$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/ReactiveGraspAction.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTION_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTION_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/ReactiveGraspActionGoal.h" 00018 #include "object_manipulation_msgs/ReactiveGraspActionResult.h" 00019 #include "object_manipulation_msgs/ReactiveGraspActionFeedback.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct ReactiveGraspAction_ { 00025 typedef ReactiveGraspAction_<ContainerAllocator> Type; 00026 00027 ReactiveGraspAction_() 00028 : action_goal() 00029 , action_result() 00030 , action_feedback() 00031 { 00032 } 00033 00034 ReactiveGraspAction_(const ContainerAllocator& _alloc) 00035 : action_goal(_alloc) 00036 , action_result(_alloc) 00037 , action_feedback(_alloc) 00038 { 00039 } 00040 00041 typedef ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> _action_goal_type; 00042 ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> action_goal; 00043 00044 typedef ::object_manipulation_msgs::ReactiveGraspActionResult_<ContainerAllocator> _action_result_type; 00045 ::object_manipulation_msgs::ReactiveGraspActionResult_<ContainerAllocator> action_result; 00046 00047 typedef ::object_manipulation_msgs::ReactiveGraspActionFeedback_<ContainerAllocator> _action_feedback_type; 00048 ::object_manipulation_msgs::ReactiveGraspActionFeedback_<ContainerAllocator> action_feedback; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspAction"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "52c8ac19491b8c70004f2fefd4dbedef"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 ReactiveGraspActionGoal action_goal\n\ 00069 ReactiveGraspActionResult action_result\n\ 00070 ReactiveGraspActionFeedback action_feedback\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: object_manipulation_msgs/ReactiveGraspActionGoal\n\ 00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00075 \n\ 00076 Header header\n\ 00077 actionlib_msgs/GoalID goal_id\n\ 00078 ReactiveGraspGoal goal\n\ 00079 \n\ 00080 ================================================================================\n\ 00081 MSG: std_msgs/Header\n\ 00082 # Standard metadata for higher-level stamped data types.\n\ 00083 # This is generally used to communicate timestamped data \n\ 00084 # in a particular coordinate frame.\n\ 00085 # \n\ 00086 # sequence ID: consecutively increasing ID \n\ 00087 uint32 seq\n\ 00088 #Two-integer timestamp that is expressed as:\n\ 00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00091 # time-handling sugar is provided by the client library\n\ 00092 time stamp\n\ 00093 #Frame this data is associated with\n\ 00094 # 0: no frame\n\ 00095 # 1: global frame\n\ 00096 string frame_id\n\ 00097 \n\ 00098 ================================================================================\n\ 00099 MSG: actionlib_msgs/GoalID\n\ 00100 # The stamp should store the time at which this goal was requested.\n\ 00101 # It is used by an action server when it tries to preempt all\n\ 00102 # goals that were requested before a certain time\n\ 00103 time stamp\n\ 00104 \n\ 00105 # The id provides a way to associate feedback and\n\ 00106 # result message with specific goal requests. The id\n\ 00107 # specified must be unique.\n\ 00108 string id\n\ 00109 \n\ 00110 \n\ 00111 ================================================================================\n\ 00112 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\ 00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00114 # an action for reactive grasping\n\ 00115 # a reactive grasp starts from the current pose of the gripper and ends\n\ 00116 # at a desired grasp pose, presumably using the touch sensors along the way\n\ 00117 \n\ 00118 # the name of the arm being used\n\ 00119 string arm_name\n\ 00120 \n\ 00121 # the object to be grasped\n\ 00122 GraspableObject target\n\ 00123 \n\ 00124 # the desired grasp pose for the hand\n\ 00125 geometry_msgs/PoseStamped final_grasp_pose\n\ 00126 \n\ 00127 # the joint trajectory to use for the approach (if available)\n\ 00128 # this trajectory is expected to start at the current pose of the gripper\n\ 00129 # and end at the desired grasp pose\n\ 00130 trajectory_msgs/JointTrajectory trajectory\n\ 00131 \n\ 00132 # the name of the support surface in the collision environment, if any\n\ 00133 string collision_support_surface_name\n\ 00134 \n\ 00135 # The internal posture of the hand for the pre-grasp\n\ 00136 # only positions are used\n\ 00137 sensor_msgs/JointState pre_grasp_posture\n\ 00138 \n\ 00139 # The internal posture of the hand for the grasp\n\ 00140 # positions and efforts are used\n\ 00141 sensor_msgs/JointState grasp_posture\n\ 00142 \n\ 00143 # The max contact force to use while grasping (<=0 to disable)\n\ 00144 float32 max_contact_force\n\ 00145 \n\ 00146 \n\ 00147 ================================================================================\n\ 00148 MSG: object_manipulation_msgs/GraspableObject\n\ 00149 # an object that the object_manipulator can work on\n\ 00150 \n\ 00151 # a graspable object can be represented in multiple ways. This message\n\ 00152 # can contain all of them. Which one is actually used is up to the receiver\n\ 00153 # of this message. When adding new representations, one must be careful that\n\ 00154 # they have reasonable lightweight defaults indicating that that particular\n\ 00155 # representation is not available.\n\ 00156 \n\ 00157 # the tf frame to be used as a reference frame when combining information from\n\ 00158 # the different representations below\n\ 00159 string reference_frame_id\n\ 00160 \n\ 00161 # potential recognition results from a database of models\n\ 00162 # all poses are relative to the object reference pose\n\ 00163 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00164 \n\ 00165 # the point cloud itself\n\ 00166 sensor_msgs/PointCloud cluster\n\ 00167 \n\ 00168 # a region of a PointCloud2 of interest\n\ 00169 object_manipulation_msgs/SceneRegion region\n\ 00170 \n\ 00171 # the name that this object has in the collision environment\n\ 00172 string collision_name\n\ 00173 ================================================================================\n\ 00174 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00175 # Informs that a specific model from the Model Database has been \n\ 00176 # identified at a certain location\n\ 00177 \n\ 00178 # the database id of the model\n\ 00179 int32 model_id\n\ 00180 \n\ 00181 # the pose that it can be found in\n\ 00182 geometry_msgs/PoseStamped pose\n\ 00183 \n\ 00184 # a measure of the confidence level in this detection result\n\ 00185 float32 confidence\n\ 00186 \n\ 00187 # the name of the object detector that generated this detection result\n\ 00188 string detector_name\n\ 00189 \n\ 00190 ================================================================================\n\ 00191 MSG: geometry_msgs/PoseStamped\n\ 00192 # A Pose with reference coordinate frame and timestamp\n\ 00193 Header header\n\ 00194 Pose pose\n\ 00195 \n\ 00196 ================================================================================\n\ 00197 MSG: geometry_msgs/Pose\n\ 00198 # A representation of pose in free space, composed of postion and orientation. \n\ 00199 Point position\n\ 00200 Quaternion orientation\n\ 00201 \n\ 00202 ================================================================================\n\ 00203 MSG: geometry_msgs/Point\n\ 00204 # This contains the position of a point in free space\n\ 00205 float64 x\n\ 00206 float64 y\n\ 00207 float64 z\n\ 00208 \n\ 00209 ================================================================================\n\ 00210 MSG: geometry_msgs/Quaternion\n\ 00211 # This represents an orientation in free space in quaternion form.