00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/ReactiveGraspActionGoal.h"
00018 #include "object_manipulation_msgs/ReactiveGraspActionResult.h"
00019 #include "object_manipulation_msgs/ReactiveGraspActionFeedback.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ReactiveGraspAction_ {
00025 typedef ReactiveGraspAction_<ContainerAllocator> Type;
00026
00027 ReactiveGraspAction_()
00028 : action_goal()
00029 , action_result()
00030 , action_feedback()
00031 {
00032 }
00033
00034 ReactiveGraspAction_(const ContainerAllocator& _alloc)
00035 : action_goal(_alloc)
00036 , action_result(_alloc)
00037 , action_feedback(_alloc)
00038 {
00039 }
00040
00041 typedef ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> _action_goal_type;
00042 ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> action_goal;
00043
00044 typedef ::object_manipulation_msgs::ReactiveGraspActionResult_<ContainerAllocator> _action_result_type;
00045 ::object_manipulation_msgs::ReactiveGraspActionResult_<ContainerAllocator> action_result;
00046
00047 typedef ::object_manipulation_msgs::ReactiveGraspActionFeedback_<ContainerAllocator> _action_feedback_type;
00048 ::object_manipulation_msgs::ReactiveGraspActionFeedback_<ContainerAllocator> action_feedback;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspAction"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "52c8ac19491b8c70004f2fefd4dbedef"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 ReactiveGraspActionGoal action_goal\n\
00069 ReactiveGraspActionResult action_result\n\
00070 ReactiveGraspActionFeedback action_feedback\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: object_manipulation_msgs/ReactiveGraspActionGoal\n\
00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00075 \n\
00076 Header header\n\
00077 actionlib_msgs/GoalID goal_id\n\
00078 ReactiveGraspGoal goal\n\
00079 \n\
00080 ================================================================================\n\
00081 MSG: std_msgs/Header\n\
00082 # Standard metadata for higher-level stamped data types.\n\
00083 # This is generally used to communicate timestamped data \n\
00084 # in a particular coordinate frame.\n\
00085 # \n\
00086 # sequence ID: consecutively increasing ID \n\
00087 uint32 seq\n\
00088 #Two-integer timestamp that is expressed as:\n\
00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00091 # time-handling sugar is provided by the client library\n\
00092 time stamp\n\
00093 #Frame this data is associated with\n\
00094 # 0: no frame\n\
00095 # 1: global frame\n\
00096 string frame_id\n\
00097 \n\
00098 ================================================================================\n\
00099 MSG: actionlib_msgs/GoalID\n\
00100 # The stamp should store the time at which this goal was requested.\n\
00101 # It is used by an action server when it tries to preempt all\n\
00102 # goals that were requested before a certain time\n\
00103 time stamp\n\
00104 \n\
00105 # The id provides a way to associate feedback and\n\
00106 # result message with specific goal requests. The id\n\
00107 # specified must be unique.\n\
00108 string id\n\
00109 \n\
00110 \n\
00111 ================================================================================\n\
00112 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00114 # an action for reactive grasping\n\
00115 # a reactive grasp starts from the current pose of the gripper and ends\n\
00116 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00117 \n\
00118 # the name of the arm being used\n\
00119 string arm_name\n\
00120 \n\
00121 # the object to be grasped\n\
00122 GraspableObject target\n\
00123 \n\
00124 # the desired grasp pose for the hand\n\
00125 geometry_msgs/PoseStamped final_grasp_pose\n\
00126 \n\
00127 # the joint trajectory to use for the approach (if available)\n\
00128 # this trajectory is expected to start at the current pose of the gripper\n\
00129 # and end at the desired grasp pose\n\
00130 trajectory_msgs/JointTrajectory trajectory\n\
00131 \n\
00132 # the name of the support surface in the collision environment, if any\n\
00133 string collision_support_surface_name\n\
00134 \n\
00135 # The internal posture of the hand for the pre-grasp\n\
00136 # only positions are used\n\
00137 sensor_msgs/JointState pre_grasp_posture\n\
00138 \n\
00139 # The internal posture of the hand for the grasp\n\
00140 # positions and efforts are used\n\
00141 sensor_msgs/JointState grasp_posture\n\
00142 \n\
00143 # The max contact force to use while grasping (<=0 to disable)\n\
00144 float32 max_contact_force\n\
00145 \n\
00146 \n\
00147 ================================================================================\n\
