$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/ReactiveLiftAction.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/ReactiveLiftActionGoal.h" 00018 #include "object_manipulation_msgs/ReactiveLiftActionResult.h" 00019 #include "object_manipulation_msgs/ReactiveLiftActionFeedback.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct ReactiveLiftAction_ { 00025 typedef ReactiveLiftAction_<ContainerAllocator> Type; 00026 00027 ReactiveLiftAction_() 00028 : action_goal() 00029 , action_result() 00030 , action_feedback() 00031 { 00032 } 00033 00034 ReactiveLiftAction_(const ContainerAllocator& _alloc) 00035 : action_goal(_alloc) 00036 , action_result(_alloc) 00037 , action_feedback(_alloc) 00038 { 00039 } 00040 00041 typedef ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> _action_goal_type; 00042 ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> action_goal; 00043 00044 typedef ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator> _action_result_type; 00045 ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator> action_result; 00046 00047 typedef ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator> _action_feedback_type; 00048 ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator> action_feedback; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveLiftAction"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "a2a6fc4d4e26e8ab8a134256a2b47821"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 ReactiveLiftActionGoal action_goal\n\ 00069 ReactiveLiftActionResult action_result\n\ 00070 ReactiveLiftActionFeedback action_feedback\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: object_manipulation_msgs/ReactiveLiftActionGoal\n\ 00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00075 \n\ 00076 Header header\n\ 00077 actionlib_msgs/GoalID goal_id\n\ 00078 ReactiveLiftGoal goal\n\ 00079 \n\ 00080 ================================================================================\n\ 00081 MSG: std_msgs/Header\n\ 00082 # Standard metadata for higher-level stamped data types.\n\ 00083 # This is generally used to communicate timestamped data \n\ 00084 # in a particular coordinate frame.\n\ 00085 # \n\ 00086 # sequence ID: consecutively increasing ID \n\ 00087 uint32 seq\n\ 00088 #Two-integer timestamp that is expressed as:\n\ 00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00091 # time-handling sugar is provided by the client library\n\ 00092 time stamp\n\ 00093 #Frame this data is associated with\n\ 00094 # 0: no frame\n\ 00095 # 1: global frame\n\ 00096 string frame_id\n\ 00097 \n\ 00098 ================================================================================\n\ 00099 MSG: actionlib_msgs/GoalID\n\ 00100 # The stamp should store the time at which this goal was requested.\n\ 00101 # It is used by an action server when it tries to preempt all\n\ 00102 # goals that were requested before a certain time\n\ 00103 time stamp\n\ 00104 \n\ 00105 # The id provides a way to associate feedback and\n\ 00106 # result message with specific goal requests. The id\n\ 00107 # specified must be unique.\n\ 00108 string id\n\ 00109 \n\ 00110 \n\ 00111 ================================================================================\n\ 00112 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\ 00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00114 \n\ 00115 # the name of the arm being used\n\ 00116 string arm_name\n\ 00117 \n\ 00118 # the object to be grasped\n\ 00119 GraspableObject target\n\ 00120 \n\ 00121 # How the object should be lifted \n\ 00122 GripperTranslation lift\n\ 00123 \n\ 00124 # the joint trajectory to use for the approach (if available)\n\ 00125 # this trajectory is expected to start at the current pose of the gripper\n\ 00126 # and end at the desired grasp pose\n\ 00127 trajectory_msgs/JointTrajectory trajectory\n\ 00128 \n\ 00129 # the name of the support surface in the collision environment, if any\n\ 00130 string collision_support_surface_name\n\ 00131 \n\ 00132 \n\ 00133 ================================================================================\n\ 00134 MSG: object_manipulation_msgs/GraspableObject\n\ 00135 # an object that the object_manipulator can work on\n\ 00136 \n\ 00137 # a graspable object can be represented in multiple ways. This message\n\ 00138 # can contain all of them. Which one is actually used is up to the receiver\n\ 00139 # of this message. When adding new representations, one must be careful that\n\ 00140 # they have reasonable lightweight defaults indicating that that particular\n\ 00141 # representation is not available.\n\ 00142 \n\ 00143 # the tf frame to be used as a reference frame when combining information from\n\ 00144 # the different representations below\n\ 00145 string reference_frame_id\n\ 00146 \n\ 00147 # potential recognition results from a database of models\n\ 00148 # all poses are relative to the object reference pose\n\ 00149 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00150 \n\ 00151 # the point cloud itself\n\ 00152 sensor_msgs/PointCloud cluster\n\ 00153 \n\ 00154 # a region of a PointCloud2 of interest\n\ 00155 object_manipulation_msgs/SceneRegion region\n\ 00156 \n\ 00157 # the name that this object has in the collision environment\n\ 00158 string collision_name\n\ 00159 ================================================================================\n\ 00160 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00161 # Informs that a specific model from the Model Database has been \n\ 00162 # identified at a certain location\n\ 00163 \n\ 00164 # the database id of the model\n\ 00165 int32 model_id\n\ 00166 \n\ 00167 # the pose that it can be found in\n\ 00168 geometry_msgs/PoseStamped pose\n\ 00169 \n\ 00170 # a measure of the confidence level in this detection result\n\ 00171 float32 confidence\n\ 00172 \n\ 00173 # the name of the object detector that generated this detection result\n\ 00174 string detector_name\n\ 00175 \n\ 00176 ================================================================================\n\ 00177 MSG: geometry_msgs/PoseStamped\n\ 00178 # A Pose with reference coordinate frame and timestamp\n\ 00179 Header header\n\ 00180 Pose pose\n\ 00181 \n\ 00182 ================================================================================\n\ 00183 MSG: geometry_msgs/Pose\n\ 00184 # A representation of pose in free space, composed of postion and orientation. \n\ 00185 Point position\n\ 00186 Quaternion orientation\n\ 00187 \n\ 00188 ================================================================================\n\ 00189 MSG: geometry_msgs/Point\n\ 00190 # This contains the position of a point in free space\n\ 00191 float64 x\n\ 00192 float64 y\n\ 00193 float64 z\n\ 00194 \n\ 00195 ================================================================================\n\ 00196 MSG: geometry_msgs/Quaternion\n\ 00197 # This represents an orientation in free space in quaternion form.\n\ 00198 \n\ 00199 float64 x\n\ 00200 float64 y\n\ 00201 float64 z\n\ 00202 float64 w\n\ 00203 \n\ 00204 ================================================================================\n\ 00205 MSG: sensor_msgs/PointCloud\n\ 00206 # This message holds a collection of 3d points, plus optional additional\n\ 00207 # information about each point.\n\ 00208 \n\ 00209 # Time of sensor data acquisition, coordinate frame ID.\n\ 00210 Header header\n\ 00211 \n\ 00212 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00213 # in the frame given in the header.