00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/ReactiveLiftActionGoal.h"
00018 #include "object_manipulation_msgs/ReactiveLiftActionResult.h"
00019 #include "object_manipulation_msgs/ReactiveLiftActionFeedback.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ReactiveLiftAction_ {
00025 typedef ReactiveLiftAction_<ContainerAllocator> Type;
00026
00027 ReactiveLiftAction_()
00028 : action_goal()
00029 , action_result()
00030 , action_feedback()
00031 {
00032 }
00033
00034 ReactiveLiftAction_(const ContainerAllocator& _alloc)
00035 : action_goal(_alloc)
00036 , action_result(_alloc)
00037 , action_feedback(_alloc)
00038 {
00039 }
00040
00041 typedef ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> _action_goal_type;
00042 ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> action_goal;
00043
00044 typedef ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator> _action_result_type;
00045 ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator> action_result;
00046
00047 typedef ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator> _action_feedback_type;
00048 ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator> action_feedback;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveLiftAction"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "a2a6fc4d4e26e8ab8a134256a2b47821"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 ReactiveLiftActionGoal action_goal\n\
00069 ReactiveLiftActionResult action_result\n\
00070 ReactiveLiftActionFeedback action_feedback\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: object_manipulation_msgs/ReactiveLiftActionGoal\n\
00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00075 \n\
00076 Header header\n\
00077 actionlib_msgs/GoalID goal_id\n\
00078 ReactiveLiftGoal goal\n\
00079 \n\
00080 ================================================================================\n\
00081 MSG: std_msgs/Header\n\
00082 # Standard metadata for higher-level stamped data types.\n\
00083 # This is generally used to communicate timestamped data \n\
00084 # in a particular coordinate frame.\n\
00085 # \n\
00086 # sequence ID: consecutively increasing ID \n\
00087 uint32 seq\n\
00088 #Two-integer timestamp that is expressed as:\n\
00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00091 # time-handling sugar is provided by the client library\n\
00092 time stamp\n\
00093 #Frame this data is associated with\n\
00094 # 0: no frame\n\
00095 # 1: global frame\n\
00096 string frame_id\n\
00097 \n\
00098 ================================================================================\n\
00099 MSG: actionlib_msgs/GoalID\n\
00100 # The stamp should store the time at which this goal was requested.\n\
00101 # It is used by an action server when it tries to preempt all\n\
00102 # goals that were requested before a certain time\n\
00103 time stamp\n\
00104 \n\
00105 # The id provides a way to associate feedback and\n\
00106 # result message with specific goal requests. The id\n\
00107 # specified must be unique.\n\
00108 string id\n\
00109 \n\
00110 \n\
00111 ================================================================================\n\
00112 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\
00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00114 \n\
00115 # the name of the arm being used\n\
00116 string arm_name\n\
00117 \n\
00118 # the object to be grasped\n\
00119 GraspableObject target\n\
00120 \n\
00121 # How the object should be lifted \n\
00122 GripperTranslation lift\n\
00123 \n\
00124 # the joint trajectory to use for the approach (if available)\n\
00125 # this trajectory is expected to start at the current pose of the gripper\n\
00126 # and end at the desired grasp pose\n\
00127 trajectory_msgs/JointTrajectory trajectory\n\
00128 \n\
00129 # the name of the support surface in the collision environment, if any\n\
00130 string collision_support_surface_name\n\
00131 \n\
00132 \n\
00133 ================================================================================\n\
00134 MSG: object_manipulation_msgs/GraspableObject\n\
00135 # an object that the object_manipulator can work on\n\
00136 \n\
00137 # a graspable object can be represented in multiple ways. This message\n\
00138 # can contain all of them. Which one is actually used is up to the receiver\n\
00139 # of this message. When adding new representations, one must be careful that\n\
00140 # they have reasonable lightweight defaults indicating that that particular\n\
00141 # representation is not available.\n\
00142 \n\
00143 # the tf frame to be used as a reference frame when combining information from\n\
00144 # the different representations below\n\
00145 string reference_frame_id\n\
00146 \n\
00147 # potential recognition results from a database of models\n\
00148 # all poses are relative to the object reference pose\n\
00149 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00150 \n\
00151 # the point cloud itself\n\
00152 sensor_msgs/PointCloud cluster\n\
00153 \n\
00154 # a region of a PointCloud2 of interest\n\
00155 object_manipulation_msgs/SceneRegion region\n\
00156 \n\
00157 # the name that this object has in the collision environment\n\
00158 string collision_name\n\
00159 ================================================================================\n\
00160 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00161 # Informs that a specific model from the Model Database has been \n\
00162 # identified at a certain location\n\
00163 \n\
00164 # the database id of the model\n\
00165 int32 model_id\n\
00166 \n\
00167 # the pose that it can be found in\n\
00168 geometry_msgs/PoseStamped pose\n\
00169 \n\
00170 # a measure of the confidence level in this detection result\n\
00171 float32 confidence\n\
00172 \n\
00173 # the name of the object detector that generated this detection result\n\
00174 string detector_name\n\
00175 \n\
00176 ================================================================================\n\
00177 MSG: geometry_msgs/PoseStamped\n\
00178 # A Pose with reference coordinate frame and timestamp\n\
00179 Header header\n\
00180 Pose pose\n\
00181 \n\
00182 ================================================================================\n\
00183 MSG: geometry_msgs/Pose\n\
00184 # A representation of pose in free space, composed of postion and orientation. \n\
00185 Point position\n\
00186 Quaternion orientation\n\
00187 \n\
00188 ================================================================================\n\
00189 MSG: geometry_msgs/Point\n\
00190 # This contains the position of a point in free space\n\
00191 float64 x\n\
00192 float64 y\n\
00193 float64 z\n\
00194 \n\
00195 ================================================================================\n\
00196 MSG: geometry_msgs/Quaternion\n\
00197 # This represents an orientation in free space in quaternion form.\n\
00198 \n\
00199 float64 x\n\
00200 float64 y\n\
00201 float64 z\n\
00202 float64 w\n\
00203 \n\
00204 ================================================================================\n\
00205 MSG: sensor_msgs/PointCloud\n\
00206 # This message holds a collection of 3d points, plus optional additional\n\
00207 # information about each point.\n\
00208 \n\
00209 # Time of sensor data acquisition, coordinate frame ID.\n\
00210 Header header\n\
00211 \n\
00212 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00213 # in the frame given in the header.\n\
00214 geometry_msgs/Point32[] points\n\
00215 \n\
00216 # Each channel should have the same number of elements as points array,\n\