\n\ 00212 \n\ 00213 float64 x\n\ 00214 float64 y\n\ 00215 float64 z\n\ 00216 float64 w\n\ 00217 \n\ 00218 ================================================================================\n\ 00219 MSG: sensor_msgs/PointCloud\n\ 00220 # This message holds a collection of 3d points, plus optional additional\n\ 00221 # information about each point.\n\ 00222 \n\ 00223 # Time of sensor data acquisition, coordinate frame ID.\n\ 00224 Header header\n\ 00225 \n\ 00226 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00227 # in the frame given in the header.\n\ 00228 geometry_msgs/Point32[] points\n\ 00229 \n\ 00230 # Each channel should have the same number of elements as points array,\n\ 00231 # and the data in each channel should correspond 1:1 with each point.\n\ 00232 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00233 ChannelFloat32[] channels\n\ 00234 \n\ 00235 ================================================================================\n\ 00236 MSG: geometry_msgs/Point32\n\ 00237 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00238 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00239 # \n\ 00240 # This recommendation is to promote interoperability. \n\ 00241 #\n\ 00242 # This message is designed to take up less space when sending\n\ 00243 # lots of points at once, as in the case of a PointCloud. \n\ 00244 \n\ 00245 float32 x\n\ 00246 float32 y\n\ 00247 float32 z\n\ 00248 ================================================================================\n\ 00249 MSG: sensor_msgs/ChannelFloat32\n\ 00250 # This message is used by the PointCloud message to hold optional data\n\ 00251 # associated with each point in the cloud. The length of the values\n\ 00252 # array should be the same as the length of the points array in the\n\ 00253 # PointCloud, and each value should be associated with the corresponding\n\ 00254 # point.\n\ 00255 \n\ 00256 # Channel names in existing practice include:\n\ 00257 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00258 # This is opposite to usual conventions but remains for\n\ 00259 # historical reasons. The newer PointCloud2 message has no\n\ 00260 # such problem.\n\ 00261 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00262 # (R,G,B) values packed into the least significant 24 bits,\n\ 00263 # in order.\n\ 00264 # \"intensity\" - laser or pixel intensity.\n\ 00265 # \"distance\"\n\ 00266 \n\ 00267 # The channel name should give semantics of the channel (e.g.\n\ 00268 # \"intensity\" instead of \"value\").\n\ 00269 string name\n\ 00270 \n\ 00271 # The values array should be 1-1 with the elements of the associated\n\ 00272 # PointCloud.\n\ 00273 float32[] values\n\ 00274 \n\ 00275 ================================================================================\n\ 00276 MSG: object_manipulation_msgs/SceneRegion\n\ 00277 # Point cloud\n\ 00278 sensor_msgs/PointCloud2 cloud\n\ 00279 \n\ 00280 # Indices for the region of interest\n\ 00281 int32[] mask\n\ 00282 \n\ 00283 # One of the corresponding 2D images, if applicable\n\ 00284 sensor_msgs/Image image\n\ 00285 \n\ 00286 # The disparity image, if applicable\n\ 00287 sensor_msgs/Image disparity_image\n\ 00288 \n\ 00289 # Camera info for the camera that took the image\n\ 00290 sensor_msgs/CameraInfo cam_info\n\ 00291 \n\ 00292 # a 3D region of interest for grasp planning\n\ 00293 geometry_msgs/PoseStamped roi_box_pose\n\ 00294 geometry_msgs/Vector3 roi_box_dims\n\ 00295 \n\ 00296 ================================================================================\n\ 00297 MSG: sensor_msgs/PointCloud2\n\ 00298 # This message holds a collection of N-dimensional points, which may\n\ 00299 # contain additional information such as normals, intensity, etc. The\n\ 00300 # point data is stored as a binary blob, its layout described by the\n\ 00301 # contents of the \"fields\" array.\n\ 00302 \n\ 00303 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00304 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00305 # camera depth sensors such as stereo or time-of-flight.\n\ 00306 \n\ 00307 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00308 # points).\n\ 00309 Header header\n\ 00310 \n\ 00311 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00312 # 1 and width is the length of the point cloud.\n\ 00313 uint32 height\n\ 00314 uint32 width\n\ 00315 \n\ 00316 # Describes the channels and their layout in the binary data blob.\n\ 00317 PointField[] fields\n\ 00318 \n\ 00319 bool is_bigendian # Is this data bigendian?\n\ 00320 uint32 point_step # Length of a point in bytes\n\ 00321 uint32 row_step # Length of a row in bytes\n\ 00322 uint8[] data # Actual point data, size is (row_step*height)\n\ 00323 \n\ 00324 bool is_dense # True if there are no invalid points\n\ 00325 \n\ 00326 ================================================================================\n\ 00327 MSG: sensor_msgs/PointField\n\ 00328 # This message holds the description of one point entry in the\n\ 00329 # PointCloud2 message format.\n\ 00330 uint8 INT8 = 1\n\ 00331 uint8 UINT8 = 2\n\ 00332 uint8 INT16 = 3\n\ 00333 uint8 UINT16 = 4\n\ 00334 uint8 INT32 = 5\n\ 00335 uint8 UINT32 = 6\n\ 00336 uint8 FLOAT32 = 7\n\ 00337 uint8 FLOAT64 = 8\n\ 00338 \n\ 00339 string name # Name of field\n\ 00340 uint32 offset # Offset from start of point struct\n\ 00341 uint8 datatype # Datatype enumeration, see above\n\ 00342 uint32 count # How many elements in the field\n\ 00343 \n\ 00344 ================================================================================\n\ 00345 MSG: sensor_msgs/Image\n\ 00346 # This message contains an uncompressed image\n\ 00347 # (0, 0) is at top-left corner of image\n\ 00348 #\n\ 00349 \n\ 00350 Header header # Header timestamp should be acquisition time of image\n\ 00351 # Header frame_id should be optical frame of camera\n\ 00352 # origin of frame should be optical center of cameara\n\ 00353 # +x should point to the right in the image\n\ 00354 # +y should point down in the image\n\ 00355 # +z should point into to plane of the image\n\ 00356 # If the frame_id here and the frame_id of the CameraInfo\n\ 00357 # message associated with the image conflict\n\ 00358 # the behavior is undefined\n\ 00359 \n\ 00360 uint32 height # image height, that is, number of rows\n\ 00361 uint32 width # image width, that is, number of columns\n\ 00362 \n\ 00363 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00364 # If you want to standardize a new string format, join\n\ 00365 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00366 \n\ 00367 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00368 # taken from the list of strings in src/image_encodings.cpp\n\ 00369 \n\ 00370 uint8 is_bigendian # is this data bigendian?\n\ 00371 uint32 step # Full row length in bytes\n\ 00372 uint8[] data # actual matrix data, size is (step * rows)\n\ 00373 \n\ 00374 ================================================================================\n\ 00375 MSG: sensor_msgs/CameraInfo\n\ 00376 # This message defines meta information for a camera. It should be in a\n\ 00377 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00378 # image topics named:\n\ 00379 #\n\ 00380 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00381 # image - monochrome, distorted\n\ 00382 # image_color - color, distorted\n\ 00383 # image_rect - monochrome, rectified\n\ 00384 # image_rect_color - color, rectified\n\ 00385 #\n\ 00386 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00387 # for producing the four processed image topics from image_raw and\n\ 00388 # camera_info. The meaning of the camera parameters are described in\n\ 00389 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00390 #\n\ 00391 # The image_geometry package provides a user-friendly interface to\n\ 00392 # common operations using this meta information. If you want to, e.g.,\n\ 00393 # project a 3d point into image coordinates, we strongly recommend\n\ 00394 # using image_geometry.