
00873 # the behavior is undefined\n\
00874 \n\
00875 uint32 height # image height, that is, number of rows\n\
00876 uint32 width # image width, that is, number of columns\n\
00877 \n\
00878 # The legal values for encoding are in file src/image_encodings.cpp\n\
00879 # If you want to standardize a new string format, join\n\
00880 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00881 \n\
00882 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00883 # taken from the list of strings in src/image_encodings.cpp\n\
00884 \n\
00885 uint8 is_bigendian # is this data bigendian?\n\
00886 uint32 step # Full row length in bytes\n\
00887 uint8[] data # actual matrix data, size is (step * rows)\n\
00888 \n\
00889 ================================================================================\n\
00890 MSG: sensor_msgs/CameraInfo\n\
00891 # This message defines meta information for a camera. It should be in a\n\
00892 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00893 # image topics named:\n\
00894 #\n\
00895 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00896 # image - monochrome, distorted\n\
00897 # image_color - color, distorted\n\
00898 # image_rect - monochrome, rectified\n\
00899 # image_rect_color - color, rectified\n\
00900 #\n\
00901 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00902 # for producing the four processed image topics from image_raw and\n\
00903 # camera_info. The meaning of the camera parameters are described in\n\
00904 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00905 #\n\
00906 # The image_geometry package provides a user-friendly interface to\n\
00907 # common operations using this meta information. If you want to, e.g.,\n\
00908 # project a 3d point into image coordinates, we strongly recommend\n\
00909 # using image_geometry.\n\
00910 #\n\
00911 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00912 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00913 # indicates an uncalibrated camera.\n\
00914 \n\
00915 #######################################################################\n\
00916 # Image acquisition info #\n\
00917 #######################################################################\n\
00918 \n\
00919 # Time of image acquisition, camera coordinate frame ID\n\
00920 Header header # Header timestamp should be acquisition time of image\n\
00921 # Header frame_id should be optical frame of camera\n\
00922 # origin of frame should be optical center of camera\n\
00923 # +x should point to the right in the image\n\
00924 # +y should point down in the image\n\
00925 # +z should point into the plane of the image\n\
00926 \n\
00927 \n\
00928 #######################################################################\n\
00929 # Calibration Parameters #\n\
00930 #######################################################################\n\
00931 # These are fixed during camera calibration. Their values will be the #\n\
00932 # same in all messages until the camera is recalibrated. Note that #\n\
00933 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00934 # #\n\
00935 # The internal parameters can be used to warp a raw (distorted) image #\n\
00936 # to: #\n\
00937 # 1. An undistorted image (requires D and K) #\n\
00938 # 2. A rectified image (requires D, K, R) #\n\
00939 # The projection matrix P projects 3D points into the rectified image.#\n\
00940 #######################################################################\n\
00941 \n\
00942 # The image dimensions with which the camera was calibrated. Normally\n\
00943 # this will be the full camera resolution in pixels.\n\
00944 uint32 height\n\
00945 uint32 width\n\
00946 \n\
00947 # The distortion model used. Supported models are listed in\n\
00948 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00949 # simple model of radial and tangential distortion - is sufficent.\n\
00950 string distortion_model\n\
00951 \n\
00952 # The distortion parameters, size depending on the distortion model.\n\
00953 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00954 float64[] D\n\
00955 \n\
00956 # Intrinsic camera matrix for the raw (distorted) images.\n\
00957 # [fx 0 cx]\n\
00958 # K = [ 0 fy cy]\n\
00959 # [ 0 0 1]\n\
00960 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00961 # coordinates using the focal lengths (fx, fy) and principal point\n\
00962 # (cx, cy).\n\
00963 float64[9] K # 3x3 row-major matrix\n\
00964 \n\
00965 # Rectification matrix (stereo cameras only)\n\
00966 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00967 # stereo image plane so that epipolar lines in both stereo images are\n\
00968 # parallel.\n\
00969 float64[9] R # 3x3 row-major matrix\n\
00970 \n\
00971 # Projection/camera matrix\n\
00972 # [fx' 0 cx' Tx]\n\
00973 # P = [ 0 fy' cy' Ty]\n\
00974 # [ 0 0 1 0]\n\
00975 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00976 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00977 # is the normal camera intrinsic matrix for the rectified image.\n\
00978 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00979 # coordinates using the focal lengths (fx', fy') and principal point\n\
00980 # (cx', cy') - these may differ from the values in K.\n\
00981 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00982 # also have R = the identity and P[1:3,1:3] = K.\n\
00983 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00984 # position of the optical center of the second camera in the first\n\
00985 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00986 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00987 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00988 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00989 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00990 # the rectified image is given by:\n\
00991 # [u v w]' = P * [X Y Z 1]'\n\
00992 # x = u / w\n\
00993 # y = v / w\n\
00994 # This holds for both images of a stereo pair.\n\