00217 # and the data in each channel should correspond 1:1 with each point.\n\
00218 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00219 ChannelFloat32[] channels\n\
00220 \n\
00221 ================================================================================\n\
00222 MSG: geometry_msgs/Point32\n\
00223 # This contains the position of a point in free space(with 32 bits of precision).\n\
00224 # It is recommeded to use Point wherever possible instead of Point32. \n\
00225 # \n\
00226 # This recommendation is to promote interoperability. \n\
00227 #\n\
00228 # This message is designed to take up less space when sending\n\
00229 # lots of points at once, as in the case of a PointCloud. \n\
00230 \n\
00231 float32 x\n\
00232 float32 y\n\
00233 float32 z\n\
00234 ================================================================================\n\
00235 MSG: sensor_msgs/ChannelFloat32\n\
00236 # This message is used by the PointCloud message to hold optional data\n\
00237 # associated with each point in the cloud. The length of the values\n\
00238 # array should be the same as the length of the points array in the\n\
00239 # PointCloud, and each value should be associated with the corresponding\n\
00240 # point.\n\
00241 \n\
00242 # Channel names in existing practice include:\n\
00243 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00244 # This is opposite to usual conventions but remains for\n\
00245 # historical reasons. The newer PointCloud2 message has no\n\
00246 # such problem.\n\
00247 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00248 # (R,G,B) values packed into the least significant 24 bits,\n\
00249 # in order.\n\
00250 # \"intensity\" - laser or pixel intensity.\n\
00251 # \"distance\"\n\
00252 \n\
00253 # The channel name should give semantics of the channel (e.g.\n\
00254 # \"intensity\" instead of \"value\").\n\
00255 string name\n\
00256 \n\
00257 # The values array should be 1-1 with the elements of the associated\n\
00258 # PointCloud.\n\
00259 float32[] values\n\
00260 \n\
00261 ================================================================================\n\
00262 MSG: object_manipulation_msgs/SceneRegion\n\
00263 # Point cloud\n\
00264 sensor_msgs/PointCloud2 cloud\n\
00265 \n\
00266 # Indices for the region of interest\n\
00267 int32[] mask\n\
00268 \n\
00269 # One of the corresponding 2D images, if applicable\n\
00270 sensor_msgs/Image image\n\
00271 \n\
00272 # The disparity image, if applicable\n\
00273 sensor_msgs/Image disparity_image\n\
00274 \n\
00275 # Camera info for the camera that took the image\n\
00276 sensor_msgs/CameraInfo cam_info\n\
00277 \n\
00278 # a 3D region of interest for grasp planning\n\
00279 geometry_msgs/PoseStamped roi_box_pose\n\
00280 geometry_msgs/Vector3 roi_box_dims\n\
00281 \n\
00282 ================================================================================\n\
00283 MSG: sensor_msgs/PointCloud2\n\
00284 # This message holds a collection of N-dimensional points, which may\n\
00285 # contain additional information such as normals, intensity, etc. The\n\
00286 # point data is stored as a binary blob, its layout described by the\n\
00287 # contents of the \"fields\" array.\n\
00288 \n\
00289 # The point cloud data may be organized 2d (image-like) or 1d\n\
00290 # (unordered). Point clouds organized as 2d images may be produced by\n\
00291 # camera depth sensors such as stereo or time-of-flight.\n\
00292 \n\
00293 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00294 # points).\n\
00295 Header header\n\
00296 \n\
00297 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00298 # 1 and width is the length of the point cloud.\n\
00299 uint32 height\n\
00300 uint32 width\n\
00301 \n\
00302 # Describes the channels and their layout in the binary data blob.\n\
00303 PointField[] fields\n\
00304 \n\
00305 bool is_bigendian # Is this data bigendian?\n\
00306 uint32 point_step # Length of a point in bytes\n\
00307 uint32 row_step # Length of a row in bytes\n\
00308 uint8[] data # Actual point data, size is (row_step*height)\n\
00309 \n\
00310 bool is_dense # True if there are no invalid points\n\
00311 \n\
00312 ================================================================================\n\
00313 MSG: sensor_msgs/PointField\n\
00314 # This message holds the description of one point entry in the\n\
00315 # PointCloud2 message format.\n\
00316 uint8 INT8 = 1\n\
00317 uint8 UINT8 = 2\n\
00318 uint8 INT16 = 3\n\
00319 uint8 UINT16 = 4\n\
00320 uint8 INT32 = 5\n\
00321 uint8 UINT32 = 6\n\
00322 uint8 FLOAT32 = 7\n\
00323 uint8 FLOAT64 = 8\n\
00324 \n\
00325 string name # Name of field\n\
00326 uint32 offset # Offset from start of point struct\n\
00327 uint8 datatype # Datatype enumeration, see above\n\
00328 uint32 count # How many elements in the field\n\
00329 \n\
00330 ================================================================================\n\
00331 MSG: sensor_msgs/Image\n\
00332 # This message contains an uncompressed image\n\
00333 # (0, 0) is at top-left corner of image\n\
00334 #\n\
00335 \n\
00336 Header header # Header timestamp should be acquisition time of image\n\
00337 # Header frame_id should be optical frame of camera\n\
00338 # origin of frame should be optical center of cameara\n\
00339 # +x should point to the right in the image\n\
00340 # +y should point down in the image\n\
00341 # +z should point into to plane of the image\n\
00342 # If the frame_id here and the frame_id of the CameraInfo\n\
00343 # message associated with the image conflict\n\
00344 # the behavior is undefined\n\
00345 \n\
00346 uint32 height # image height, that is, number of rows\n\
00347 uint32 width # image width, that is, number of columns\n\
00348 \n\
00349 # The legal values for encoding are in file src/image_encodings.cpp\n\
00350 # If you want to standardize a new string format, join\n\
00351 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00352 \n\
00353 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00354 # taken from the list of strings in src/image_encodings.cpp\n\
00355 \n\
00356 uint8 is_bigendian # is this data bigendian?\n\
00357 uint32 step # Full row length in bytes\n\
00358 uint8[] data # actual matrix data, size is (step * rows)\n\
00359 \n\
00360 ================================================================================\n\
00361 MSG: sensor_msgs/CameraInfo\n\
00362 # This message defines meta information for a camera. It should be in a\n\
00363 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00364 # image topics named:\n\
00365 #\n\
00366 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00367 # image - monochrome, distorted\n\
00368 # image_color - color, distorted\n\
00369 # image_rect - monochrome, rectified\n\
00370 # image_rect_color - color, rectified\n\
00371 #\n\
00372 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00373 # for producing the four processed image topics from image_raw and\n\
00374 # camera_info. The meaning of the camera parameters are described in\n\
00375 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00376 #\n\
00377 # The image_geometry package provides a user-friendly interface to\n\
00378 # common operations using this meta information. If you want to, e.g.,\n\
00379 # project a 3d point into image coordinates, we strongly recommend\n\
00380 # using image_geometry.\n\
00381 #\n\
00382 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00383 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00384 # indicates an uncalibrated camera.\n\