\n\ 00214 geometry_msgs/Point32[] points\n\ 00215 \n\ 00216 # Each channel should have the same number of elements as points array,\n\ 00217 # and the data in each channel should correspond 1:1 with each point.\n\ 00218 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00219 ChannelFloat32[] channels\n\ 00220 \n\ 00221 ================================================================================\n\ 00222 MSG: geometry_msgs/Point32\n\ 00223 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00224 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00225 # \n\ 00226 # This recommendation is to promote interoperability. \n\ 00227 #\n\ 00228 # This message is designed to take up less space when sending\n\ 00229 # lots of points at once, as in the case of a PointCloud. \n\ 00230 \n\ 00231 float32 x\n\ 00232 float32 y\n\ 00233 float32 z\n\ 00234 ================================================================================\n\ 00235 MSG: sensor_msgs/ChannelFloat32\n\ 00236 # This message is used by the PointCloud message to hold optional data\n\ 00237 # associated with each point in the cloud. The length of the values\n\ 00238 # array should be the same as the length of the points array in the\n\ 00239 # PointCloud, and each value should be associated with the corresponding\n\ 00240 # point.\n\ 00241 \n\ 00242 # Channel names in existing practice include:\n\ 00243 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00244 # This is opposite to usual conventions but remains for\n\ 00245 # historical reasons. The newer PointCloud2 message has no\n\ 00246 # such problem.\n\ 00247 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00248 # (R,G,B) values packed into the least significant 24 bits,\n\ 00249 # in order.\n\ 00250 # \"intensity\" - laser or pixel intensity.\n\ 00251 # \"distance\"\n\ 00252 \n\ 00253 # The channel name should give semantics of the channel (e.g.\n\ 00254 # \"intensity\" instead of \"value\").\n\ 00255 string name\n\ 00256 \n\ 00257 # The values array should be 1-1 with the elements of the associated\n\ 00258 # PointCloud.\n\ 00259 float32[] values\n\ 00260 \n\ 00261 ================================================================================\n\ 00262 MSG: object_manipulation_msgs/SceneRegion\n\ 00263 # Point cloud\n\ 00264 sensor_msgs/PointCloud2 cloud\n\ 00265 \n\ 00266 # Indices for the region of interest\n\ 00267 int32[] mask\n\ 00268 \n\ 00269 # One of the corresponding 2D images, if applicable\n\ 00270 sensor_msgs/Image image\n\ 00271 \n\ 00272 # The disparity image, if applicable\n\ 00273 sensor_msgs/Image disparity_image\n\ 00274 \n\ 00275 # Camera info for the camera that took the image\n\ 00276 sensor_msgs/CameraInfo cam_info\n\ 00277 \n\ 00278 # a 3D region of interest for grasp planning\n\ 00279 geometry_msgs/PoseStamped roi_box_pose\n\ 00280 geometry_msgs/Vector3 roi_box_dims\n\ 00281 \n\ 00282 ================================================================================\n\ 00283 MSG: sensor_msgs/PointCloud2\n\ 00284 # This message holds a collection of N-dimensional points, which may\n\ 00285 # contain additional information such as normals, intensity, etc. The\n\ 00286 # point data is stored as a binary blob, its layout described by the\n\ 00287 # contents of the \"fields\" array.\n\ 00288 \n\ 00289 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00290 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00291 # camera depth sensors such as stereo or time-of-flight.\n\ 00292 \n\ 00293 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00294 # points).\n\ 00295 Header header\n\ 00296 \n\ 00297 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00298 # 1 and width is the length of the point cloud.\n\ 00299 uint32 height\n\ 00300 uint32 width\n\ 00301 \n\ 00302 # Describes the channels and their layout in the binary data blob.\n\ 00303 PointField[] fields\n\ 00304 \n\ 00305 bool is_bigendian # Is this data bigendian?\n\ 00306 uint32 point_step # Length of a point in bytes\n\ 00307 uint32 row_step # Length of a row in bytes\n\ 00308 uint8[] data # Actual point data, size is (row_step*height)\n\ 00309 \n\ 00310 bool is_dense # True if there are no invalid points\n\ 00311 \n\ 00312 ================================================================================\n\ 00313 MSG: sensor_msgs/PointField\n\ 00314 # This message holds the description of one point entry in the\n\ 00315 # PointCloud2 message format.\n\ 00316 uint8 INT8 = 1\n\ 00317 uint8 UINT8 = 2\n\ 00318 uint8 INT16 = 3\n\ 00319 uint8 UINT16 = 4\n\ 00320 uint8 INT32 = 5\n\ 00321 uint8 UINT32 = 6\n\ 00322 uint8 FLOAT32 = 7\n\ 00323 uint8 FLOAT64 = 8\n\ 00324 \n\ 00325 string name # Name of field\n\ 00326 uint32 offset # Offset from start of point struct\n\ 00327 uint8 datatype # Datatype enumeration, see above\n\ 00328 uint32 count # How many elements in the field\n\ 00329 \n\ 00330 ================================================================================\n\ 00331 MSG: sensor_msgs/Image\n\ 00332 # This message contains an uncompressed image\n\ 00333 # (0, 0) is at top-left corner of image\n\ 00334 #\n\ 00335 \n\ 00336 Header header # Header timestamp should be acquisition time of image\n\ 00337 # Header frame_id should be optical frame of camera\n\ 00338 # origin of frame should be optical center of cameara\n\ 00339 # +x should point to the right in the image\n\ 00340 # +y should point down in the image\n\ 00341 # +z should point into to plane of the image\n\ 00342 # If the frame_id here and the frame_id of the CameraInfo\n\ 00343 # message associated with the image conflict\n\ 00344 # the behavior is undefined\n\ 00345 \n\ 00346 uint32 height # image height, that is, number of rows\n\ 00347 uint32 width # image width, that is, number of columns\n\ 00348 \n\ 00349 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00350 # If you want to standardize a new string format, join\n\ 00351 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00352 \n\ 00353 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00354 # taken from the list of strings in src/image_encodings.cpp\n\ 00355 \n\ 00356 uint8 is_bigendian # is this data bigendian?\n\ 00357 uint32 step # Full row length in bytes\n\ 00358 uint8[] data # actual matrix data, size is (step * rows)\n\ 00359 \n\ 00360 ================================================================================\n\ 00361 MSG: sensor_msgs/CameraInfo\n\ 00362 # This message defines meta information for a camera. It should be in a\n\ 00363 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00364 # image topics named:\n\ 00365 #\n\ 00366 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00367 # image - monochrome, distorted\n\ 00368 # image_color - color, distorted\n\ 00369 # image_rect - monochrome, rectified\n\ 00370 # image_rect_color - color, rectified\n\ 00371 #\n\ 00372 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00373 # for producing the four processed image topics from image_raw and\n\ 00374 # camera_info. The meaning of the camera parameters are described in\n\ 00375 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00376 #\n\ 00377 # The image_geometry package provides a user-friendly interface to\n\ 00378 # common operations using this meta information. If you want to, e.g.,\n\ 00379 # project a 3d point into image coordinates, we strongly recommend\n\ 00380 # using image_geometry.\n\ 00381 #\n\ 00382 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00383 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00384 # indicates an uncalibrated camera.