\n\ 00395 #\n\ 00396 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00397 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00398 # indicates an uncalibrated camera.\n\ 00399 \n\ 00400 #######################################################################\n\ 00401 # Image acquisition info #\n\ 00402 #######################################################################\n\ 00403 \n\ 00404 # Time of image acquisition, camera coordinate frame ID\n\ 00405 Header header # Header timestamp should be acquisition time of image\n\ 00406 # Header frame_id should be optical frame of camera\n\ 00407 # origin of frame should be optical center of camera\n\ 00408 # +x should point to the right in the image\n\ 00409 # +y should point down in the image\n\ 00410 # +z should point into the plane of the image\n\ 00411 \n\ 00412 \n\ 00413 #######################################################################\n\ 00414 # Calibration Parameters #\n\ 00415 #######################################################################\n\ 00416 # These are fixed during camera calibration. Their values will be the #\n\ 00417 # same in all messages until the camera is recalibrated. Note that #\n\ 00418 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00419 # #\n\ 00420 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00421 # to: #\n\ 00422 # 1. An undistorted image (requires D and K) #\n\ 00423 # 2. A rectified image (requires D, K, R) #\n\ 00424 # The projection matrix P projects 3D points into the rectified image.#\n\ 00425 #######################################################################\n\ 00426 \n\ 00427 # The image dimensions with which the camera was calibrated. Normally\n\ 00428 # this will be the full camera resolution in pixels.\n\ 00429 uint32 height\n\ 00430 uint32 width\n\ 00431 \n\ 00432 # The distortion model used. Supported models are listed in\n\ 00433 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00434 # simple model of radial and tangential distortion - is sufficent.\n\ 00435 string distortion_model\n\ 00436 \n\ 00437 # The distortion parameters, size depending on the distortion model.\n\ 00438 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00439 float64[] D\n\ 00440 \n\ 00441 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00442 # [fx 0 cx]\n\ 00443 # K = [ 0 fy cy]\n\ 00444 # [ 0 0 1]\n\ 00445 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00446 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00447 # (cx, cy).\n\ 00448 float64[9] K # 3x3 row-major matrix\n\ 00449 \n\ 00450 # Rectification matrix (stereo cameras only)\n\ 00451 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00452 # stereo image plane so that epipolar lines in both stereo images are\n\ 00453 # parallel.\n\ 00454 float64[9] R # 3x3 row-major matrix\n\ 00455 \n\ 00456 # Projection/camera matrix\n\ 00457 # [fx' 0 cx' Tx]\n\ 00458 # P = [ 0 fy' cy' Ty]\n\ 00459 # [ 0 0 1 0]\n\ 00460 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00461 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00462 # is the normal camera intrinsic matrix for the rectified image.\n\ 00463 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00464 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00465 # (cx', cy') - these may differ from the values in K.\n\ 00466 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00467 # also have R = the identity and P[1:3,1:3] = K.\n\ 00468 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00469 # position of the optical center of the second camera in the first\n\ 00470 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00471 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00472 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00473 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00474 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00475 # the rectified image is given by:\n\ 00476 # [u v w]' = P * [X Y Z 1]'\n\ 00477 # x = u / w\n\ 00478 # y = v / w\n\ 00479 # This holds for both images of a stereo pair.\n\ 00480 float64[12] P # 3x4 row-major matrix\n\ 00481 \n\ 00482 \n\ 00483 #######################################################################\n\ 00484 # Operational Parameters #\n\ 00485 #######################################################################\n\ 00486 # These define the image region actually captured by the camera #\n\ 00487 # driver. Although they affect the geometry of the output image, they #\n\ 00488 # may be changed freely without recalibrating the camera. #\n\ 00489 #######################################################################\n\ 00490 \n\ 00491 # Binning refers here to any camera setting which combines rectangular\n\ 00492 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00493 # resolution of the output image to\n\ 00494 # (width / binning_x) x (height / binning_y).\n\ 00495 # The default values binning_x = binning_y = 0 is considered the same\n\ 00496 # as binning_x = binning_y = 1 (no subsampling).\n\ 00497 uint32 binning_x\n\ 00498 uint32 binning_y\n\ 00499 \n\ 00500 # Region of interest (subwindow of full camera resolution), given in\n\ 00501 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00502 # always denotes the same window of pixels on the camera sensor,\n\ 00503 # regardless of binning settings.\n\ 00504 # The default setting of roi (all values 0) is considered the same as\n\ 00505 # full resolution (roi.width = width, roi.height = height).\n\ 00506 RegionOfInterest roi\n\ 00507 \n\ 00508 ================================================================================\n\ 00509 MSG: sensor_msgs/RegionOfInterest\n\ 00510 # This message is used to specify a region of interest within an image.\n\ 00511 #\n\ 00512 # When used to specify the ROI setting of the camera when the image was\n\ 00513 # taken, the height and width fields should either match the height and\n\ 00514 # width fields for the associated image; or height = width = 0\n\ 00515 # indicates that the full resolution image was captured.\n\ 00516 \n\ 00517 uint32 x_offset # Leftmost pixel of the ROI\n\ 00518 # (0 if the ROI includes the left edge of the image)\n\ 00519 uint32 y_offset # Topmost pixel of the ROI\n\ 00520 # (0 if the ROI includes the top edge of the image)\n\ 00521 uint32 height # Height of ROI\n\ 00522 uint32 width # Width of ROI\n\ 00523 \n\ 00524 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00525 # ROI in this message. Typically this should be False if the full image\n\ 00526 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00527 # used).\n\ 00528 bool do_rectify\n\ 00529 \n\ 00530 ================================================================================\n\ 00531 MSG: geometry_msgs/Vector3\n\ 00532 # This represents a vector in free space. \n\ 00533 \n\ 00534 float64 x\n\ 00535 float64 y\n\ 00536 float64 z\n\ 00537 ================================================================================\n\ 00538 MSG: trajectory_msgs/JointTrajectory\n\ 00539 Header header\n\ 00540 string[] joint_names\n\ 00541 JointTrajectoryPoint[] points\n\ 00542 ================================================================================\n\ 00543 MSG: trajectory_msgs/JointTrajectoryPoint\n\ 00544 float64[] positions\n\ 00545 float64[] velocities\n\ 00546 float64[] accelerations\n\ 00547 duration time_from_start\n\ 00548 ================================================================================\n\ 00549 MSG: sensor_msgs/JointState\n\ 00550 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00551 #\n\ 00552 # The state of each joint (revolute or prismatic) is defined by:\n\ 00553 # * the position of the joint (rad or m),\n\ 00554 # * the velocity of the joint (rad/s or m/s) and \n\ 00555 # * the effort that is applied in the joint (Nm or N).