00995 float64[12] P # 3x4 row-major matrix\n\
00996 \n\
00997 \n\
00998 #######################################################################\n\
00999 # Operational Parameters #\n\
01000 #######################################################################\n\
01001 # These define the image region actually captured by the camera #\n\
01002 # driver. Although they affect the geometry of the output image, they #\n\
01003 # may be changed freely without recalibrating the camera. #\n\
01004 #######################################################################\n\
01005 \n\
01006 # Binning refers here to any camera setting which combines rectangular\n\
01007 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01008 # resolution of the output image to\n\
01009 # (width / binning_x) x (height / binning_y).\n\
01010 # The default values binning_x = binning_y = 0 is considered the same\n\
01011 # as binning_x = binning_y = 1 (no subsampling).\n\
01012 uint32 binning_x\n\
01013 uint32 binning_y\n\
01014 \n\
01015 # Region of interest (subwindow of full camera resolution), given in\n\
01016 # full resolution (unbinned) image coordinates. A particular ROI\n\
01017 # always denotes the same window of pixels on the camera sensor,\n\
01018 # regardless of binning settings.\n\
01019 # The default setting of roi (all values 0) is considered the same as\n\
01020 # full resolution (roi.width = width, roi.height = height).\n\
01021 RegionOfInterest roi\n\
01022 \n\
01023 ================================================================================\n\
01024 MSG: sensor_msgs/RegionOfInterest\n\
01025 # This message is used to specify a region of interest within an image.\n\
01026 #\n\
01027 # When used to specify the ROI setting of the camera when the image was\n\
01028 # taken, the height and width fields should either match the height and\n\
01029 # width fields for the associated image; or height = width = 0\n\
01030 # indicates that the full resolution image was captured.\n\
01031 \n\
01032 uint32 x_offset # Leftmost pixel of the ROI\n\
01033 # (0 if the ROI includes the left edge of the image)\n\
01034 uint32 y_offset # Topmost pixel of the ROI\n\
01035 # (0 if the ROI includes the top edge of the image)\n\
01036 uint32 height # Height of ROI\n\
01037 uint32 width # Width of ROI\n\
01038 \n\
01039 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01040 # ROI in this message. Typically this should be False if the full image\n\
01041 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01042 # used).\n\
01043 bool do_rectify\n\
01044 \n\
01045 ================================================================================\n\
01046 MSG: geometry_msgs/Vector3\n\
01047 # This represents a vector in free space. \n\
01048 \n\
01049 float64 x\n\
01050 float64 y\n\
01051 float64 z\n\
01052 ================================================================================\n\
01053 MSG: object_manipulation_msgs/GripperTranslation\n\
01054 # defines a translation for the gripper, used in pickup or place tasks\n\
01055 # for example for lifting an object off a table or approaching the table for placing\n\
01056 \n\
01057 # the direction of the translation\n\
01058 geometry_msgs/Vector3Stamped direction\n\
01059 \n\
01060 # the desired translation distance\n\
01061 float32 desired_distance\n\
01062 \n\
01063 # the min distance that must be considered feasible before the\n\
01064 # grasp is even attempted\n\
01065 float32 min_distance\n\
01066 ================================================================================\n\
01067 MSG: geometry_msgs/Vector3Stamped\n\
01068 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01069 Header header\n\
01070 Vector3 vector\n\
01071 \n\
01072 ================================================================================\n\
01073 MSG: trajectory_msgs/JointTrajectory\n\
01074 Header header\n\
01075 string[] joint_names\n\
01076 JointTrajectoryPoint[] points\n\
01077 ================================================================================\n\
01078 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01079 float64[] positions\n\
01080 float64[] velocities\n\
01081 float64[] accelerations\n\
01082 duration time_from_start\n\
01083 ";
01084 }
01085
01086 static const char* value(const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); }
01087 };
01088
01089 }
01090 }
01091
01092 namespace ros
01093 {
01094 namespace serialization
01095 {
01096
01097 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >
01098 {
01099 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01100 {
01101 stream.next(m.arm_name);
01102 stream.next(m.target);
01103 stream.next(m.lift);
01104 stream.next(m.trajectory);
01105 stream.next(m.collision_support_surface_name);
01106 }
01107
01108 ROS_DECLARE_ALLINONE_SERIALIZER;
01109 };
01110 }
01111 }
01112
01113 namespace ros
01114 {
01115 namespace message_operations
01116 {
01117
01118 template<class ContainerAllocator>
01119 struct Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >
01120 {
01121 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> & v)
01122 {
01123 s << indent << "arm_name: ";
01124 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
01125 s << indent << "target: ";
01126 s << std::endl;
01127 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.target);
01128 s << indent << "lift: ";
01129 s << std::endl;
01130 Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + " ", v.lift);
01131 s << indent << "trajectory: ";
01132 s << std::endl;
01133 Printer< ::trajectory_msgs::JointTrajectory_<ContainerAllocator> >::stream(s, indent + " ", v.trajectory);
01134 s << indent << "collision_support_surface_name: ";
01135 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name);
01136 }
01137 };
01138
01139
01140 }
01141 }
01142
01143 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H
01144