\n\ 00385 \n\ 00386 #######################################################################\n\ 00387 # Image acquisition info #\n\ 00388 #######################################################################\n\ 00389 \n\ 00390 # Time of image acquisition, camera coordinate frame ID\n\ 00391 Header header # Header timestamp should be acquisition time of image\n\ 00392 # Header frame_id should be optical frame of camera\n\ 00393 # origin of frame should be optical center of camera\n\ 00394 # +x should point to the right in the image\n\ 00395 # +y should point down in the image\n\ 00396 # +z should point into the plane of the image\n\ 00397 \n\ 00398 \n\ 00399 #######################################################################\n\ 00400 # Calibration Parameters #\n\ 00401 #######################################################################\n\ 00402 # These are fixed during camera calibration. Their values will be the #\n\ 00403 # same in all messages until the camera is recalibrated. Note that #\n\ 00404 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00405 # #\n\ 00406 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00407 # to: #\n\ 00408 # 1. An undistorted image (requires D and K) #\n\ 00409 # 2. A rectified image (requires D, K, R) #\n\ 00410 # The projection matrix P projects 3D points into the rectified image.#\n\ 00411 #######################################################################\n\ 00412 \n\ 00413 # The image dimensions with which the camera was calibrated. Normally\n\ 00414 # this will be the full camera resolution in pixels.\n\ 00415 uint32 height\n\ 00416 uint32 width\n\ 00417 \n\ 00418 # The distortion model used. Supported models are listed in\n\ 00419 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00420 # simple model of radial and tangential distortion - is sufficent.\n\ 00421 string distortion_model\n\ 00422 \n\ 00423 # The distortion parameters, size depending on the distortion model.\n\ 00424 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00425 float64[] D\n\ 00426 \n\ 00427 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00428 # [fx 0 cx]\n\ 00429 # K = [ 0 fy cy]\n\ 00430 # [ 0 0 1]\n\ 00431 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00432 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00433 # (cx, cy).\n\ 00434 float64[9] K # 3x3 row-major matrix\n\ 00435 \n\ 00436 # Rectification matrix (stereo cameras only)\n\ 00437 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00438 # stereo image plane so that epipolar lines in both stereo images are\n\ 00439 # parallel.\n\ 00440 float64[9] R # 3x3 row-major matrix\n\ 00441 \n\ 00442 # Projection/camera matrix\n\ 00443 # [fx' 0 cx' Tx]\n\ 00444 # P = [ 0 fy' cy' Ty]\n\ 00445 # [ 0 0 1 0]\n\ 00446 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00447 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00448 # is the normal camera intrinsic matrix for the rectified image.\n\ 00449 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00450 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00451 # (cx', cy') - these may differ from the values in K.\n\ 00452 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00453 # also have R = the identity and P[1:3,1:3] = K.\n\ 00454 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00455 # position of the optical center of the second camera in the first\n\ 00456 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00457 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00458 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00459 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00460 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00461 # the rectified image is given by:\n\ 00462 # [u v w]' = P * [X Y Z 1]'\n\ 00463 # x = u / w\n\ 00464 # y = v / w\n\ 00465 # This holds for both images of a stereo pair.\n\ 00466 float64[12] P # 3x4 row-major matrix\n\ 00467 \n\ 00468 \n\ 00469 #######################################################################\n\ 00470 # Operational Parameters #\n\ 00471 #######################################################################\n\ 00472 # These define the image region actually captured by the camera #\n\ 00473 # driver. Although they affect the geometry of the output image, they #\n\ 00474 # may be changed freely without recalibrating the camera. #\n\ 00475 #######################################################################\n\ 00476 \n\ 00477 # Binning refers here to any camera setting which combines rectangular\n\ 00478 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00479 # resolution of the output image to\n\ 00480 # (width / binning_x) x (height / binning_y).\n\ 00481 # The default values binning_x = binning_y = 0 is considered the same\n\ 00482 # as binning_x = binning_y = 1 (no subsampling).\n\ 00483 uint32 binning_x\n\ 00484 uint32 binning_y\n\ 00485 \n\ 00486 # Region of interest (subwindow of full camera resolution), given in\n\ 00487 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00488 # always denotes the same window of pixels on the camera sensor,\n\ 00489 # regardless of binning settings.\n\ 00490 # The default setting of roi (all values 0) is considered the same as\n\ 00491 # full resolution (roi.width = width, roi.height = height).\n\ 00492 RegionOfInterest roi\n\ 00493 \n\ 00494 ================================================================================\n\ 00495 MSG: sensor_msgs/RegionOfInterest\n\ 00496 # This message is used to specify a region of interest within an image.\n\ 00497 #\n\ 00498 # When used to specify the ROI setting of the camera when the image was\n\ 00499 # taken, the height and width fields should either match the height and\n\ 00500 # width fields for the associated image; or height = width = 0\n\ 00501 # indicates that the full resolution image was captured.\n\ 00502 \n\ 00503 uint32 x_offset # Leftmost pixel of the ROI\n\ 00504 # (0 if the ROI includes the left edge of the image)\n\ 00505 uint32 y_offset # Topmost pixel of the ROI\n\ 00506 # (0 if the ROI includes the top edge of the image)\n\ 00507 uint32 height # Height of ROI\n\ 00508 uint32 width # Width of ROI\n\ 00509 \n\ 00510 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00511 # ROI in this message. Typically this should be False if the full image\n\ 00512 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00513 # used).\n\ 00514 bool do_rectify\n\ 00515 \n\ 00516 ================================================================================\n\ 00517 MSG: geometry_msgs/Vector3\n\ 00518 # This represents a vector in free space. \n\ 00519 \n\ 00520 float64 x\n\ 00521 float64 y\n\ 00522 float64 z\n\ 00523 ================================================================================\n\ 00524 MSG: object_manipulation_msgs/GripperTranslation\n\ 00525 # defines a translation for the gripper, used in pickup or place tasks\n\ 00526 # for example for lifting an object off a table or approaching the table for placing\n\ 00527 \n\ 00528 # the direction of the translation\n\ 00529 geometry_msgs/Vector3Stamped direction\n\ 00530 \n\ 00531 # the desired translation distance\n\ 00532 float32 desired_distance\n\ 00533 \n\ 00534 # the min distance that must be considered feasible before the\n\ 00535 # grasp is even attempted\n\ 00536 float32 min_distance\n\ 00537 ================================================================================\n\ 00538 MSG: geometry_msgs/Vector3Stamped\n\ 00539 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 00540 Header header\n\ 00541 