\n\ 00556 #\n\ 00557 # Each joint is uniquely identified by its name\n\ 00558 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00559 # in one message have to be recorded at the same time.\n\ 00560 #\n\ 00561 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00562 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00563 # effort associated with them, you can leave the effort array empty. \n\ 00564 #\n\ 00565 # All arrays in this message should have the same size, or be empty.\n\ 00566 # This is the only way to uniquely associate the joint name with the correct\n\ 00567 # states.\n\ 00568 \n\ 00569 \n\ 00570 Header header\n\ 00571 \n\ 00572 string[] name\n\ 00573 float64[] position\n\ 00574 float64[] velocity\n\ 00575 float64[] effort\n\ 00576 \n\ 00577 ================================================================================\n\ 00578 MSG: object_manipulation_msgs/ReactiveGraspActionResult\n\ 00579 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00580 \n\ 00581 Header header\n\ 00582 actionlib_msgs/GoalStatus status\n\ 00583 ReactiveGraspResult result\n\ 00584 \n\ 00585 ================================================================================\n\ 00586 MSG: actionlib_msgs/GoalStatus\n\ 00587 GoalID goal_id\n\ 00588 uint8 status\n\ 00589 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00590 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00591 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00592 # and has since completed its execution (Terminal State)\n\ 00593 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00594 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00595 # to some failure (Terminal State)\n\ 00596 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00597 # because the goal was unattainable or invalid (Terminal State)\n\ 00598 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00599 # and has not yet completed execution\n\ 00600 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00601 # but the action server has not yet confirmed that the goal is canceled\n\ 00602 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00603 # and was successfully cancelled (Terminal State)\n\ 00604 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00605 # sent over the wire by an action server\n\ 00606 \n\ 00607 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00608 string text\n\ 00609 \n\ 00610 \n\ 00611 ================================================================================\n\ 00612 MSG: object_manipulation_msgs/ReactiveGraspResult\n\ 00613 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00614 \n\ 00615 # the result of the reactive grasp attempt\n\ 00616 \n\ 00617 ManipulationResult manipulation_result\n\ 00618 \n\ 00619 \n\ 00620 ================================================================================\n\ 00621 MSG: object_manipulation_msgs/ManipulationResult\n\ 00622 # Result codes for manipulation tasks\n\ 00623 \n\ 00624 # task completed as expected\n\ 00625 # generally means you can proceed as planned\n\ 00626 int32 SUCCESS = 1\n\ 00627 \n\ 00628 # task not possible (e.g. out of reach or obstacles in the way)\n\ 00629 # generally means that the world was not disturbed, so you can try another task\n\ 00630 int32 UNFEASIBLE = -1\n\ 00631 \n\ 00632 # task was thought possible, but failed due to unexpected events during execution\n\ 00633 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 00634 # your sensed world model before proceeding to another task\n\ 00635 int32 FAILED = -2\n\ 00636 \n\ 00637 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 00638 # generally requires human attention\n\ 00639 int32 ERROR = -3\n\ 00640 \n\ 00641 # means that at some point during execution we ended up in a state that the collision-aware\n\ 00642 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 00643 # probably need a new collision map to move the arm out of the stuck position\n\ 00644 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 00645 \n\ 00646 # specific to grasp actions\n\ 00647 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 00648 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 00649 int32 LIFT_FAILED = -5\n\ 00650 \n\ 00651 # specific to place actions\n\ 00652 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 00653 # it is likely that the collision environment will see collisions between the hand and the object\n\ 00654 int32 RETREAT_FAILED = -6\n\ 00655 \n\ 00656 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 00657 int32 CANCELLED = -7\n\ 00658 \n\ 00659 # the actual value of this error code\n\ 00660 int32 value\n\ 00661 \n\ 00662 ================================================================================\n\ 00663 MSG: object_manipulation_msgs/ReactiveGraspActionFeedback\n\ 00664 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00665 \n\ 00666 Header header\n\ 00667 actionlib_msgs/GoalStatus status\n\ 00668 ReactiveGraspFeedback feedback\n\ 00669 \n\ 00670 ================================================================================\n\ 00671 MSG: object_manipulation_msgs/ReactiveGraspFeedback\n\ 00672 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00673 \n\ 00674 # which phase the grasp is in\n\ 00675 \n\ 00676 ManipulationPhase manipulation_phase\n\ 00677 \n\ 00678 \n\ 00679 \n\ 00680 \n\ 00681 ================================================================================\n\ 00682 MSG: object_manipulation_msgs/ManipulationPhase\n\ 00683 int32 CHECKING_FEASIBILITY = 0\n\ 00684 int32 MOVING_TO_PREGRASP = 1\n\ 00685 int32 MOVING_TO_GRASP = 2\n\ 00686 int32 CLOSING = 3 \n\ 00687 int32 ADJUSTING_GRASP = 4\n\ 00688 int32 LIFTING = 5\n\ 00689 int32 MOVING_WITH_OBJECT = 6\n\ 00690 int32 MOVING_TO_PLACE = 7\n\ 00691 int32 PLACING = 8\n\ 00692 int32 OPENING = 9\n\ 00693 int32 RETREATING = 10\n\ 00694 int32 MOVING_WITHOUT_OBJECT = 11\n\ 00695 int32 SHAKING = 12\n\ 00696 int32 SUCCEEDED = 13\n\ 00697 int32 FAILED = 14\n\ 00698 int32 ABORTED = 15\n\ 00699 int32 HOLDING_OBJECT = 16\n\ 00700 \n\ 00701 int32 phase\n\ 00702 "; } 00703 public: 00704 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00705 00706 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00707 00708 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00709 { 00710 ros::serialization::OStream stream(write_ptr, 1000000000); 00711 ros::serialization::serialize(stream, action_goal); 00712 ros::serialization::serialize(stream, action_result); 00713 ros::serialization::serialize(stream, action_feedback); 00714 return stream.getData(); 00715 } 00716 00717 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00718 { 00719 ros::serialization::IStream stream(read_ptr, 1000000000); 00720 ros::serialization::deserialize(stream, action_goal); 00721 ros::serialization::deserialize(stream, action_result); 00722 ros::serialization::deserialize(stream, action_feedback); 00723 return stream.getData(); 00724 } 00725 00726 ROS_DEPRECATED virtual uint32_t serializationLength() const 00727 { 00728 uint32_t size = 0; 00729 size += ros::serialization::serializationLength(action_goal); 00730 size += ros::serialization::serializationLength(action_result); 00731 size += ros::serialization::serializationLength(action_feedback); 00732 return size; 00733 } 00734 00735 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > Ptr; 00736 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> const> ConstPtr; 00737 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00738 }; // struct ReactiveGraspAction 00739 typedef ::object_manipulation_msgs::ReactiveGraspAction_<std::allocator<void> > ReactiveGraspAction; 00740 00741 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction> ReactiveGraspActionPtr; 00742 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction const> ReactiveGraspActionConstPtr; 00743 00744 