00385 \n\
00386 #######################################################################\n\
00387 # Image acquisition info #\n\
00388 #######################################################################\n\
00389 \n\
00390 # Time of image acquisition, camera coordinate frame ID\n\
00391 Header header # Header timestamp should be acquisition time of image\n\
00392 # Header frame_id should be optical frame of camera\n\
00393 # origin of frame should be optical center of camera\n\
00394 # +x should point to the right in the image\n\
00395 # +y should point down in the image\n\
00396 # +z should point into the plane of the image\n\
00397 \n\
00398 \n\
00399 #######################################################################\n\
00400 # Calibration Parameters #\n\
00401 #######################################################################\n\
00402 # These are fixed during camera calibration. Their values will be the #\n\
00403 # same in all messages until the camera is recalibrated. Note that #\n\
00404 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00405 # #\n\
00406 # The internal parameters can be used to warp a raw (distorted) image #\n\
00407 # to: #\n\
00408 # 1. An undistorted image (requires D and K) #\n\
00409 # 2. A rectified image (requires D, K, R) #\n\
00410 # The projection matrix P projects 3D points into the rectified image.#\n\
00411 #######################################################################\n\
00412 \n\
00413 # The image dimensions with which the camera was calibrated. Normally\n\
00414 # this will be the full camera resolution in pixels.\n\
00415 uint32 height\n\
00416 uint32 width\n\
00417 \n\
00418 # The distortion model used. Supported models are listed in\n\
00419 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00420 # simple model of radial and tangential distortion - is sufficent.\n\
00421 string distortion_model\n\
00422 \n\
00423 # The distortion parameters, size depending on the distortion model.\n\
00424 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00425 float64[] D\n\
00426 \n\
00427 # Intrinsic camera matrix for the raw (distorted) images.\n\
00428 # [fx 0 cx]\n\
00429 # K = [ 0 fy cy]\n\
00430 # [ 0 0 1]\n\
00431 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00432 # coordinates using the focal lengths (fx, fy) and principal point\n\
00433 # (cx, cy).\n\
00434 float64[9] K # 3x3 row-major matrix\n\
00435 \n\
00436 # Rectification matrix (stereo cameras only)\n\
00437 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00438 # stereo image plane so that epipolar lines in both stereo images are\n\
00439 # parallel.\n\
00440 float64[9] R # 3x3 row-major matrix\n\
00441 \n\
00442 # Projection/camera matrix\n\
00443 # [fx' 0 cx' Tx]\n\
00444 # P = [ 0 fy' cy' Ty]\n\
00445 # [ 0 0 1 0]\n\
00446 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00447 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00448 # is the normal camera intrinsic matrix for the rectified image.\n\
00449 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00450 # coordinates using the focal lengths (fx', fy') and principal point\n\
00451 # (cx', cy') - these may differ from the values in K.\n\
00452 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00453 # also have R = the identity and P[1:3,1:3] = K.\n\
00454 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00455 # position of the optical center of the second camera in the first\n\
00456 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00457 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00458 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00459 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00460 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00461 # the rectified image is given by:\n\
00462 # [u v w]' = P * [X Y Z 1]'\n\
00463 # x = u / w\n\
00464 # y = v / w\n\
00465 # This holds for both images of a stereo pair.\n\
00466 float64[12] P # 3x4 row-major matrix\n\
00467 \n\
00468 \n\
00469 #######################################################################\n\
00470 # Operational Parameters #\n\
00471 #######################################################################\n\
00472 # These define the image region actually captured by the camera #\n\
00473 # driver. Although they affect the geometry of the output image, they #\n\
00474 # may be changed freely without recalibrating the camera. #\n\
00475 #######################################################################\n\
00476 \n\
00477 # Binning refers here to any camera setting which combines rectangular\n\
00478 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00479 # resolution of the output image to\n\
00480 # (width / binning_x) x (height / binning_y).\n\
00481 # The default values binning_x = binning_y = 0 is considered the same\n\
00482 # as binning_x = binning_y = 1 (no subsampling).\n\
00483 uint32 binning_x\n\
00484 uint32 binning_y\n\
00485 \n\
00486 # Region of interest (subwindow of full camera resolution), given in\n\
00487 # full resolution (unbinned) image coordinates. A particular ROI\n\
00488 # always denotes the same window of pixels on the camera sensor,\n\
00489 # regardless of binning settings.\n\
00490 # The default setting of roi (all values 0) is considered the same as\n\
00491 # full resolution (roi.width = width, roi.height = height).\n\
00492 RegionOfInterest roi\n\
00493 \n\
00494 ================================================================================\n\
00495 MSG: sensor_msgs/RegionOfInterest\n\
00496 # This message is used to specify a region of interest within an image.\n\
00497 #\n\
00498 # When used to specify the ROI setting of the camera when the image was\n\
00499 # taken, the height and width fields should either match the height and\n\
00500 # width fields for the associated image; or height = width = 0\n\
00501 # indicates that the full resolution image was captured.\n\
00502 \n\
00503 uint32 x_offset # Leftmost pixel of the ROI\n\
00504 # (0 if the ROI includes the left edge of the image)\n\
00505 uint32 y_offset # Topmost pixel of the ROI\n\
00506 # (0 if the ROI includes the top edge of the image)\n\
00507 uint32 height # Height of ROI\n\
00508 uint32 width # Width of ROI\n\
00509 \n\
00510 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00511 # ROI in this message. Typically this should be False if the full image\n\
00512 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00513 # used).\n\
00514 bool do_rectify\n\
00515 \n\
00516 ================================================================================\n\
00517 MSG: geometry_msgs/Vector3\n\
00518 # This represents a vector in free space. \n\
00519 \n\
00520 float64 x\n\
00521 float64 y\n\
00522 float64 z\n\
00523 ================================================================================\n\
00524 MSG: object_manipulation_msgs/GripperTranslation\n\
00525 # defines a translation for the gripper, used in pickup or place tasks\n\
00526 # for example for lifting an object off a table or approaching the table for placing\n\
00527 \n\
00528 # the direction of the translation\n\
00529 geometry_msgs/Vector3Stamped direction\n\
00530 \n\
00531 # the desired translation distance\n\
00532 float32 desired_distance\n\
00533 \n\
00534 # the min distance that must be considered feasible before the\n\
00535 # grasp is even attempted\n\
00536 float32 min_distance\n\
00537 ================================================================================\n\
00538 MSG: geometry_msgs/Vector3Stamped\n\