Vector3 vector\n\ 00542 \n\ 00543 ================================================================================\n\ 00544 MSG: trajectory_msgs/JointTrajectory\n\ 00545 Header header\n\ 00546 string[] joint_names\n\ 00547 JointTrajectoryPoint[] points\n\ 00548 ================================================================================\n\ 00549 MSG: trajectory_msgs/JointTrajectoryPoint\n\ 00550 float64[] positions\n\ 00551 float64[] velocities\n\ 00552 float64[] accelerations\n\ 00553 duration time_from_start\n\ 00554 ================================================================================\n\ 00555 MSG: object_manipulation_msgs/ReactiveLiftActionResult\n\ 00556 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00557 \n\ 00558 Header header\n\ 00559 actionlib_msgs/GoalStatus status\n\ 00560 ReactiveLiftResult result\n\ 00561 \n\ 00562 ================================================================================\n\ 00563 MSG: actionlib_msgs/GoalStatus\n\ 00564 GoalID goal_id\n\ 00565 uint8 status\n\ 00566 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00567 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00568 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00569 # and has since completed its execution (Terminal State)\n\ 00570 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00571 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00572 # to some failure (Terminal State)\n\ 00573 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00574 # because the goal was unattainable or invalid (Terminal State)\n\ 00575 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00576 # and has not yet completed execution\n\ 00577 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00578 # but the action server has not yet confirmed that the goal is canceled\n\ 00579 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00580 # and was successfully cancelled (Terminal State)\n\ 00581 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00582 # sent over the wire by an action server\n\ 00583 \n\ 00584 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00585 string text\n\ 00586 \n\ 00587 \n\ 00588 ================================================================================\n\ 00589 MSG: object_manipulation_msgs/ReactiveLiftResult\n\ 00590 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00591 \n\ 00592 # The result of the lift attempt\n\ 00593 ManipulationResult manipulation_result\n\ 00594 \n\ 00595 \n\ 00596 ================================================================================\n\ 00597 MSG: object_manipulation_msgs/ManipulationResult\n\ 00598 # Result codes for manipulation tasks\n\ 00599 \n\ 00600 # task completed as expected\n\ 00601 # generally means you can proceed as planned\n\ 00602 int32 SUCCESS = 1\n\ 00603 \n\ 00604 # task not possible (e.g. out of reach or obstacles in the way)\n\ 00605 # generally means that the world was not disturbed, so you can try another task\n\ 00606 int32 UNFEASIBLE = -1\n\ 00607 \n\ 00608 # task was thought possible, but failed due to unexpected events during execution\n\ 00609 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 00610 # your sensed world model before proceeding to another task\n\ 00611 int32 FAILED = -2\n\ 00612 \n\ 00613 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 00614 # generally requires human attention\n\ 00615 int32 ERROR = -3\n\ 00616 \n\ 00617 # means that at some point during execution we ended up in a state that the collision-aware\n\ 00618 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 00619 # probably need a new collision map to move the arm out of the stuck position\n\ 00620 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 00621 \n\ 00622 # specific to grasp actions\n\ 00623 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 00624 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 00625 int32 LIFT_FAILED = -5\n\ 00626 \n\ 00627 # specific to place actions\n\ 00628 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 00629 # it is likely that the collision environment will see collisions between the hand and the object\n\ 00630 int32 RETREAT_FAILED = -6\n\ 00631 \n\ 00632 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 00633 int32 CANCELLED = -7\n\ 00634 \n\ 00635 # the actual value of this error code\n\ 00636 int32 value\n\ 00637 \n\ 00638 ================================================================================\n\ 00639 MSG: object_manipulation_msgs/ReactiveLiftActionFeedback\n\ 00640 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00641 \n\ 00642 Header header\n\ 00643 actionlib_msgs/GoalStatus status\n\ 00644 ReactiveLiftFeedback feedback\n\ 00645 \n\ 00646 ================================================================================\n\ 00647 MSG: object_manipulation_msgs/ReactiveLiftFeedback\n\ 00648 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00649 \n\ 00650 # Which phase the lift is in\n\ 00651 \n\ 00652 ManipulationPhase manipulation_phase\n\ 00653 \n\ 00654 \n\ 00655 \n\ 00656 ================================================================================\n\ 00657 MSG: object_manipulation_msgs/ManipulationPhase\n\ 00658 int32 CHECKING_FEASIBILITY = 0\n\ 00659 int32 MOVING_TO_PREGRASP = 1\n\ 00660 int32 MOVING_TO_GRASP = 2\n\ 00661 int32 CLOSING = 3 \n\ 00662 int32 ADJUSTING_GRASP = 4\n\ 00663 int32 LIFTING = 5\n\ 00664 int32 MOVING_WITH_OBJECT = 6\n\ 00665 int32 MOVING_TO_PLACE = 7\n\ 00666 int32 PLACING = 8\n\ 00667 int32 OPENING = 9\n\ 00668 int32 RETREATING = 10\n\ 00669 int32 MOVING_WITHOUT_OBJECT = 11\n\ 00670 int32 SHAKING = 12\n\ 00671 int32 SUCCEEDED = 13\n\ 00672 int32 FAILED = 14\n\ 00673 int32 ABORTED = 15\n\ 00674 int32 HOLDING_OBJECT = 16\n\ 00675 \n\ 00676 int32 phase\n\ 00677 "; } 00678 public: 00679 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00680 00681 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00682 00683 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00684 { 00685 ros::serialization::OStream stream(write_ptr, 1000000000); 00686 ros::serialization::serialize(stream, action_goal); 00687 ros::serialization::serialize(stream, action_result); 00688 ros::serialization::serialize(stream, action_feedback); 00689 return stream.getData(); 00690 } 00691 00692 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00693 { 00694 ros::serialization::IStream stream(read_ptr, 1000000000); 00695 ros::serialization::deserialize(stream, action_goal); 00696 ros::serialization::deserialize(stream, action_result); 00697 ros::serialization::deserialize(stream, action_feedback); 00698 return stream.getData(); 00699 } 00700 00701 ROS_DEPRECATED virtual uint32_t serializationLength() const 00702 { 00703 uint32_t size = 0; 00704 size += ros::serialization::serializationLength(action_goal); 00705 size += ros::serialization::serializationLength(action_result); 00706 size += ros::serialization::serializationLength(action_feedback); 00707 return size; 00708 } 00709 00710 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > Ptr; 00711 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> const> ConstPtr; 00712 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00713 }; // struct ReactiveLiftAction 00714 typedef ::object_manipulation_msgs::ReactiveLiftAction_<std::allocator<void> > ReactiveLiftAction; 00715 00716 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction> ReactiveLiftActionPtr; 00717 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction const> ReactiveLiftActionConstPtr; 00718 00719 