00148 MSG: object_manipulation_msgs/GraspableObject\n\
00149 # an object that the object_manipulator can work on\n\
00150 \n\
00151 # a graspable object can be represented in multiple ways. This message\n\
00152 # can contain all of them. Which one is actually used is up to the receiver\n\
00153 # of this message. When adding new representations, one must be careful that\n\
00154 # they have reasonable lightweight defaults indicating that that particular\n\
00155 # representation is not available.\n\
00156 \n\
00157 # the tf frame to be used as a reference frame when combining information from\n\
00158 # the different representations below\n\
00159 string reference_frame_id\n\
00160 \n\
00161 # potential recognition results from a database of models\n\
00162 # all poses are relative to the object reference pose\n\
00163 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00164 \n\
00165 # the point cloud itself\n\
00166 sensor_msgs/PointCloud cluster\n\
00167 \n\
00168 # a region of a PointCloud2 of interest\n\
00169 object_manipulation_msgs/SceneRegion region\n\
00170 \n\
00171 # the name that this object has in the collision environment\n\
00172 string collision_name\n\
00173 ================================================================================\n\
00174 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00175 # Informs that a specific model from the Model Database has been \n\
00176 # identified at a certain location\n\
00177 \n\
00178 # the database id of the model\n\
00179 int32 model_id\n\
00180 \n\
00181 # the pose that it can be found in\n\
00182 geometry_msgs/PoseStamped pose\n\
00183 \n\
00184 # a measure of the confidence level in this detection result\n\
00185 float32 confidence\n\
00186 \n\
00187 # the name of the object detector that generated this detection result\n\
00188 string detector_name\n\
00189 \n\
00190 ================================================================================\n\
00191 MSG: geometry_msgs/PoseStamped\n\
00192 # A Pose with reference coordinate frame and timestamp\n\
00193 Header header\n\
00194 Pose pose\n\
00195 \n\
00196 ================================================================================\n\
00197 MSG: geometry_msgs/Pose\n\
00198 # A representation of pose in free space, composed of postion and orientation. \n\
00199 Point position\n\
00200 Quaternion orientation\n\
00201 \n\
00202 ================================================================================\n\
00203 MSG: geometry_msgs/Point\n\
00204 # This contains the position of a point in free space\n\
00205 float64 x\n\
00206 float64 y\n\
00207 float64 z\n\
00208 \n\
00209 ================================================================================\n\
00210 MSG: geometry_msgs/Quaternion\n\
00211 # This represents an orientation in free space in quaternion form.\n\
00212 \n\
00213 float64 x\n\
00214 float64 y\n\
00215 float64 z\n\
00216 float64 w\n\
00217 \n\
00218 ================================================================================\n\
00219 MSG: sensor_msgs/PointCloud\n\
00220 # This message holds a collection of 3d points, plus optional additional\n\
00221 # information about each point.\n\
00222 \n\
00223 # Time of sensor data acquisition, coordinate frame ID.\n\
00224 Header header\n\
00225 \n\
00226 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00227 # in the frame given in the header.\n\
00228 geometry_msgs/Point32[] points\n\
00229 \n\
00230 # Each channel should have the same number of elements as points array,\n\
00231 # and the data in each channel should correspond 1:1 with each point.\n\
00232 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00233 ChannelFloat32[] channels\n\
00234 \n\
00235 ================================================================================\n\
00236 MSG: geometry_msgs/Point32\n\
00237 # This contains the position of a point in free space(with 32 bits of precision).\n\
00238 # It is recommeded to use Point wherever possible instead of Point32. \n\
00239 # \n\
00240 # This recommendation is to promote interoperability. \n\
00241 #\n\
00242 # This message is designed to take up less space when sending\n\
00243 # lots of points at once, as in the case of a PointCloud. \n\
00244 \n\
00245 float32 x\n\
00246 float32 y\n\
00247 float32 z\n\
00248 ================================================================================\n\
00249 MSG: sensor_msgs/ChannelFloat32\n\
00250 # This message is used by the PointCloud message to hold optional data\n\
00251 # associated with each point in the cloud. The length of the values\n\