00539 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00540 Header header\n\
00541 Vector3 vector\n\
00542 \n\
00543 ================================================================================\n\
00544 MSG: trajectory_msgs/JointTrajectory\n\
00545 Header header\n\
00546 string[] joint_names\n\
00547 JointTrajectoryPoint[] points\n\
00548 ================================================================================\n\
00549 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00550 float64[] positions\n\
00551 float64[] velocities\n\
00552 float64[] accelerations\n\
00553 duration time_from_start\n\
00554 ================================================================================\n\
00555 MSG: object_manipulation_msgs/ReactiveLiftActionResult\n\
00556 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00557 \n\
00558 Header header\n\
00559 actionlib_msgs/GoalStatus status\n\
00560 ReactiveLiftResult result\n\
00561 \n\
00562 ================================================================================\n\
00563 MSG: actionlib_msgs/GoalStatus\n\
00564 GoalID goal_id\n\
00565 uint8 status\n\
00566 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00567 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00568 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00569 # and has since completed its execution (Terminal State)\n\
00570 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00571 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00572 # to some failure (Terminal State)\n\
00573 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00574 # because the goal was unattainable or invalid (Terminal State)\n\
00575 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00576 # and has not yet completed execution\n\
00577 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00578 # but the action server has not yet confirmed that the goal is canceled\n\
00579 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00580 # and was successfully cancelled (Terminal State)\n\
00581 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00582 # sent over the wire by an action server\n\
00583 \n\
00584 #Allow for the user to associate a string with GoalStatus for debugging\n\
00585 string text\n\
00586 \n\
00587 \n\
00588 ================================================================================\n\
00589 MSG: object_manipulation_msgs/ReactiveLiftResult\n\
00590 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00591 \n\
00592 # The result of the lift attempt\n\
00593 ManipulationResult manipulation_result\n\
00594 \n\
00595 \n\
00596 ================================================================================\n\
00597 MSG: object_manipulation_msgs/ManipulationResult\n\
00598 # Result codes for manipulation tasks\n\
00599 \n\
00600 # task completed as expected\n\
00601 # generally means you can proceed as planned\n\
00602 int32 SUCCESS = 1\n\
00603 \n\
00604 # task not possible (e.g. out of reach or obstacles in the way)\n\
00605 # generally means that the world was not disturbed, so you can try another task\n\
00606 int32 UNFEASIBLE = -1\n\
00607 \n\
00608 # task was thought possible, but failed due to unexpected events during execution\n\
00609 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00610 # your sensed world model before proceeding to another task\n\
00611 int32 FAILED = -2\n\
00612 \n\
00613 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00614 # generally requires human attention\n\
00615 int32 ERROR = -3\n\
00616 \n\
00617 # means that at some point during execution we ended up in a state that the collision-aware\n\
00618 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00619 # probably need a new collision map to move the arm out of the stuck position\n\
00620 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00621 \n\
00622 # specific to grasp actions\n\
00623 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00624 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00625 int32 LIFT_FAILED = -5\n\
00626 \n\
00627 # specific to place actions\n\
00628 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00629 # it is likely that the collision environment will see collisions between the hand and the object\n\
00630 int32 RETREAT_FAILED = -6\n\
00631 \n\
00632 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00633 int32 CANCELLED = -7\n\
00634 \n\
00635 # the actual value of this error code\n\
00636 int32 value\n\
00637 \n\
00638 ================================================================================\n\
00639 MSG: object_manipulation_msgs/ReactiveLiftActionFeedback\n\
00640 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00641 \n\
00642 Header header\n\
00643 actionlib_msgs/GoalStatus status\n\
00644 ReactiveLiftFeedback feedback\n\
00645 \n\
00646 ================================================================================\n\
00647 MSG: object_manipulation_msgs/ReactiveLiftFeedback\n\
00648 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00649 \n\
00650 # Which phase the lift is in\n\
00651 \n\
00652 ManipulationPhase manipulation_phase\n\
00653 \n\
00654 \n\
00655 \n\
00656 ================================================================================\n\
00657 MSG: object_manipulation_msgs/ManipulationPhase\n\
00658 int32 CHECKING_FEASIBILITY = 0\n\
00659 int32 MOVING_TO_PREGRASP = 1\n\
00660 int32 MOVING_TO_GRASP = 2\n\
00661 int32 CLOSING = 3 \n\
00662 int32 ADJUSTING_GRASP = 4\n\
00663 int32 LIFTING = 5\n\
00664 int32 MOVING_WITH_OBJECT = 6\n\
00665 int32 MOVING_TO_PLACE = 7\n\
00666 int32 PLACING = 8\n\
00667 int32 OPENING = 9\n\
00668 int32 RETREATING = 10\n\
00669 int32 MOVING_WITHOUT_OBJECT = 11\n\
00670 int32 SHAKING = 12\n\
00671 int32 SUCCEEDED = 13\n\
00672 int32 FAILED = 14\n\
00673 int32 ABORTED = 15\n\
00674 int32 HOLDING_OBJECT = 16\n\
00675 \n\
00676 int32 phase\n\
00677 "; }
00678 public:
00679 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00680
00681 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00682
00683 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00684 {
00685 ros::serialization::OStream stream(write_ptr, 1000000000);
00686 ros::serialization::serialize(stream, action_goal);
00687 ros::serialization::serialize(stream, action_result);
00688 ros::serialization::serialize(stream, action_feedback);
00689 return stream.getData();
00690 }
00691
00692 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00693 {
00694 ros::serialization::IStream stream(read_ptr, 1000000000);
00695 ros::serialization::deserialize(stream, action_goal);
00696 ros::serialization::deserialize(stream, action_result);
00697 ros::serialization::deserialize(stream, action_feedback);
00698 return stream.getData();
00699 }
00700
00701 ROS_DEPRECATED virtual uint32_t serializationLength() const
00702 {
00703 uint32_t size = 0;
00704 size += ros::serialization::serializationLength(action_goal);
00705 size += ros::serialization::serializationLength(action_result);
00706 size += ros::serialization::serializationLength(action_feedback);
00707 return size;
00708 }
00709
00710 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > Ptr;
00711 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> const> ConstPtr;
00712 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00713 };
00714 typedef ::object_manipulation_msgs::ReactiveLiftAction_<std::allocator<void> > ReactiveLiftAction;
00715
00716 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction> ReactiveLiftActionPtr;