00720 template<typename ContainerAllocator> 00721 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> & v) 00722 { 00723 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> >::stream(s, "", v); 00724 return s;} 00725 00726 } // namespace object_manipulation_msgs 00727 00728 namespace ros 00729 { 00730 namespace message_traits 00731 { 00732 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > : public TrueType {}; 00733 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> const> : public TrueType {}; 00734 template<class ContainerAllocator> 00735 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > { 00736 static const char* value() 00737 { 00738 return "a2a6fc4d4e26e8ab8a134256a2b47821"; 00739 } 00740 00741 static const char* value(const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); } 00742 static const uint64_t static_value1 = 0xa2a6fc4d4e26e8abULL; 00743 static const uint64_t static_value2 = 0x8a134256a2b47821ULL; 00744 }; 00745 00746 template<class ContainerAllocator> 00747 struct DataType< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > { 00748 static const char* value() 00749 { 00750 return "object_manipulation_msgs/ReactiveLiftAction"; 00751 } 00752 00753 static const char* value(const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); } 00754 }; 00755 00756 template<class ContainerAllocator> 00757 struct Definition< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > { 00758 static const char* value() 00759 { 00760 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00761 \n\ 00762 ReactiveLiftActionGoal action_goal\n\ 00763 ReactiveLiftActionResult action_result\n\ 00764 ReactiveLiftActionFeedback action_feedback\n\ 00765 \n\ 00766 ================================================================================\n\ 00767 MSG: object_manipulation_msgs/ReactiveLiftActionGoal\n\ 00768 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00769 \n\ 00770 Header header\n\ 00771 actionlib_msgs/GoalID goal_id\n\ 00772 ReactiveLiftGoal goal\n\ 00773 \n\ 00774 ================================================================================\n\ 00775 MSG: std_msgs/Header\n\ 00776 # Standard metadata for higher-level stamped data types.\n\ 00777 # This is generally used to communicate timestamped data \n\ 00778 # in a particular coordinate frame.\n\ 00779 # \n\ 00780 # sequence ID: consecutively increasing ID \n\ 00781 uint32 seq\n\ 00782 #Two-integer timestamp that is expressed as:\n\ 00783 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00784 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00785 # time-handling sugar is provided by the client library\n\ 00786 time stamp\n\ 00787 #Frame this data is associated with\n\ 00788 # 0: no frame\n\ 00789 # 1: global frame\n\ 00790 string frame_id\n\ 00791 \n\ 00792 ================================================================================\n\ 00793 MSG: actionlib_msgs/GoalID\n\ 00794 # The stamp should store the time at which this goal was requested.\n\ 00795 # It is used by an action server when it tries to preempt all\n\ 00796 # goals that were requested before a certain time\n\ 00797 time stamp\n\ 00798 \n\ 00799 # The id provides a way to associate feedback and\n\ 00800 # result message with specific goal requests. The id\n\ 00801 # specified must be unique.\n\ 00802 string id\n\ 00803 \n\ 00804 \n\ 00805 ================================================================================\n\ 00806 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\ 00807 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00808 \n\ 00809 # the name of the arm being used\n\ 00810 string arm_name\n\ 00811 \n\ 00812 # the object to be grasped\n\ 00813 GraspableObject target\n\ 00814 \n\ 00815 # How the object should be lifted \n\ 00816 GripperTranslation lift\n\ 00817 \n\ 00818 # the joint trajectory to use for the approach (if available)\n\ 00819 # this trajectory is expected to start at the current pose of the gripper\n\ 00820 # and end at the desired grasp pose\n\ 00821 trajectory_msgs/JointTrajectory trajectory\n\ 00822 \n\ 00823 # the name of the support surface in the collision environment, if any\n\ 00824 string collision_support_surface_name\n\ 00825 \n\ 00826 \n\ 00827 ================================================================================\n\ 00828 MSG: object_manipulation_msgs/GraspableObject\n\ 00829 # an object that the object_manipulator can work on\n\ 00830 \n\ 00831 # a graspable object can be represented in multiple ways. This message\n\ 00832 # can contain all of them. Which one is actually used is up to the receiver\n\ 00833 # of this message. When adding new representations, one must be careful that\n\ 00834 # they have reasonable lightweight defaults indicating that that particular\n\ 00835 # representation is not available.\n\ 00836 \n\ 00837 # the tf frame to be used as a reference frame when combining information from\n\ 00838 # the different representations below\n\ 00839 string reference_frame_id\n\ 00840 \n\ 00841 # potential recognition results from a database of models\n\ 00842 # all poses are relative to the object reference pose\n\ 00843 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00844 \n\ 00845 # the point cloud itself\n\ 00846 sensor_msgs/PointCloud cluster\n\ 00847 \n\ 00848 # a region of a PointCloud2 of interest\n\ 00849 object_manipulation_msgs/SceneRegion region\n\ 00850 \n\ 00851 # the name that this object has in the collision environment\n\ 00852 string collision_name\n\ 00853 ================================================================================\n\ 00854 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00855 # Informs that a specific model from the Model Database has been \n\ 00856 # identified at a certain location\n\ 00857 \n\ 00858 # the database id of the model\n\ 00859 int32 model_id\n\ 00860 \n\ 00861 # the pose that it can be found in\n\ 00862 geometry_msgs/PoseStamped pose\n\ 00863 \n\ 00864 # a measure of the confidence level in this detection result\n\ 00865 float32 confidence\n\ 00866 \n\ 00867 # the name of the object detector that generated this detection result\n\ 00868 string detector_name\n\ 00869 \n\ 00870 ================================================================================\n\ 00871 MSG: geometry_msgs/PoseStamped\n\ 00872 # A Pose with reference coordinate frame and timestamp\n\ 00873 Header header\n\ 00874 Pose pose\n\ 00875 \n\ 00876 ================================================================================\n\ 00877 MSG: geometry_msgs/Pose\n\ 00878 # A representation of pose in free space, composed of postion and orientation. \n\ 00879 Point position\n\ 00880 Quaternion orientation\n\ 00881 \n\ 00882 ================================================================================\n\ 00883 MSG: geometry_msgs/Point\n\ 00884 # This contains the position of a point in free space\n\ 00885 float64 x\n\ 00886 float64 y\n\ 00887 float64 z\n\ 00888 \n\ 00889 ================================================================================\n\ 00890 MSG: geometry_msgs/Quaternion\n\ 00891 # This represents an orientation in free space in quaternion form.\n\ 00892 \n\ 00893 float64 x\n\ 00894 float64 y\n\ 00895 float64 z\n\ 00896 float64 w\n\ 00897 \n\ 00898 ================================================================================\n\ 00899 MSG: sensor_msgs/PointCloud\n\ 00900 # This message holds a collection of 3d points, plus optional additional\n\ 00901 # information about each point.