00252 # array should be the same as the length of the points array in the\n\
00253 # PointCloud, and each value should be associated with the corresponding\n\
00254 # point.\n\
00255 \n\
00256 # Channel names in existing practice include:\n\
00257 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00258 # This is opposite to usual conventions but remains for\n\
00259 # historical reasons. The newer PointCloud2 message has no\n\
00260 # such problem.\n\
00261 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00262 # (R,G,B) values packed into the least significant 24 bits,\n\
00263 # in order.\n\
00264 # \"intensity\" - laser or pixel intensity.\n\
00265 # \"distance\"\n\
00266 \n\
00267 # The channel name should give semantics of the channel (e.g.\n\
00268 # \"intensity\" instead of \"value\").\n\
00269 string name\n\
00270 \n\
00271 # The values array should be 1-1 with the elements of the associated\n\
00272 # PointCloud.\n\
00273 float32[] values\n\
00274 \n\
00275 ================================================================================\n\
00276 MSG: object_manipulation_msgs/SceneRegion\n\
00277 # Point cloud\n\
00278 sensor_msgs/PointCloud2 cloud\n\
00279 \n\
00280 # Indices for the region of interest\n\
00281 int32[] mask\n\
00282 \n\
00283 # One of the corresponding 2D images, if applicable\n\
00284 sensor_msgs/Image image\n\
00285 \n\
00286 # The disparity image, if applicable\n\
00287 sensor_msgs/Image disparity_image\n\
00288 \n\
00289 # Camera info for the camera that took the image\n\
00290 sensor_msgs/CameraInfo cam_info\n\
00291 \n\
00292 # a 3D region of interest for grasp planning\n\
00293 geometry_msgs/PoseStamped roi_box_pose\n\
00294 geometry_msgs/Vector3 roi_box_dims\n\
00295 \n\
00296 ================================================================================\n\
00297 MSG: sensor_msgs/PointCloud2\n\
00298 # This message holds a collection of N-dimensional points, which may\n\
00299 # contain additional information such as normals, intensity, etc. The\n\
00300 # point data is stored as a binary blob, its layout described by the\n\
00301 # contents of the \"fields\" array.\n\
00302 \n\
00303 # The point cloud data may be organized 2d (image-like) or 1d\n\
00304 # (unordered). Point clouds organized as 2d images may be produced by\n\
00305 # camera depth sensors such as stereo or time-of-flight.\n\
00306 \n\
00307 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00308 # points).\n\
00309 Header header\n\
00310 \n\
00311 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00312 # 1 and width is the length of the point cloud.\n\
00313 uint32 height\n\
00314 uint32 width\n\
00315 \n\
00316 # Describes the channels and their layout in the binary data blob.\n\
00317 PointField[] fields\n\
00318 \n\
00319 bool is_bigendian # Is this data bigendian?\n\
00320 uint32 point_step # Length of a point in bytes\n\
00321 uint32 row_step # Length of a row in bytes\n\
00322 uint8[] data # Actual point data, size is (row_step*height)\n\
00323 \n\
00324 bool is_dense # True if there are no invalid points\n\
00325 \n\
00326 ================================================================================\n\
00327 MSG: sensor_msgs/PointField\n\
00328 # This message holds the description of one point entry in the\n\
00329 # PointCloud2 message format.\n\
00330 uint8 INT8 = 1\n\
00331 uint8 UINT8 = 2\n\
00332 uint8 INT16 = 3\n\
00333 uint8 UINT16 = 4\n\
00334 uint8 INT32 = 5\n\
00335 uint8 UINT32 = 6\n\
00336 uint8 FLOAT32 = 7\n\
00337 uint8 FLOAT64 = 8\n\
00338 \n\
00339 string name # Name of field\n\
00340 uint32 offset # Offset from start of point struct\n\
00341 uint8 datatype # Datatype enumeration, see above\n\
00342 uint32 count # How many elements in the field\n\
00343 \n\
00344 ================================================================================\n\
00345 MSG: sensor_msgs/Image\n\
00346 # This message contains an uncompressed image\n\
00347 # (0, 0) is at top-left corner of image\n\
00348 #\n\
00349 \n\
00350 Header header # Header timestamp should be acquisition time of image\n\
00351 # Header frame_id should be optical frame of camera\n\
00352 # origin of frame should be optical center of cameara\n\
00353 # +x should point to the right in the image\n\
00354 # +y should point down in the image\n\
00355 # +z should point into to plane of the image\n\
00356 # If the frame_id here and the frame_id of the CameraInfo\n\
00357 # message associated with the image conflict\n\
00358 # the behavior is undefined\n\
00359 \n\
00360 uint32 height # image height, that is, number of rows\n\
00361 uint32 width # image width, that is, number of columns\n\