00717 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction const> ReactiveLiftActionConstPtr;
00718
00719
00720 template<typename ContainerAllocator>
00721 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> & v)
00722 {
00723 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> >::stream(s, "", v);
00724 return s;}
00725
00726 }
00727
00728 namespace ros
00729 {
00730 namespace message_traits
00731 {
00732 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > : public TrueType {};
00733 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> const> : public TrueType {};
00734 template<class ContainerAllocator>
00735 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > {
00736 static const char* value()
00737 {
00738 return "a2a6fc4d4e26e8ab8a134256a2b47821";
00739 }
00740
00741 static const char* value(const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); }
00742 static const uint64_t static_value1 = 0xa2a6fc4d4e26e8abULL;
00743 static const uint64_t static_value2 = 0x8a134256a2b47821ULL;
00744 };
00745
00746 template<class ContainerAllocator>
00747 struct DataType< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > {
00748 static const char* value()
00749 {
00750 return "object_manipulation_msgs/ReactiveLiftAction";
00751 }
00752
00753 static const char* value(const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); }
00754 };
00755
00756 template<class ContainerAllocator>
00757 struct Definition< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > {
00758 static const char* value()
00759 {
00760 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00761 \n\
00762 ReactiveLiftActionGoal action_goal\n\
00763 ReactiveLiftActionResult action_result\n\
00764 ReactiveLiftActionFeedback action_feedback\n\
00765 \n\
00766 ================================================================================\n\
00767 MSG: object_manipulation_msgs/ReactiveLiftActionGoal\n\
00768 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00769 \n\
00770 Header header\n\
00771 actionlib_msgs/GoalID goal_id\n\
00772 ReactiveLiftGoal goal\n\
00773 \n\
00774 ================================================================================\n\
00775 MSG: std_msgs/Header\n\
00776 # Standard metadata for higher-level stamped data types.\n\
00777 # This is generally used to communicate timestamped data \n\
00778 # in a particular coordinate frame.\n\
00779 # \n\
00780 # sequence ID: consecutively increasing ID \n\
00781 uint32 seq\n\
00782 #Two-integer timestamp that is expressed as:\n\
00783 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00784 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00785 # time-handling sugar is provided by the client library\n\
00786 time stamp\n\
00787 #Frame this data is associated with\n\
00788 # 0: no frame\n\
00789 # 1: global frame\n\
00790 string frame_id\n\
00791 \n\
00792 ================================================================================\n\
00793 MSG: actionlib_msgs/GoalID\n\
00794 # The stamp should store the time at which this goal was requested.\n\
00795 # It is used by an action server when it tries to preempt all\n\
00796 # goals that were requested before a certain time\n\
00797 time stamp\n\
00798 \n\
00799 # The id provides a way to associate feedback and\n\
00800 # result message with specific goal requests. The id\n\
00801 # specified must be unique.\n\
00802 string id\n\
00803 \n\
00804 \n\
00805 ================================================================================\n\
00806 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\
00807 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00808 \n\
00809 # the name of the arm being used\n\
00810 string arm_name\n\
00811 \n\
00812 # the object to be grasped\n\
00813 GraspableObject target\n\
00814 \n\
00815 # How the object should be lifted \n\
00816 GripperTranslation lift\n\
00817 \n\
00818 # the joint trajectory to use for the approach (if available)\n\
00819 # this trajectory is expected to start at the current pose of the gripper\n\
00820 # and end at the desired grasp pose\n\
00821 trajectory_msgs/JointTrajectory trajectory\n\
00822 \n\
00823 # the name of the support surface in the collision environment, if any\n\
00824 string collision_support_surface_name\n\
00825 \n\
00826 \n\
00827 ================================================================================\n\
00828 MSG: object_manipulation_msgs/GraspableObject\n\
00829 # an object that the object_manipulator can work on\n\
00830 \n\
00831 # a graspable object can be represented in multiple ways. This message\n\
00832 # can contain all of them. Which one is actually used is up to the receiver\n\
00833 # of this message. When adding new representations, one must be careful that\n\
00834 # they have reasonable lightweight defaults indicating that that particular\n\
00835 # representation is not available.\n\
00836 \n\
00837 # the tf frame to be used as a reference frame when combining information from\n\
00838 # the different representations below\n\
00839 string reference_frame_id\n\
00840 \n\
00841 # potential recognition results from a database of models\n\
00842 # all poses are relative to the object reference pose\n\
00843 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00844 \n\
00845 # the point cloud itself\n\
00846 sensor_msgs/PointCloud cluster\n\
00847 \n\
00848 # a region of a PointCloud2 of interest\n\
00849 object_manipulation_msgs/SceneRegion region\n\
00850 \n\
00851 # the name that this object has in the collision environment\n\
00852 string collision_name\n\
00853 ================================================================================\n\
00854 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00855 # Informs that a specific model from the Model Database has been \n\
00856 # identified at a certain location\n\
00857 \n\
00858 # the database id of the model\n\
00859 int32 model_id\n\
00860 \n\
00861 # the pose that it can be found in\n\
00862 geometry_msgs/PoseStamped pose\n\
00863 \n\
00864 # a measure of the confidence level in this detection result\n\
00865 float32 confidence\n\
00866 \n\
00867 # the name of the object detector that generated this detection result\n\
00868 string detector_name\n\
00869 \n\
00870 ================================================================================\n\
00871 MSG: geometry_msgs/PoseStamped\n\
00872 # A Pose with reference coordinate frame and timestamp\n\
00873 Header header\n\
00874 Pose pose\n\
00875 \n\
00876 ================================================================================\n\
00877 MSG: geometry_msgs/Pose\n\
00878 # A representation of pose in free space, composed of postion and orientation. \n\
00879 Point position\n\
00880 Quaternion orientation\n\
00881 \n\
00882 ================================================================================\n\
00883 MSG: geometry_msgs/Point\n\
00884 # This contains the position of a point in free space\n\
00885 float64 x\n\
00886 float64 y\n\
00887 float64 z\n\
00888 \n\
00889 ================================================================================\n\
00890 MSG: geometry_msgs/Quaternion\n\
00891 # This represents an orientation in free space in quaternion form.\n\
00892 \n\
00893 float64 x\n\
00894 float64 y\n\
00895 float64 z\n\
00896 float64 w\n\
00897 \n\
00898 ================================================================================\n\
00899 MSG: sensor_msgs/PointCloud\n\
00900 # This message holds a collection of 3d points, plus optional additional\n\
00901 # information about each point.\n\