\n\ 00902 \n\ 00903 # Time of sensor data acquisition, coordinate frame ID.\n\ 00904 Header header\n\ 00905 \n\ 00906 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00907 # in the frame given in the header.\n\ 00908 geometry_msgs/Point32[] points\n\ 00909 \n\ 00910 # Each channel should have the same number of elements as points array,\n\ 00911 # and the data in each channel should correspond 1:1 with each point.\n\ 00912 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00913 ChannelFloat32[] channels\n\ 00914 \n\ 00915 ================================================================================\n\ 00916 MSG: geometry_msgs/Point32\n\ 00917 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00918 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00919 # \n\ 00920 # This recommendation is to promote interoperability. \n\ 00921 #\n\ 00922 # This message is designed to take up less space when sending\n\ 00923 # lots of points at once, as in the case of a PointCloud. \n\ 00924 \n\ 00925 float32 x\n\ 00926 float32 y\n\ 00927 float32 z\n\ 00928 ================================================================================\n\ 00929 MSG: sensor_msgs/ChannelFloat32\n\ 00930 # This message is used by the PointCloud message to hold optional data\n\ 00931 # associated with each point in the cloud. The length of the values\n\ 00932 # array should be the same as the length of the points array in the\n\ 00933 # PointCloud, and each value should be associated with the corresponding\n\ 00934 # point.\n\ 00935 \n\ 00936 # Channel names in existing practice include:\n\ 00937 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00938 # This is opposite to usual conventions but remains for\n\ 00939 # historical reasons. The newer PointCloud2 message has no\n\ 00940 # such problem.\n\ 00941 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00942 # (R,G,B) values packed into the least significant 24 bits,\n\ 00943 # in order.\n\ 00944 # \"intensity\" - laser or pixel intensity.\n\ 00945 # \"distance\"\n\ 00946 \n\ 00947 # The channel name should give semantics of the channel (e.g.\n\ 00948 # \"intensity\" instead of \"value\").\n\ 00949 string name\n\ 00950 \n\ 00951 # The values array should be 1-1 with the elements of the associated\n\ 00952 # PointCloud.\n\ 00953 float32[] values\n\ 00954 \n\ 00955 ================================================================================\n\ 00956 MSG: object_manipulation_msgs/SceneRegion\n\ 00957 # Point cloud\n\ 00958 sensor_msgs/PointCloud2 cloud\n\ 00959 \n\ 00960 # Indices for the region of interest\n\ 00961 int32[] mask\n\ 00962 \n\ 00963 # One of the corresponding 2D images, if applicable\n\ 00964 sensor_msgs/Image image\n\ 00965 \n\ 00966 # The disparity image, if applicable\n\ 00967 sensor_msgs/Image disparity_image\n\ 00968 \n\ 00969 # Camera info for the camera that took the image\n\ 00970 sensor_msgs/CameraInfo cam_info\n\ 00971 \n\ 00972 # a 3D region of interest for grasp planning\n\ 00973 geometry_msgs/PoseStamped roi_box_pose\n\ 00974 geometry_msgs/Vector3 roi_box_dims\n\ 00975 \n\ 00976 ================================================================================\n\ 00977 MSG: sensor_msgs/PointCloud2\n\ 00978 # This message holds a collection of N-dimensional points, which may\n\ 00979 # contain additional information such as normals, intensity, etc. The\n\ 00980 # point data is stored as a binary blob, its layout described by the\n\ 00981 # contents of the \"fields\" array.\n\ 00982 \n\ 00983 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00984 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00985 # camera depth sensors such as stereo or time-of-flight.\n\ 00986 \n\ 00987 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00988 # points).\n\ 00989 Header header\n\ 00990 \n\ 00991 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00992 # 1 and width is the length of the point cloud.\n\ 00993 uint32 height\n\ 00994 uint32 width\n\ 00995 \n\ 00996 # Describes the channels and their layout in the binary data blob.\n\ 00997 PointField[] fields\n\ 00998 \n\ 00999 bool is_bigendian # Is this data bigendian?\n\ 01000 uint32 point_step # Length of a point in bytes\n\ 01001 uint32 row_step # Length of a row in bytes\n\ 01002 uint8[] data # Actual point data, size is (row_step*height)\n\ 01003 \n\ 01004 bool is_dense # True if there are no invalid points\n\ 01005 \n\ 01006 ================================================================================\n\ 01007 MSG: sensor_msgs/PointField\n\ 01008 # This message holds the description of one point entry in the\n\ 01009 # PointCloud2 message format.\n\ 01010 uint8 INT8 = 1\n\ 01011 uint8 UINT8 = 2\n\ 01012 uint8 INT16 = 3\n\ 01013 uint8 UINT16 = 4\n\ 01014 uint8 INT32 = 5\n\ 01015 uint8 UINT32 = 6\n\ 01016 uint8 FLOAT32 = 7\n\ 01017 uint8 FLOAT64 = 8\n\ 01018 \n\ 01019 string name # Name of field\n\ 01020 uint32 offset # Offset from start of point struct\n\ 01021 uint8 datatype # Datatype enumeration, see above\n\ 01022 uint32 count # How many elements in the field\n\ 01023 \n\ 01024 ================================================================================\n\ 01025 MSG: sensor_msgs/Image\n\ 01026 # This message contains an uncompressed image\n\ 01027 # (0, 0) is at top-left corner of image\n\ 01028 #\n\ 01029 \n\ 01030 Header header # Header timestamp should be acquisition time of image\n\ 01031 # Header frame_id should be optical frame of camera\n\ 01032 # origin of frame should be optical center of cameara\n\ 01033 # +x should point to the right in the image\n\ 01034 # +y should point down in the image\n\ 01035 # +z should point into to plane of the image\n\ 01036 # If the frame_id here and the frame_id of the CameraInfo\n\ 01037 # message associated with the image conflict\n\ 01038 # the behavior is undefined\n\ 01039 \n\ 01040 uint32 height # image height, that is, number of rows\n\ 01041 uint32 width # image width, that is, number of columns\n\ 01042 \n\ 01043 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01044 # If you want to standardize a new string format, join\n\ 01045 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01046 \n\ 01047 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01048 # taken from the list of strings in src/image_encodings.cpp\n\ 01049 \n\ 01050 uint8 is_bigendian # is this data bigendian?\n\ 01051 uint32 step # Full row length in bytes\n\ 01052 uint8[] data # actual matrix data, size is (step * rows)\n\ 01053 \n\ 01054 ================================================================================\n\ 01055 MSG: sensor_msgs/CameraInfo\n\ 01056 # This message defines meta information for a camera. It should be in a\n\ 01057 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01058 # image topics named:\n\ 01059 #\n\ 01060 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01061 # image - monochrome, distorted\n\ 01062 # image_color - color, distorted\n\ 01063 # image_rect - monochrome, rectified\n\ 01064 # image_rect_color - color, rectified\n\ 01065 #\n\ 01066 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01067 # for producing the four processed image topics from image_raw and\n\ 01068 # camera_info. The meaning of the camera parameters are described in\n\ 01069 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01070 #\n\ 01071 # The image_geometry package provides a user-friendly interface to\n\ 01072 # common operations using this meta information. If you want to, e.g.,\n\ 01073 # project a 3d point into image coordinates, we strongly recommend\n\ 01074 # using image_geometry.