00362 \n\
00363 # The legal values for encoding are in file src/image_encodings.cpp\n\
00364 # If you want to standardize a new string format, join\n\
00365 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00366 \n\
00367 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00368 # taken from the list of strings in src/image_encodings.cpp\n\
00369 \n\
00370 uint8 is_bigendian # is this data bigendian?\n\
00371 uint32 step # Full row length in bytes\n\
00372 uint8[] data # actual matrix data, size is (step * rows)\n\
00373 \n\
00374 ================================================================================\n\
00375 MSG: sensor_msgs/CameraInfo\n\
00376 # This message defines meta information for a camera. It should be in a\n\
00377 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00378 # image topics named:\n\
00379 #\n\
00380 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00381 # image - monochrome, distorted\n\
00382 # image_color - color, distorted\n\
00383 # image_rect - monochrome, rectified\n\
00384 # image_rect_color - color, rectified\n\
00385 #\n\
00386 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00387 # for producing the four processed image topics from image_raw and\n\
00388 # camera_info. The meaning of the camera parameters are described in\n\
00389 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00390 #\n\
00391 # The image_geometry package provides a user-friendly interface to\n\
00392 # common operations using this meta information. If you want to, e.g.,\n\
00393 # project a 3d point into image coordinates, we strongly recommend\n\
00394 # using image_geometry.\n\
00395 #\n\
00396 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00397 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00398 # indicates an uncalibrated camera.\n\
00399 \n\
00400 #######################################################################\n\
00401 # Image acquisition info #\n\
00402 #######################################################################\n\
00403 \n\
00404 # Time of image acquisition, camera coordinate frame ID\n\
00405 Header header # Header timestamp should be acquisition time of image\n\
00406 # Header frame_id should be optical frame of camera\n\
00407 # origin of frame should be optical center of camera\n\
00408 # +x should point to the right in the image\n\
00409 # +y should point down in the image\n\
00410 # +z should point into the plane of the image\n\
00411 \n\
00412 \n\
00413 #######################################################################\n\
00414 # Calibration Parameters #\n\
00415 #######################################################################\n\
00416 # These are fixed during camera calibration. Their values will be the #\n\
00417 # same in all messages until the camera is recalibrated. Note that #\n\
00418 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00419 # #\n\
00420 # The internal parameters can be used to warp a raw (distorted) image #\n\
00421 # to: #\n\
00422 # 1. An undistorted image (requires D and K) #\n\
00423 # 2. A rectified image (requires D, K, R) #\n\
00424 # The projection matrix P projects 3D points into the rectified image.#\n\
00425 #######################################################################\n\
00426 \n\
00427 # The image dimensions with which the camera was calibrated. Normally\n\
00428 # this will be the full camera resolution in pixels.\n\
00429 uint32 height\n\
00430 uint32 width\n\
00431 \n\
00432 # The distortion model used. Supported models are listed in\n\
00433 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00434 # simple model of radial and tangential distortion - is sufficent.\n\
00435 string distortion_model\n\
00436 \n\
00437 # The distortion parameters, size depending on the distortion model.\n\
00438 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00439 float64[] D\n\
00440 \n\
00441 # Intrinsic camera matrix for the raw (distorted) images.\n\
00442 # [fx 0 cx]\n\
00443 # K = [ 0 fy cy]\n\
00444 # [ 0 0 1]\n\
00445 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00446 # coordinates using the focal lengths (fx, fy) and principal point\n\
00447 # (cx, cy).\n\
00448 float64[9] K # 3x3 row-major matrix\n\
00449 \n\
00450 # Rectification matrix (stereo cameras only)\n\
00451 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00452 # stereo image plane so that epipolar lines in both stereo images are\n\
00453 # parallel.\n\
00454 float64[9] R # 3x3 row-major matrix\n\
00455 \n\
00456 # Projection/camera matrix\n\
00457 # [fx' 0 cx' Tx]\n\
00458 # P = [ 0 fy' cy' Ty]\n\
00459 # [ 0 0 1 0]\n\