00902 \n\
00903 # Time of sensor data acquisition, coordinate frame ID.\n\
00904 Header header\n\
00905 \n\
00906 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00907 # in the frame given in the header.\n\
00908 geometry_msgs/Point32[] points\n\
00909 \n\
00910 # Each channel should have the same number of elements as points array,\n\
00911 # and the data in each channel should correspond 1:1 with each point.\n\
00912 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00913 ChannelFloat32[] channels\n\
00914 \n\
00915 ================================================================================\n\
00916 MSG: geometry_msgs/Point32\n\
00917 # This contains the position of a point in free space(with 32 bits of precision).\n\
00918 # It is recommeded to use Point wherever possible instead of Point32. \n\
00919 # \n\
00920 # This recommendation is to promote interoperability. \n\
00921 #\n\
00922 # This message is designed to take up less space when sending\n\
00923 # lots of points at once, as in the case of a PointCloud. \n\
00924 \n\
00925 float32 x\n\
00926 float32 y\n\
00927 float32 z\n\
00928 ================================================================================\n\
00929 MSG: sensor_msgs/ChannelFloat32\n\
00930 # This message is used by the PointCloud message to hold optional data\n\
00931 # associated with each point in the cloud. The length of the values\n\
00932 # array should be the same as the length of the points array in the\n\
00933 # PointCloud, and each value should be associated with the corresponding\n\
00934 # point.\n\
00935 \n\
00936 # Channel names in existing practice include:\n\
00937 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00938 # This is opposite to usual conventions but remains for\n\
00939 # historical reasons. The newer PointCloud2 message has no\n\
00940 # such problem.\n\
00941 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00942 # (R,G,B) values packed into the least significant 24 bits,\n\
00943 # in order.\n\
00944 # \"intensity\" - laser or pixel intensity.\n\
00945 # \"distance\"\n\
00946 \n\
00947 # The channel name should give semantics of the channel (e.g.\n\
00948 # \"intensity\" instead of \"value\").\n\
00949 string name\n\
00950 \n\
00951 # The values array should be 1-1 with the elements of the associated\n\
00952 # PointCloud.\n\
00953 float32[] values\n\
00954 \n\
00955 ================================================================================\n\
00956 MSG: object_manipulation_msgs/SceneRegion\n\
00957 # Point cloud\n\
00958 sensor_msgs/PointCloud2 cloud\n\
00959 \n\
00960 # Indices for the region of interest\n\
00961 int32[] mask\n\
00962 \n\
00963 # One of the corresponding 2D images, if applicable\n\
00964 sensor_msgs/Image image\n\
00965 \n\
00966 # The disparity image, if applicable\n\
00967 sensor_msgs/Image disparity_image\n\
00968 \n\
00969 # Camera info for the camera that took the image\n\
00970 sensor_msgs/CameraInfo cam_info\n\
00971 \n\
00972 # a 3D region of interest for grasp planning\n\
00973 geometry_msgs/PoseStamped roi_box_pose\n\
00974 geometry_msgs/Vector3 roi_box_dims\n\
00975 \n\
00976 ================================================================================\n\
00977 MSG: sensor_msgs/PointCloud2\n\
00978 # This message holds a collection of N-dimensional points, which may\n\
00979 # contain additional information such as normals, intensity, etc. The\n\
00980 # point data is stored as a binary blob, its layout described by the\n\
00981 # contents of the \"fields\" array.\n\
00982 \n\
00983 # The point cloud data may be organized 2d (image-like) or 1d\n\
00984 # (unordered). Point clouds organized as 2d images may be produced by\n\
00985 # camera depth sensors such as stereo or time-of-flight.\n\
00986 \n\
00987 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00988 # points).\n\
00989 Header header\n\
00990 \n\
00991 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00992 # 1 and width is the length of the point cloud.\n\
00993 uint32 height\n\
00994 uint32 width\n\
00995 \n\
00996 # Describes the channels and their layout in the binary data blob.\n\
00997 PointField[] fields\n\
00998 \n\
00999 bool is_bigendian # Is this data bigendian?\n\
01000 uint32 point_step # Length of a point in bytes\n\
01001 uint32 row_step # Length of a row in bytes\n\
01002 uint8[] data # Actual point data, size is (row_step*height)\n\
01003 \n\
01004 bool is_dense # True if there are no invalid points\n\
01005 \n\
01006 ================================================================================\n\
01007 MSG: sensor_msgs/PointField\n\
01008 # This message holds the description of one point entry in the\n\
01009 # PointCloud2 message format.\n\
01010 uint8 INT8 = 1\n\
01011 uint8 UINT8 = 2\n\
01012 uint8 INT16 = 3\n\
01013 uint8 UINT16 = 4\n\
01014 uint8 INT32 = 5\n\
01015 uint8 UINT32 = 6\n\
01016 uint8 FLOAT32 = 7\n\
01017 uint8 FLOAT64 = 8\n\
01018 \n\
01019 string name # Name of field\n\
01020 uint32 offset # Offset from start of point struct\n\
01021 uint8 datatype # Datatype enumeration, see above\n\
01022 uint32 count # How many elements in the field\n\
01023 \n\
01024 ================================================================================\n\
01025 MSG: sensor_msgs/Image\n\
01026 # This message contains an uncompressed image\n\
01027 # (0, 0) is at top-left corner of image\n\
01028 #\n\
01029 \n\
01030 Header header # Header timestamp should be acquisition time of image\n\
01031 # Header frame_id should be optical frame of camera\n\
01032 # origin of frame should be optical center of cameara\n\
01033 # +x should point to the right in the image\n\
01034 # +y should point down in the image\n\
01035 # +z should point into to plane of the image\n\
01036 # If the frame_id here and the frame_id of the CameraInfo\n\
01037 # message associated with the image conflict\n\
01038 # the behavior is undefined\n\
01039 \n\
01040 uint32 height # image height, that is, number of rows\n\
01041 uint32 width # image width, that is, number of columns\n\
01042 \n\
01043 # The legal values for encoding are in file src/image_encodings.cpp\n\
01044 # If you want to standardize a new string format, join\n\
01045 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01046 \n\
01047 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01048 # taken from the list of strings in src/image_encodings.cpp\n\
01049 \n\
01050 uint8 is_bigendian # is this data bigendian?\n\
01051 uint32 step # Full row length in bytes\n\
01052 uint8[] data # actual matrix data, size is (step * rows)\n\
01053 \n\
01054 ================================================================================\n\
01055 MSG: sensor_msgs/CameraInfo\n\
01056 # This message defines meta information for a camera. It should be in a\n\
01057 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01058 # image topics named:\n\
01059 #\n\
01060 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01061 # image - monochrome, distorted\n\
01062 # image_color - color, distorted\n\
01063 # image_rect - monochrome, rectified\n\
01064 # image_rect_color - color, rectified\n\
01065 #\n\
01066 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01067 # for producing the four processed image topics from image_raw and\n\
01068 # camera_info. The meaning of the camera parameters are described in\n\
01069 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01070 #\n\
01071 # The image_geometry package provides a user-friendly interface to\n\