\n\ 01075 #\n\ 01076 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01077 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01078 # indicates an uncalibrated camera.\n\ 01079 \n\ 01080 #######################################################################\n\ 01081 # Image acquisition info #\n\ 01082 #######################################################################\n\ 01083 \n\ 01084 # Time of image acquisition, camera coordinate frame ID\n\ 01085 Header header # Header timestamp should be acquisition time of image\n\ 01086 # Header frame_id should be optical frame of camera\n\ 01087 # origin of frame should be optical center of camera\n\ 01088 # +x should point to the right in the image\n\ 01089 # +y should point down in the image\n\ 01090 # +z should point into the plane of the image\n\ 01091 \n\ 01092 \n\ 01093 #######################################################################\n\ 01094 # Calibration Parameters #\n\ 01095 #######################################################################\n\ 01096 # These are fixed during camera calibration. Their values will be the #\n\ 01097 # same in all messages until the camera is recalibrated. Note that #\n\ 01098 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01099 # #\n\ 01100 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01101 # to: #\n\ 01102 # 1. An undistorted image (requires D and K) #\n\ 01103 # 2. A rectified image (requires D, K, R) #\n\ 01104 # The projection matrix P projects 3D points into the rectified image.#\n\ 01105 #######################################################################\n\ 01106 \n\ 01107 # The image dimensions with which the camera was calibrated. Normally\n\ 01108 # this will be the full camera resolution in pixels.\n\ 01109 uint32 height\n\ 01110 uint32 width\n\ 01111 \n\ 01112 # The distortion model used. Supported models are listed in\n\ 01113 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01114 # simple model of radial and tangential distortion - is sufficent.\n\ 01115 string distortion_model\n\ 01116 \n\ 01117 # The distortion parameters, size depending on the distortion model.\n\ 01118 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01119 float64[] D\n\ 01120 \n\ 01121 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01122 # [fx 0 cx]\n\ 01123 # K = [ 0 fy cy]\n\ 01124 # [ 0 0 1]\n\ 01125 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01126 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01127 # (cx, cy).\n\ 01128 float64[9] K # 3x3 row-major matrix\n\ 01129 \n\ 01130 # Rectification matrix (stereo cameras only)\n\ 01131 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01132 # stereo image plane so that epipolar lines in both stereo images are\n\ 01133 # parallel.\n\ 01134 float64[9] R # 3x3 row-major matrix\n\ 01135 \n\ 01136 # Projection/camera matrix\n\ 01137 # [fx' 0 cx' Tx]\n\ 01138 # P = [ 0 fy' cy' Ty]\n\ 01139 # [ 0 0 1 0]\n\ 01140 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01141 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01142 # is the normal camera intrinsic matrix for the rectified image.\n\ 01143 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01144 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01145 # (cx', cy') - these may differ from the values in K.\n\ 01146 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01147 # also have R = the identity and P[1:3,1:3] = K.\n\ 01148 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01149 # position of the optical center of the second camera in the first\n\ 01150 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01151 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01152 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01153 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01154 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01155 # the rectified image is given by:\n\ 01156 # [u v w]' = P * [X Y Z 1]'\n\ 01157 # x = u / w\n\ 01158 # y = v / w\n\ 01159 # This holds for both images of a stereo pair.\n\ 01160 float64[12] P # 3x4 row-major matrix\n\ 01161 \n\ 01162 \n\ 01163 #######################################################################\n\ 01164 # Operational Parameters #\n\ 01165 #######################################################################\n\ 01166 # These define the image region actually captured by the camera #\n\ 01167 # driver. Although they affect the geometry of the output image, they #\n\ 01168 # may be changed freely without recalibrating the camera. #\n\ 01169 #######################################################################\n\ 01170 \n\ 01171 # Binning refers here to any camera setting which combines rectangular\n\ 01172 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01173 # resolution of the output image to\n\ 01174 # (width / binning_x) x (height / binning_y).\n\ 01175 # The default values binning_x = binning_y = 0 is considered the same\n\ 01176 # as binning_x = binning_y = 1 (no subsampling).\n\ 01177 uint32 binning_x\n\ 01178 uint32 binning_y\n\ 01179 \n\ 01180 # Region of interest (subwindow of full camera resolution), given in\n\ 01181 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01182 # always denotes the same window of pixels on the camera sensor,\n\ 01183 # regardless of binning settings.\n\ 01184 # The default setting of roi (all values 0) is considered the same as\n\ 01185 # full resolution (roi.width = width, roi.height = height).\n\ 01186 RegionOfInterest roi\n\ 01187 \n\ 01188 ================================================================================\n\ 01189 MSG: sensor_msgs/RegionOfInterest\n\ 01190 # This message is used to specify a region of interest within an image.\n\ 01191 #\n\ 01192 # When used to specify the ROI setting of the camera when the image was\n\ 01193 # taken, the height and width fields should either match the height and\n\ 01194 # width fields for the associated image; or height = width = 0\n\ 01195 # indicates that the full resolution image was captured.\n\ 01196 \n\ 01197 uint32 x_offset # Leftmost pixel of the ROI\n\ 01198 # (0 if the ROI includes the left edge of the image)\n\ 01199 uint32 y_offset # Topmost pixel of the ROI\n\ 01200 # (0 if the ROI includes the top edge of the image)\n\ 01201 uint32 height # Height of ROI\n\ 01202 uint32 width # Width of ROI\n\ 01203 \n\ 01204 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01205 # ROI in this message. Typically this should be False if the full image\n\ 01206 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01207 # used).