00745 template<typename ContainerAllocator> 00746 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> & v) 00747 { 00748 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> >::stream(s, "", v); 00749 return s;} 00750 00751 } // namespace object_manipulation_msgs 00752 00753 namespace ros 00754 { 00755 namespace message_traits 00756 { 00757 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > : public TrueType {}; 00758 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> const> : public TrueType {}; 00759 template<class ContainerAllocator> 00760 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > { 00761 static const char* value() 00762 { 00763 return "52c8ac19491b8c70004f2fefd4dbedef"; 00764 } 00765 00766 static const char* value(const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> &) { return value(); } 00767 static const uint64_t static_value1 = 0x52c8ac19491b8c70ULL; 00768 static const uint64_t static_value2 = 0x004f2fefd4dbedefULL; 00769 }; 00770 00771 template<class ContainerAllocator> 00772 struct DataType< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > { 00773 static const char* value() 00774 { 00775 return "object_manipulation_msgs/ReactiveGraspAction"; 00776 } 00777 00778 static const char* value(const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> &) { return value(); } 00779 }; 00780 00781 template<class ContainerAllocator> 00782 struct Definition< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > { 00783 static const char* value() 00784 { 00785 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00786 \n\ 00787 ReactiveGraspActionGoal action_goal\n\ 00788 ReactiveGraspActionResult action_result\n\ 00789 ReactiveGraspActionFeedback action_feedback\n\ 00790 \n\ 00791 ================================================================================\n\ 00792 MSG: object_manipulation_msgs/ReactiveGraspActionGoal\n\ 00793 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00794 \n\ 00795 Header header\n\ 00796 actionlib_msgs/GoalID goal_id\n\ 00797 ReactiveGraspGoal goal\n\ 00798 \n\ 00799 ================================================================================\n\ 00800 MSG: std_msgs/Header\n\ 00801 # Standard metadata for higher-level stamped data types.\n\ 00802 # This is generally used to communicate timestamped data \n\ 00803 # in a particular coordinate frame.\n\ 00804 # \n\ 00805 # sequence ID: consecutively increasing ID \n\ 00806 uint32 seq\n\ 00807 #Two-integer timestamp that is expressed as:\n\ 00808 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00809 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00810 # time-handling sugar is provided by the client library\n\ 00811 time stamp\n\ 00812 #Frame this data is associated with\n\ 00813 # 0: no frame\n\ 00814 # 1: global frame\n\ 00815 string frame_id\n\ 00816 \n\ 00817 ================================================================================\n\ 00818 MSG: actionlib_msgs/GoalID\n\ 00819 # The stamp should store the time at which this goal was requested.\n\ 00820 # It is used by an action server when it tries to preempt all\n\ 00821 # goals that were requested before a certain time\n\ 00822 time stamp\n\ 00823 \n\ 00824 # The id provides a way to associate feedback and\n\ 00825 # result message with specific goal requests. The id\n\ 00826 # specified must be unique.\n\ 00827 string id\n\ 00828 \n\ 00829 \n\ 00830 ================================================================================\n\ 00831 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\ 00832 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00833 # an action for reactive grasping\n\ 00834 # a reactive grasp starts from the current pose of the gripper and ends\n\ 00835 # at a desired grasp pose, presumably using the touch sensors along the way\n\ 00836 \n\ 00837 # the name of the arm being used\n\ 00838 string arm_name\n\ 00839 \n\ 00840 # the object to be grasped\n\ 00841 GraspableObject target\n\ 00842 \n\ 00843 # the desired grasp pose for the hand\n\ 00844 geometry_msgs/PoseStamped final_grasp_pose\n\ 00845 \n\ 00846 # the joint trajectory to use for the approach (if available)\n\ 00847 # this trajectory is expected to start at the current pose of the gripper\n\ 00848 # and end at the desired grasp pose\n\ 00849 trajectory_msgs/JointTrajectory trajectory\n\ 00850 \n\ 00851 # the name of the support surface in the collision environment, if any\n\ 00852 string collision_support_surface_name\n\ 00853 \n\ 00854 # The internal posture of the hand for the pre-grasp\n\ 00855 # only positions are used\n\ 00856 sensor_msgs/JointState pre_grasp_posture\n\ 00857 \n\ 00858 # The internal posture of the hand for the grasp\n\ 00859 # positions and efforts are used\n\ 00860 sensor_msgs/JointState grasp_posture\n\ 00861 \n\ 00862 # The max contact force to use while grasping (<=0 to disable)\n\ 00863 float32 max_contact_force\n\ 00864 \n\ 00865 \n\ 00866 ================================================================================\n\ 00867 MSG: object_manipulation_msgs/GraspableObject\n\ 00868 # an object that the object_manipulator can work on\n\ 00869 \n\ 00870 # a graspable object can be represented in multiple ways. This message\n\ 00871 # can contain all of them. Which one is actually used is up to the receiver\n\ 00872 # of this message. When adding new representations, one must be careful that\n\ 00873 # they have reasonable lightweight defaults indicating that that particular\n\ 00874 # representation is not available.\n\ 00875 \n\ 00876 # the tf frame to be used as a reference frame when combining information from\n\ 00877 # the different representations below\n\ 00878 string reference_frame_id\n\ 00879 \n\ 00880 # potential recognition results from a database of models\n\ 00881 # all poses are relative to the object reference pose\n\ 00882 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00883 \n\ 00884 # the point cloud itself\n\ 00885 sensor_msgs/PointCloud cluster\n\ 00886 \n\ 00887 # a region of a PointCloud2 of interest\n\ 00888 object_manipulation_msgs/SceneRegion region\n\ 00889 \n\ 00890 # the name that this object has in the collision environment\n\ 00891 string collision_name\n\ 00892 ================================================================================\n\ 00893 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00894 # Informs that a specific model from the Model Database has been \n\ 00895 # identified at a certain location\n\ 00896 \n\ 00897 # the database id of the model\n\ 00898 int32 model_id\n\ 00899 \n\ 00900 # the pose that it can be found in\n\ 00901 geometry_msgs/PoseStamped pose\n\ 00902 \n\ 00903 # a measure of the confidence level in this detection result\n\ 00904 float32 confidence\n\ 00905 \n\ 00906 # the name of the object detector that generated this detection result\n\ 00907 string detector_name\n\ 00908 \n\ 00909 ================================================================================\n\ 00910 MSG: geometry_msgs/PoseStamped\n\ 00911 # A Pose with reference coordinate frame and timestamp\n\ 00912 Header header\n\ 00913 Pose pose\n\ 00914 \n\ 00915 ================================================================================\n\ 00916 MSG: geometry_msgs/Pose\n\ 00917 # A representation of pose in free space, composed of postion and orientation. \n\ 00918 Point position\n\ 00919 Quaternion orientation\n\ 00920 \n\ 00921 ================================================================================\n\ 00922 MSG: geometry_msgs/Point\n\ 00923 # This contains the position of a point in free space\n\ 00924 float64 x\n\ 00925 float64 y\n\ 00926 float64 z\n\ 00927 \n\ 00928 ================================================================================\n\ 00929 MSG: geometry_msgs/Quaternion\n\ 00930 # This represents an orientation in free space in quaternion form.