01072 # common operations using this meta information. If you want to, e.g.,\n\
01073 # project a 3d point into image coordinates, we strongly recommend\n\
01074 # using image_geometry.\n\
01075 #\n\
01076 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01077 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01078 # indicates an uncalibrated camera.\n\
01079 \n\
01080 #######################################################################\n\
01081 # Image acquisition info #\n\
01082 #######################################################################\n\
01083 \n\
01084 # Time of image acquisition, camera coordinate frame ID\n\
01085 Header header # Header timestamp should be acquisition time of image\n\
01086 # Header frame_id should be optical frame of camera\n\
01087 # origin of frame should be optical center of camera\n\
01088 # +x should point to the right in the image\n\
01089 # +y should point down in the image\n\
01090 # +z should point into the plane of the image\n\
01091 \n\
01092 \n\
01093 #######################################################################\n\
01094 # Calibration Parameters #\n\
01095 #######################################################################\n\
01096 # These are fixed during camera calibration. Their values will be the #\n\
01097 # same in all messages until the camera is recalibrated. Note that #\n\
01098 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01099 # #\n\
01100 # The internal parameters can be used to warp a raw (distorted) image #\n\
01101 # to: #\n\
01102 # 1. An undistorted image (requires D and K) #\n\
01103 # 2. A rectified image (requires D, K, R) #\n\
01104 # The projection matrix P projects 3D points into the rectified image.#\n\
01105 #######################################################################\n\
01106 \n\
01107 # The image dimensions with which the camera was calibrated. Normally\n\
01108 # this will be the full camera resolution in pixels.\n\
01109 uint32 height\n\
01110 uint32 width\n\
01111 \n\
01112 # The distortion model used. Supported models are listed in\n\
01113 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01114 # simple model of radial and tangential distortion - is sufficent.\n\
01115 string distortion_model\n\
01116 \n\
01117 # The distortion parameters, size depending on the distortion model.\n\
01118 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01119 float64[] D\n\
01120 \n\
01121 # Intrinsic camera matrix for the raw (distorted) images.\n\
01122 # [fx 0 cx]\n\
01123 # K = [ 0 fy cy]\n\
01124 # [ 0 0 1]\n\
01125 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01126 # coordinates using the focal lengths (fx, fy) and principal point\n\
01127 # (cx, cy).\n\
01128 float64[9] K # 3x3 row-major matrix\n\
01129 \n\
01130 # Rectification matrix (stereo cameras only)\n\
01131 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01132 # stereo image plane so that epipolar lines in both stereo images are\n\
01133 # parallel.\n\
01134 float64[9] R # 3x3 row-major matrix\n\
01135 \n\
01136 # Projection/camera matrix\n\
01137 # [fx' 0 cx' Tx]\n\
01138 # P = [ 0 fy' cy' Ty]\n\
01139 # [ 0 0 1 0]\n\
01140 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01141 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01142 # is the normal camera intrinsic matrix for the rectified image.\n\
01143 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01144 # coordinates using the focal lengths (fx', fy') and principal point\n\
01145 # (cx', cy') - these may differ from the values in K.\n\
01146 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01147 # also have R = the identity and P[1:3,1:3] = K.\n\
01148 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01149 # position of the optical center of the second camera in the first\n\
01150 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01151 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01152 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01153 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01154 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01155 # the rectified image is given by:\n\
01156 # [u v w]' = P * [X Y Z 1]'\n\
01157 # x = u / w\n\
01158 # y = v / w\n\
01159 # This holds for both images of a stereo pair.\n\
01160 float64[12] P # 3x4 row-major matrix\n\
01161 \n\
01162 \n\
01163 #######################################################################\n\
01164 # Operational Parameters #\n\
01165 #######################################################################\n\
01166 # These define the image region actually captured by the camera #\n\
01167 # driver. Although they affect the geometry of the output image, they #\n\
01168 # may be changed freely without recalibrating the camera. #\n\
01169 #######################################################################\n\
01170 \n\
01171 # Binning refers here to any camera setting which combines rectangular\n\
01172 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01173 # resolution of the output image to\n\
01174 # (width / binning_x) x (height / binning_y).\n\
01175 # The default values binning_x = binning_y = 0 is considered the same\n\
01176 # as binning_x = binning_y = 1 (no subsampling).\n\
01177 uint32 binning_x\n\
01178 uint32 binning_y\n\
01179 \n\
01180 # Region of interest (subwindow of full camera resolution), given in\n\
01181 # full resolution (unbinned) image coordinates. A particular ROI\n\
01182 # always denotes the same window of pixels on the camera sensor,\n\
01183 # regardless of binning settings.\n\
01184 # The default setting of roi (all values 0) is considered the same as\n\
01185 # full resolution (roi.width = width, roi.height = height).\n\
01186 RegionOfInterest roi\n\
01187 \n\
01188 ================================================================================\n\
01189 MSG: sensor_msgs/RegionOfInterest\n\
01190 # This message is used to specify a region of interest within an image.\n\
01191 #\n\
01192 # When used to specify the ROI setting of the camera when the image was\n\
01193 # taken, the height and width fields should either match the height and\n\
01194 # width fields for the associated image; or height = width = 0\n\
01195 # indicates that the full resolution image was captured.\n\
01196 \n\
01197 uint32 x_offset # Leftmost pixel of the ROI\n\
01198 # (0 if the ROI includes the left edge of the image)\n\
01199 uint32 y_offset # Topmost pixel of the ROI\n\
01200 # (0 if the ROI includes the top edge of the image)\n\
01201 uint32 height # Height of ROI\n\
01202 uint32 width # Width of ROI\n\
01203 \n\
01204 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01205 # ROI in this message. Typically this should be False if the full image\n\
01206 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01207 # used).\n\
01208 bool do_rectify\n\
01209 \n\
01210 ================================================================================\n\
01211 MSG: geometry_msgs/Vector3\n\
01212 # This represents a vector in free space. \n\
01213 \n\
01214 float64 x\n\
01215 float64 y\n\
01216 float64 z\n\
01217 ================================================================================\n\
01218 MSG: object_manipulation_msgs/GripperTranslation\n\
01219 # defines a translation for the gripper, used in pickup or place tasks\n\
01220 # for example for lifting an object off a table or approaching the table for placing\n\
01221 \n\
01222 # the direction of the translation\n\
01223 geometry_msgs/Vector3Stamped direction\n\
01224 \n\
01225 # the desired translation distance\n\