\n\ 01208 bool do_rectify\n\ 01209 \n\ 01210 ================================================================================\n\ 01211 MSG: geometry_msgs/Vector3\n\ 01212 # This represents a vector in free space. \n\ 01213 \n\ 01214 float64 x\n\ 01215 float64 y\n\ 01216 float64 z\n\ 01217 ================================================================================\n\ 01218 MSG: object_manipulation_msgs/GripperTranslation\n\ 01219 # defines a translation for the gripper, used in pickup or place tasks\n\ 01220 # for example for lifting an object off a table or approaching the table for placing\n\ 01221 \n\ 01222 # the direction of the translation\n\ 01223 geometry_msgs/Vector3Stamped direction\n\ 01224 \n\ 01225 # the desired translation distance\n\ 01226 float32 desired_distance\n\ 01227 \n\ 01228 # the min distance that must be considered feasible before the\n\ 01229 # grasp is even attempted\n\ 01230 float32 min_distance\n\ 01231 ================================================================================\n\ 01232 MSG: geometry_msgs/Vector3Stamped\n\ 01233 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 01234 Header header\n\ 01235 Vector3 vector\n\ 01236 \n\ 01237 ================================================================================\n\ 01238 MSG: trajectory_msgs/JointTrajectory\n\ 01239 Header header\n\ 01240 string[] joint_names\n\ 01241 JointTrajectoryPoint[] points\n\ 01242 ================================================================================\n\ 01243 MSG: trajectory_msgs/JointTrajectoryPoint\n\ 01244 float64[] positions\n\ 01245 float64[] velocities\n\ 01246 float64[] accelerations\n\ 01247 duration time_from_start\n\ 01248 ================================================================================\n\ 01249 MSG: object_manipulation_msgs/ReactiveLiftActionResult\n\ 01250 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01251 \n\ 01252 Header header\n\ 01253 actionlib_msgs/GoalStatus status\n\ 01254 ReactiveLiftResult result\n\ 01255 \n\ 01256 ================================================================================\n\ 01257 MSG: actionlib_msgs/GoalStatus\n\ 01258 GoalID goal_id\n\ 01259 uint8 status\n\ 01260 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 01261 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 01262 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 01263 # and has since completed its execution (Terminal State)\n\ 01264 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 01265 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 01266 # to some failure (Terminal State)\n\ 01267 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 01268 # because the goal was unattainable or invalid (Terminal State)\n\ 01269 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 01270 # and has not yet completed execution\n\ 01271 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 01272 # but the action server has not yet confirmed that the goal is canceled\n\ 01273 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 01274 # and was successfully cancelled (Terminal State)\n\ 01275 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 01276 # sent over the wire by an action server\n\ 01277 \n\ 01278 #Allow for the user to associate a string with GoalStatus for debugging\n\ 01279 string text\n\ 01280 \n\ 01281 \n\ 01282 ================================================================================\n\ 01283 MSG: object_manipulation_msgs/ReactiveLiftResult\n\ 01284 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01285 \n\ 01286 # The result of the lift attempt\n\ 01287 ManipulationResult manipulation_result\n\ 01288 \n\ 01289 \n\ 01290 ================================================================================\n\ 01291 MSG: object_manipulation_msgs/ManipulationResult\n\ 01292 # Result codes for manipulation tasks\n\ 01293 \n\ 01294 # task completed as expected\n\ 01295 # generally means you can proceed as planned\n\ 01296 int32 SUCCESS = 1\n\ 01297 \n\ 01298 # task not possible (e.g. out of reach or obstacles in the way)\n\ 01299 # generally means that the world was not disturbed, so you can try another task\n\ 01300 int32 UNFEASIBLE = -1\n\ 01301 \n\ 01302 # task was thought possible, but failed due to unexpected events during execution\n\ 01303 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 01304 # your sensed world model before proceeding to another task\n\ 01305 int32 FAILED = -2\n\ 01306 \n\ 01307 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 01308 # generally requires human attention\n\ 01309 int32 ERROR = -3\n\ 01310 \n\ 01311 # means that at some point during execution we ended up in a state that the collision-aware\n\ 01312 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 01313 # probably need a new collision map to move the arm out of the stuck position\n\ 01314 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 01315 \n\ 01316 # specific to grasp actions\n\ 01317 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 01318 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 01319 int32 LIFT_FAILED = -5\n\ 01320 \n\ 01321 # specific to place actions\n\ 01322 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 01323 # it is likely that the collision environment will see collisions between the hand and the object\n\ 01324 int32 RETREAT_FAILED = -6\n\ 01325 \n\ 01326 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 01327 int32 CANCELLED = -7\n\ 01328 \n\ 01329 # the actual value of this error code\n\ 01330 int32 value\n\ 01331 \n\ 01332 ================================================================================\n\ 01333 MSG: object_manipulation_msgs/ReactiveLiftActionFeedback\n\ 01334 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01335 \n\ 01336 Header header\n\ 01337 actionlib_msgs/GoalStatus status\n\ 01338 ReactiveLiftFeedback feedback\n\ 01339 \n\ 01340 ================================================================================\n\ 01341 MSG: object_manipulation_msgs/ReactiveLiftFeedback\n\ 01342 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01343 \n\ 01344 # Which phase the lift is in\n\ 01345 \n\ 01346 ManipulationPhase manipulation_phase\n\ 01347 \n\ 01348 \n\ 01349 \n\ 01350 ================================================================================\n\ 01351 MSG: object_manipulation_msgs/ManipulationPhase\n\ 01352 int32 CHECKING_FEASIBILITY = 0\n\ 01353 int32 MOVING_TO_PREGRASP = 1\n\ 01354 int32 MOVING_TO_GRASP = 2\n\ 01355 int32 CLOSING = 3 \n\ 01356 int32 ADJUSTING_GRASP = 4\n\ 01357 int32 LIFTING = 5\n\ 01358 int32 MOVING_WITH_OBJECT = 6\n\ 01359 int32 MOVING_TO_PLACE = 7\n\ 01360 int32 PLACING = 8\n\ 01361 int32 OPENING = 9\n\ 01362 int32 RETREATING = 10\n\ 01363 int32 MOVING_WITHOUT_OBJECT = 11\n\ 01364 int32 SHAKING = 12\n\ 01365 int32 SUCCEEDED = 13\n\ 01366 int32 FAILED = 14\n\ 01367 int32 ABORTED = 15\n\ 01368 int32 HOLDING_OBJECT = 16\n\ 01369 \n\ 01370 int32 phase\n\ 01371 "; 01372 } 01373 01374 static const char* value(const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); } 01375 }; 01376 01377 } // namespace message_traits 01378 } // namespace ros 01379 01380 namespace ros 01381 { 01382 namespace serialization 01383 { 01384 01385 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > 01386 { 01387 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01388 { 01389 stream.next(m.action_goal); 01390 stream.next(m.action_result); 01391 stream.next(m.action_feedback); 01392 } 01393 01394 ROS_DECLARE_ALLINONE_SERIALIZER; 01395 }; // struct ReactiveLiftAction_ 01396 } // namespace serialization 01397 } // namespace ros 01398 01399 namespace ros 01400 { 01401 namespace message_operations 01402 { 01403 01404 template<class ContainerAllocator> 01405 struct Printer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > 01406 { 01407 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> & v) 01408 { 01409 s << indent << "action_goal: "; 01410 s << std::endl; 01411 Printer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal); 01412 s << indent << "action_result: "; 01413 s << std::endl; 01414 Printer< ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result); 01415 s << indent << "action_feedback: "; 01416 s << std::endl; 01417 Printer< ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback); 01418 } 01419 }; 01420 01421 01422 } // namespace message_operations 01423 } // namespace ros 01424 01425 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H 01426