\n\ 00931 \n\ 00932 float64 x\n\ 00933 float64 y\n\ 00934 float64 z\n\ 00935 float64 w\n\ 00936 \n\ 00937 ================================================================================\n\ 00938 MSG: sensor_msgs/PointCloud\n\ 00939 # This message holds a collection of 3d points, plus optional additional\n\ 00940 # information about each point.\n\ 00941 \n\ 00942 # Time of sensor data acquisition, coordinate frame ID.\n\ 00943 Header header\n\ 00944 \n\ 00945 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00946 # in the frame given in the header.\n\ 00947 geometry_msgs/Point32[] points\n\ 00948 \n\ 00949 # Each channel should have the same number of elements as points array,\n\ 00950 # and the data in each channel should correspond 1:1 with each point.\n\ 00951 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00952 ChannelFloat32[] channels\n\ 00953 \n\ 00954 ================================================================================\n\ 00955 MSG: geometry_msgs/Point32\n\ 00956 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00957 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00958 # \n\ 00959 # This recommendation is to promote interoperability. \n\ 00960 #\n\ 00961 # This message is designed to take up less space when sending\n\ 00962 # lots of points at once, as in the case of a PointCloud. \n\ 00963 \n\ 00964 float32 x\n\ 00965 float32 y\n\ 00966 float32 z\n\ 00967 ================================================================================\n\ 00968 MSG: sensor_msgs/ChannelFloat32\n\ 00969 # This message is used by the PointCloud message to hold optional data\n\ 00970 # associated with each point in the cloud. The length of the values\n\ 00971 # array should be the same as the length of the points array in the\n\ 00972 # PointCloud, and each value should be associated with the corresponding\n\ 00973 # point.\n\ 00974 \n\ 00975 # Channel names in existing practice include:\n\ 00976 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00977 # This is opposite to usual conventions but remains for\n\ 00978 # historical reasons. The newer PointCloud2 message has no\n\ 00979 # such problem.\n\ 00980 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00981 # (R,G,B) values packed into the least significant 24 bits,\n\ 00982 # in order.\n\ 00983 # \"intensity\" - laser or pixel intensity.\n\ 00984 # \"distance\"\n\ 00985 \n\ 00986 # The channel name should give semantics of the channel (e.g.\n\ 00987 # \"intensity\" instead of \"value\").\n\ 00988 string name\n\ 00989 \n\ 00990 # The values array should be 1-1 with the elements of the associated\n\ 00991 # PointCloud.\n\ 00992 float32[] values\n\ 00993 \n\ 00994 ================================================================================\n\ 00995 MSG: object_manipulation_msgs/SceneRegion\n\ 00996 # Point cloud\n\ 00997 sensor_msgs/PointCloud2 cloud\n\ 00998 \n\ 00999 # Indices for the region of interest\n\ 01000 int32[] mask\n\ 01001 \n\ 01002 # One of the corresponding 2D images, if applicable\n\ 01003 sensor_msgs/Image image\n\ 01004 \n\ 01005 # The disparity image, if applicable\n\ 01006 sensor_msgs/Image disparity_image\n\ 01007 \n\ 01008 # Camera info for the camera that took the image\n\ 01009 sensor_msgs/CameraInfo cam_info\n\ 01010 \n\ 01011 # a 3D region of interest for grasp planning\n\ 01012 geometry_msgs/PoseStamped roi_box_pose\n\ 01013 geometry_msgs/Vector3 roi_box_dims\n\ 01014 \n\ 01015 ================================================================================\n\ 01016 MSG: sensor_msgs/PointCloud2\n\ 01017 # This message holds a collection of N-dimensional points, which may\n\ 01018 # contain additional information such as normals, intensity, etc. The\n\ 01019 # point data is stored as a binary blob, its layout described by the\n\ 01020 # contents of the \"fields\" array.\n\ 01021 \n\ 01022 # The point cloud data may be organized 2d (image-like) or 1d\n\ 01023 # (unordered). Point clouds organized as 2d images may be produced by\n\ 01024 # camera depth sensors such as stereo or time-of-flight.\n\ 01025 \n\ 01026 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 01027 # points).\n\ 01028 Header header\n\ 01029 \n\ 01030 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 01031 # 1 and width is the length of the point cloud.\n\ 01032 uint32 height\n\ 01033 uint32 width\n\ 01034 \n\ 01035 # Describes the channels and their layout in the binary data blob.\n\ 01036 PointField[] fields\n\ 01037 \n\ 01038 bool is_bigendian # Is this data bigendian?\n\ 01039 uint32 point_step # Length of a point in bytes\n\ 01040 uint32 row_step # Length of a row in bytes\n\ 01041 uint8[] data # Actual point data, size is (row_step*height)\n\ 01042 \n\ 01043 bool is_dense # True if there are no invalid points\n\ 01044 \n\ 01045 ================================================================================\n\ 01046 MSG: sensor_msgs/PointField\n\ 01047 # This message holds the description of one point entry in the\n\ 01048 # PointCloud2 message format.\n\ 01049 uint8 INT8 = 1\n\ 01050 uint8 UINT8 = 2\n\ 01051 uint8 INT16 = 3\n\ 01052 uint8 UINT16 = 4\n\ 01053 uint8 INT32 = 5\n\ 01054 uint8 UINT32 = 6\n\ 01055 uint8 FLOAT32 = 7\n\ 01056 uint8 FLOAT64 = 8\n\ 01057 \n\ 01058 string name # Name of field\n\ 01059 uint32 offset # Offset from start of point struct\n\ 01060 uint8 datatype # Datatype enumeration, see above\n\ 01061 uint32 count # How many elements in the field\n\ 01062 \n\ 01063 ================================================================================\n\ 01064 MSG: sensor_msgs/Image\n\ 01065 # This message contains an uncompressed image\n\ 01066 # (0, 0) is at top-left corner of image\n\ 01067 #\n\ 01068 \n\ 01069 Header header # Header timestamp should be acquisition time of image\n\ 01070 # Header frame_id should be optical frame of camera\n\ 01071 # origin of frame should be optical center of cameara\n\ 01072 # +x should point to the right in the image\n\ 01073 # +y should point down in the image\n\ 01074 # +z should point into to plane of the image\n\ 01075 # If the frame_id here and the frame_id of the CameraInfo\n\ 01076 # message associated with the image conflict\n\ 01077 # the behavior is undefined\n\ 01078 \n\ 01079 uint32 height # image height, that is, number of rows\n\ 01080 uint32 width # image width, that is, number of columns\n\ 01081 \n\ 01082 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01083 # If you want to standardize a new string format, join\n\ 01084 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01085 \n\ 01086 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01087 # taken from the list of strings in src/image_encodings.cpp\n\ 01088 \n\ 01089 uint8 is_bigendian # is this data bigendian?\n\ 01090 uint32 step # Full row length in bytes\n\ 01091 uint8[] data # actual matrix data, size is (step * rows)\n\ 01092 \n\ 01093 ================================================================================\n\ 01094 MSG: sensor_msgs/CameraInfo\n\ 01095 # This message defines meta information for a camera. It should be in a\n\ 01096 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01097 # image topics named:\n\ 01098 #\n\ 01099 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01100 # image - monochrome, distorted\n\ 01101 # image_color - color, distorted\n\ 01102 # image_rect - monochrome, rectified\n\ 01103 # image_rect_color - color, rectified\n\ 01104 #\n\ 01105 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01106 # for producing the four processed image topics from image_raw and\n\ 01107 # camera_info. The meaning of the camera parameters are described in\n\ 01108 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01109 #\n\ 01110 # The image_geometry package provides a user-friendly interface to\n\ 01111 # common operations using this meta information. If you want to, e.g.,\n\ 01112 # project a 3d point into image coordinates, we strongly recommend\n\ 01113 # using image_geometry.