01226 float32 desired_distance\n\
01227 \n\
01228 # the min distance that must be considered feasible before the\n\
01229 # grasp is even attempted\n\
01230 float32 min_distance\n\
01231 ================================================================================\n\
01232 MSG: geometry_msgs/Vector3Stamped\n\
01233 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01234 Header header\n\
01235 Vector3 vector\n\
01236 \n\
01237 ================================================================================\n\
01238 MSG: trajectory_msgs/JointTrajectory\n\
01239 Header header\n\
01240 string[] joint_names\n\
01241 JointTrajectoryPoint[] points\n\
01242 ================================================================================\n\
01243 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01244 float64[] positions\n\
01245 float64[] velocities\n\
01246 float64[] accelerations\n\
01247 duration time_from_start\n\
01248 ================================================================================\n\
01249 MSG: object_manipulation_msgs/ReactiveLiftActionResult\n\
01250 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01251 \n\
01252 Header header\n\
01253 actionlib_msgs/GoalStatus status\n\
01254 ReactiveLiftResult result\n\
01255 \n\
01256 ================================================================================\n\
01257 MSG: actionlib_msgs/GoalStatus\n\
01258 GoalID goal_id\n\
01259 uint8 status\n\
01260 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
01261 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
01262 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
01263 # and has since completed its execution (Terminal State)\n\
01264 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
01265 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
01266 # to some failure (Terminal State)\n\
01267 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
01268 # because the goal was unattainable or invalid (Terminal State)\n\
01269 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
01270 # and has not yet completed execution\n\
01271 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
01272 # but the action server has not yet confirmed that the goal is canceled\n\
01273 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
01274 # and was successfully cancelled (Terminal State)\n\
01275 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
01276 # sent over the wire by an action server\n\
01277 \n\
01278 #Allow for the user to associate a string with GoalStatus for debugging\n\
01279 string text\n\
01280 \n\
01281 \n\
01282 ================================================================================\n\
01283 MSG: object_manipulation_msgs/ReactiveLiftResult\n\
01284 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01285 \n\
01286 # The result of the lift attempt\n\
01287 ManipulationResult manipulation_result\n\
01288 \n\
01289 \n\
01290 ================================================================================\n\
01291 MSG: object_manipulation_msgs/ManipulationResult\n\
01292 # Result codes for manipulation tasks\n\
01293 \n\
01294 # task completed as expected\n\
01295 # generally means you can proceed as planned\n\
01296 int32 SUCCESS = 1\n\
01297 \n\
01298 # task not possible (e.g. out of reach or obstacles in the way)\n\
01299 # generally means that the world was not disturbed, so you can try another task\n\
01300 int32 UNFEASIBLE = -1\n\
01301 \n\
01302 # task was thought possible, but failed due to unexpected events during execution\n\
01303 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
01304 # your sensed world model before proceeding to another task\n\
01305 int32 FAILED = -2\n\
01306 \n\
01307 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
01308 # generally requires human attention\n\
01309 int32 ERROR = -3\n\
01310 \n\
01311 # means that at some point during execution we ended up in a state that the collision-aware\n\
01312 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
01313 # probably need a new collision map to move the arm out of the stuck position\n\
01314 int32 ARM_MOVEMENT_PREVENTED = -4\n\
01315 \n\
01316 # specific to grasp actions\n\
01317 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
01318 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
01319 int32 LIFT_FAILED = -5\n\
01320 \n\
01321 # specific to place actions\n\
01322 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
01323 # it is likely that the collision environment will see collisions between the hand and the object\n\
01324 int32 RETREAT_FAILED = -6\n\
01325 \n\
01326 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
01327 int32 CANCELLED = -7\n\
01328 \n\
01329 # the actual value of this error code\n\
01330 int32 value\n\
01331 \n\
01332 ================================================================================\n\
01333 MSG: object_manipulation_msgs/ReactiveLiftActionFeedback\n\
01334 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01335 \n\
01336 Header header\n\
01337 actionlib_msgs/GoalStatus status\n\
01338 ReactiveLiftFeedback feedback\n\
01339 \n\
01340 ================================================================================\n\
01341 MSG: object_manipulation_msgs/ReactiveLiftFeedback\n\
01342 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01343 \n\
01344 # Which phase the lift is in\n\
01345 \n\
01346 ManipulationPhase manipulation_phase\n\
01347 \n\
01348 \n\
01349 \n\
01350 ================================================================================\n\
01351 MSG: object_manipulation_msgs/ManipulationPhase\n\
01352 int32 CHECKING_FEASIBILITY = 0\n\
01353 int32 MOVING_TO_PREGRASP = 1\n\
01354 int32 MOVING_TO_GRASP = 2\n\
01355 int32 CLOSING = 3 \n\
01356 int32 ADJUSTING_GRASP = 4\n\
01357 int32 LIFTING = 5\n\
01358 int32 MOVING_WITH_OBJECT = 6\n\
01359 int32 MOVING_TO_PLACE = 7\n\
01360 int32 PLACING = 8\n\
01361 int32 OPENING = 9\n\
01362 int32 RETREATING = 10\n\
01363 int32 MOVING_WITHOUT_OBJECT = 11\n\
01364 int32 SHAKING = 12\n\
01365 int32 SUCCEEDED = 13\n\
01366 int32 FAILED = 14\n\
01367 int32 ABORTED = 15\n\
01368 int32 HOLDING_OBJECT = 16\n\
01369 \n\
01370 int32 phase\n\
01371 ";
01372 }
01373
01374 static const char* value(const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); }
01375 };
01376
01377 }
01378 }
01379
01380 namespace ros
01381 {
01382 namespace serialization
01383 {
01384
01385 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> >
01386 {
01387 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01388 {
01389 stream.next(m.action_goal);
01390 stream.next(m.action_result);
01391 stream.next(m.action_feedback);
01392 }
01393
01394 ROS_DECLARE_ALLINONE_SERIALIZER;
01395 };
01396 }
01397 }
01398
01399 namespace ros
01400 {
01401 namespace message_operations
01402 {
01403
01404 template<class ContainerAllocator>
01405 struct Printer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> >
01406 {
01407 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> & v)
01408 {
01409 s << indent << "action_goal: ";
01410 s << std::endl;
01411 Printer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
01412 s << indent << "action_result: ";
01413 s << std::endl;
01414 Printer< ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
01415 s << indent << "action_feedback: ";
01416 s << std::endl;
01417 Printer< ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
01418 }
01419 };
01420
01421
01422 }
01423 }
01424
01425 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H
01426