\n\ 01114 #\n\ 01115 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01116 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01117 # indicates an uncalibrated camera.\n\ 01118 \n\ 01119 #######################################################################\n\ 01120 # Image acquisition info #\n\ 01121 #######################################################################\n\ 01122 \n\ 01123 # Time of image acquisition, camera coordinate frame ID\n\ 01124 Header header # Header timestamp should be acquisition time of image\n\ 01125 # Header frame_id should be optical frame of camera\n\ 01126 # origin of frame should be optical center of camera\n\ 01127 # +x should point to the right in the image\n\ 01128 # +y should point down in the image\n\ 01129 # +z should point into the plane of the image\n\ 01130 \n\ 01131 \n\ 01132 #######################################################################\n\ 01133 # Calibration Parameters #\n\ 01134 #######################################################################\n\ 01135 # These are fixed during camera calibration. Their values will be the #\n\ 01136 # same in all messages until the camera is recalibrated. Note that #\n\ 01137 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01138 # #\n\ 01139 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01140 # to: #\n\ 01141 # 1. An undistorted image (requires D and K) #\n\ 01142 # 2. A rectified image (requires D, K, R) #\n\ 01143 # The projection matrix P projects 3D points into the rectified image.#\n\ 01144 #######################################################################\n\ 01145 \n\ 01146 # The image dimensions with which the camera was calibrated. Normally\n\ 01147 # this will be the full camera resolution in pixels.\n\ 01148 uint32 height\n\ 01149 uint32 width\n\ 01150 \n\ 01151 # The distortion model used. Supported models are listed in\n\ 01152 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01153 # simple model of radial and tangential distortion - is sufficent.\n\ 01154 string distortion_model\n\ 01155 \n\ 01156 # The distortion parameters, size depending on the distortion model.\n\ 01157 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01158 float64[] D\n\ 01159 \n\ 01160 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01161 # [fx 0 cx]\n\ 01162 # K = [ 0 fy cy]\n\ 01163 # [ 0 0 1]\n\ 01164 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01165 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01166 # (cx, cy).\n\ 01167 float64[9] K # 3x3 row-major matrix\n\ 01168 \n\ 01169 # Rectification matrix (stereo cameras only)\n\ 01170 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01171 # stereo image plane so that epipolar lines in both stereo images are\n\ 01172 # parallel.\n\ 01173 float64[9] R # 3x3 row-major matrix\n\ 01174 \n\ 01175 # Projection/camera matrix\n\ 01176 # [fx' 0 cx' Tx]\n\ 01177 # P = [ 0 fy' cy' Ty]\n\ 01178 # [ 0 0 1 0]\n\ 01179 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01180 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01181 # is the normal camera intrinsic matrix for the rectified image.\n\ 01182 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01183 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01184 # (cx', cy') - these may differ from the values in K.\n\ 01185 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01186 # also have R = the identity and P[1:3,1:3] = K.\n\ 01187 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01188 # position of the optical center of the second camera in the first\n\ 01189 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01190 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01191 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01192 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01193 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01194 # the rectified image is given by:\n\ 01195 # [u v w]' = P * [X Y Z 1]'\n\ 01196 # x = u / w\n\ 01197 # y = v / w\n\ 01198 # This holds for both images of a stereo pair.\n\ 01199 float64[12] P # 3x4 row-major matrix\n\ 01200 \n\ 01201 \n\ 01202 #######################################################################\n\ 01203 # Operational Parameters #\n\ 01204 #######################################################################\n\ 01205 # These define the image region actually captured by the camera #\n\ 01206 # driver. Although they affect the geometry of the output image, they #\n\ 01207 # may be changed freely without recalibrating the camera. #\n\ 01208 #######################################################################\n\ 01209 \n\ 01210 # Binning refers here to any camera setting which combines rectangular\n\ 01211 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01212 # resolution of the output image to\n\ 01213 # (width / binning_x) x (height / binning_y).\n\ 01214 # The default values binning_x = binning_y = 0 is considered the same\n\ 01215 # as binning_x = binning_y = 1 (no subsampling).\n\ 01216 uint32 binning_x\n\ 01217 uint32 binning_y\n\ 01218 \n\ 01219 # Region of interest (subwindow of full camera resolution), given in\n\ 01220 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01221 # always denotes the same window of pixels on the camera sensor,\n\ 01222 # regardless of binning settings.\n\ 01223 # The default setting of roi (all values 0) is considered the same as\n\ 01224 # full resolution (roi.width = width, roi.height = height).\n\ 01225 RegionOfInterest roi\n\ 01226 \n\ 01227 ================================================================================\n\ 01228 MSG: sensor_msgs/RegionOfInterest\n\ 01229 # This message is used to specify a region of interest within an image.\n\ 01230 #\n\ 01231 # When used to specify the ROI setting of the camera when the image was\n\ 01232 # taken, the height and width fields should either match the height and\n\ 01233 # width fields for the associated image; or height = width = 0\n\ 01234 # indicates that the full resolution image was captured.\n\ 01235 \n\ 01236 uint32 x_offset # Leftmost pixel of the ROI\n\ 01237 # (0 if the ROI includes the left edge of the image)\n\ 01238 uint32 y_offset # Topmost pixel of the ROI\n\ 01239 # (0 if the ROI includes the top edge of the image)\n\ 01240 uint32 height # Height of ROI\n\ 01241 uint32 width # Width of ROI\n\ 01242 \n\ 01243 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01244 # ROI in this message. Typically this should be False if the full image\n\ 01245 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01246 # used).\n\ 01247 bool do_rectify\n\ 01248 \n\ 01249 ================================================================================\n\ 01250 MSG: geometry_msgs/Vector3\n\ 01251 # This represents a vector in free space. \n\ 01252 \n\ 01253 float64 x\n\ 01254 float64 y\n\ 01255 float64 z\n\ 01256 ================================================================================\n\ 01257 MSG: trajectory_msgs/JointTrajectory\n\ 01258 Header header\n\ 01259 string[] joint_names\n\ 01260 JointTrajectoryPoint[] points\n\ 01261 ================================================================================\n\ 01262 MSG: trajectory_msgs/JointTrajectoryPoint\n\ 01263 float64[] positions\n\ 01264 float64[] velocities\n\ 01265 float64[] accelerations\n\ 01266 duration time_from_start\n\ 01267 ================================================================================\n\ 01268 MSG: sensor_msgs/JointState\n\ 01269 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01270 #\n\ 01271 # The state of each joint (revolute or prismatic) is defined by:\n\ 01272 # * the position of the joint (rad or m),\n\ 01273 # * the velocity of the joint (rad/s or m/s) and \n\ 01274 # * the effort that is applied in the joint (Nm or N).\n\ 01275 #\n\ 01276 # Each joint is uniquely identified by its name\n\ 01277 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01278 # in one message have to be recorded at the same time.\n\ 01279 #\n\ 01280 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01281 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01282 # effort associated with them, you can leave the effort array empty. \n\ 01283 #\n\ 01284 # All arrays in this message should have the same size, or be empty.\n\ 01285 # This is the only way to uniquely associate the joint name with the correct\n\ 01286 # states.\n\ 01287 \n\ 01288 \n\ 01289 Header header\n\ 01290 \n\ 01291 string[] name\n\ 01292 float64[] position\n\ 01293 float64[] velocity\n\ 01294 float64[] effort\n\ 01295 \n\ 01296 ================================================================================\n\ 01297 MSG: object_manipulation_msgs/ReactiveGraspActionResult\n\ 01298 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01299 \n\ 01300 Header header\n\ 01301 actionlib_msgs/GoalStatus status\n\ 01302 ReactiveGraspResult result\n\ 01303 \n\ 01304 ================================================================================\n\ 01305 MSG: actionlib_msgs/GoalStatus\n\ 01306 GoalID goal_id\n\ 01307 uint8 status\n\ 01308 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 01309 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 01310 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 01311 # and has since completed its execution (Terminal State)\n\ 01312 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 01313 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 01314 # to some failure (Terminal State)\n\ 01315 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 01316 # because the goal was unattainable or invalid (Terminal State)\n\ 01317 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 01318 # and has not yet completed execution\n\ 01319 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 01320 # but the action server has not yet confirmed that the goal is canceled\n\ 01321 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 01322 # and was successfully cancelled (Terminal State)\n\ 01323 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 01324 # sent over the wire by an action server\n\ 01325 \n\ 01326 #Allow for the user to associate a string with GoalStatus for debugging\n\ 01327 string text\n\ 01328 \n\ 01329 \n\ 01330 ================================================================================\n\ 01331 MSG: object_manipulation_msgs/ReactiveGraspResult\n\ 01332 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01333 \n\ 01334 # the result of the reactive grasp attempt\n\ 01335 \n\ 01336 ManipulationResult manipulation_result\n\ 01337 \n\ 01338 \n\ 01339 ================================================================================\n\ 01340 MSG: object_manipulation_msgs/ManipulationResult\n\ 01341 # Result codes for manipulation tasks\n\ 01342 \n\ 01343 # task completed as expected\n\ 01344 # generally means you can proceed as planned\n\ 01345 int32 SUCCESS = 1\n\ 01346 \n\ 01347 # task not possible (e.g. out of reach or obstacles in the way)\n\ 01348 # generally means that the world was not disturbed, so you can try another task\n\ 01349 int32 UNFEASIBLE = -1\n\ 01350 \n\ 01351 # task was thought possible, but failed due to unexpected events during execution\n\ 01352 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 01353 # your sensed world model before proceeding to another task\n\ 01354 int32 FAILED = -2\n\ 01355 \n\ 01356 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 01357 # generally requires human attention\n\ 01358 int32 ERROR = -3\n\ 01359 \n\ 01360 # means that at some point during execution we ended up in a state that the collision-aware\n\ 01361 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 01362 # probably need a new collision map to move the arm out of the stuck position\n\ 01363 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 01364 \n\ 01365 # specific to grasp actions\n\ 01366 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 01367 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 01368 int32 LIFT_FAILED = -5\n\ 01369 \n\ 01370 # specific to place actions\n\ 01371 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 01372 # it is likely that the collision environment will see collisions between the hand and the object\n\ 01373 int32 RETREAT_FAILED = -6\n\ 01374 \n\ 01375 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 01376 int32 CANCELLED = -7\n\ 01377 \n\ 01378 # the actual value of this error code\n\ 01379 int32 value\n\ 01380 \n\ 01381 ================================================================================\n\ 01382 MSG: object_manipulation_msgs/ReactiveGraspActionFeedback\n\ 01383 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01384 \n\ 01385 Header header\n\ 01386 actionlib_msgs/GoalStatus status\n\ 01387 ReactiveGraspFeedback feedback\n\ 01388 \n\ 01389 ================================================================================\n\ 01390 MSG: object_manipulation_msgs/ReactiveGraspFeedback\n\ 01391 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01392 \n\ 01393 # which phase the grasp is in\n\ 01394 \n\ 01395 ManipulationPhase manipulation_phase\n\ 01396 \n\ 01397 \n\ 01398 \n\ 01399 \n\ 01400 ================================================================================\n\ 01401 MSG: object_manipulation_msgs/ManipulationPhase\n\ 01402 int32 CHECKING_FEASIBILITY = 0\n\ 01403 int32 MOVING_TO_PREGRASP = 1\n\ 01404 int32 MOVING_TO_GRASP = 2\n\ 01405 int32 CLOSING = 3 \n\ 01406 int32 ADJUSTING_GRASP = 4\n\ 01407 int32 LIFTING = 5\n\ 01408 int32 MOVING_WITH_OBJECT = 6\n\ 01409 int32 MOVING_TO_PLACE = 7\n\ 01410 int32 PLACING = 8\n\ 01411 int32 OPENING = 9\n\ 01412 int32 RETREATING = 10\n\ 01413 int32 MOVING_WITHOUT_OBJECT = 11\n\ 01414 int32 SHAKING = 12\n\ 01415 int32 SUCCEEDED = 13\n\ 01416 int32 FAILED = 14\n\ 01417 int32 ABORTED = 15\n\ 01418 int32 HOLDING_OBJECT = 16\n\ 01419 \n\ 01420 int32 phase\n\ 01421 "; 01422 } 01423 01424 static const char* value(const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> &) { return value(); } 01425 }; 01426 01427 } // namespace message_traits 01428 } // namespace ros 01429 01430 namespace ros 01431 { 01432 namespace serialization 01433 { 01434 01435 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > 01436 { 01437 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01438 { 01439 stream.next(m.action_goal); 01440 stream.next(m.action_result); 01441 stream.next(m.action_feedback); 01442 } 01443 01444 ROS_DECLARE_ALLINONE_SERIALIZER; 01445 }; // struct ReactiveGraspAction_ 01446 } // namespace serialization 01447 } // namespace ros 01448 01449 namespace ros 01450 { 01451 namespace message_operations 01452 { 01453 01454 template<class ContainerAllocator> 01455 struct Printer< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > 01456 { 01457 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> & v) 01458 { 01459 s << indent << "action_goal: "; 01460 s << std::endl; 01461 Printer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal); 01462 s << indent << "action_result: "; 01463 s << std::endl; 01464 Printer< ::object_manipulation_msgs::ReactiveGraspActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result); 01465 s << indent << "action_feedback: "; 01466 s << std::endl; 01467 Printer< ::object_manipulation_msgs::ReactiveGraspActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback); 01468 } 01469 }; 01470 01471 01472 } // namespace message_operations 01473 } // namespace ros 01474 01475 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTION_H 01476