00460 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00461 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00462 # is the normal camera intrinsic matrix for the rectified image.\n\
00463 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00464 # coordinates using the focal lengths (fx', fy') and principal point\n\
00465 # (cx', cy') - these may differ from the values in K.\n\
00466 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00467 # also have R = the identity and P[1:3,1:3] = K.\n\
00468 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00469 # position of the optical center of the second camera in the first\n\
00470 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00471 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00472 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00473 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00474 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00475 # the rectified image is given by:\n\
00476 # [u v w]' = P * [X Y Z 1]'\n\
00477 # x = u / w\n\
00478 # y = v / w\n\
00479 # This holds for both images of a stereo pair.\n\
00480 float64[12] P # 3x4 row-major matrix\n\
00481 \n\
00482 \n\
00483 #######################################################################\n\
00484 # Operational Parameters #\n\
00485 #######################################################################\n\
00486 # These define the image region actually captured by the camera #\n\
00487 # driver. Although they affect the geometry of the output image, they #\n\
00488 # may be changed freely without recalibrating the camera. #\n\
00489 #######################################################################\n\
00490 \n\
00491 # Binning refers here to any camera setting which combines rectangular\n\
00492 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00493 # resolution of the output image to\n\
00494 # (width / binning_x) x (height / binning_y).\n\
00495 # The default values binning_x = binning_y = 0 is considered the same\n\
00496 # as binning_x = binning_y = 1 (no subsampling).\n\
00497 uint32 binning_x\n\
00498 uint32 binning_y\n\
00499 \n\
00500 # Region of interest (subwindow of full camera resolution), given in\n\
00501 # full resolution (unbinned) image coordinates. A particular ROI\n\
00502 # always denotes the same window of pixels on the camera sensor,\n\
00503 # regardless of binning settings.\n\
00504 # The default setting of roi (all values 0) is considered the same as\n\
00505 # full resolution (roi.width = width, roi.height = height).\n\
00506 RegionOfInterest roi\n\
00507 \n\
00508 ================================================================================\n\
00509 MSG: sensor_msgs/RegionOfInterest\n\
00510 # This message is used to specify a region of interest within an image.\n\
00511 #\n\
00512 # When used to specify the ROI setting of the camera when the image was\n\
00513 # taken, the height and width fields should either match the height and\n\
00514 # width fields for the associated image; or height = width = 0\n\
00515 # indicates that the full resolution image was captured.\n\
00516 \n\
00517 uint32 x_offset # Leftmost pixel of the ROI\n\
00518 # (0 if the ROI includes the left edge of the image)\n\
00519 uint32 y_offset # Topmost pixel of the ROI\n\
00520 # (0 if the ROI includes the top edge of the image)\n\
00521 uint32 height # Height of ROI\n\
00522 uint32 width # Width of ROI\n\
00523 \n\
00524 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00525 # ROI in this message. Typically this should be False if the full image\n\
00526 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00527 # used).\n\
00528 bool do_rectify\n\
00529 \n\
00530 ================================================================================\n\
00531 MSG: geometry_msgs/Vector3\n\
00532 # This represents a vector in free space. \n\
00533 \n\
00534 float64 x\n\
00535 float64 y\n\
00536 float64 z\n\
00537 ================================================================================\n\
00538 MSG: trajectory_msgs/JointTrajectory\n\
00539 Header header\n\
00540 string[] joint_names\n\
00541 JointTrajectoryPoint[] points\n\
00542 ================================================================================\n\
00543 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00544 float64[] positions\n\
00545 float64[] velocities\n\
00546 float64[] accelerations\n\
00547 duration time_from_start\n\
00548 ================================================================================\n\
00549 MSG: sensor_msgs/JointState\n\
00550 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00551 #\n\
00552 # The state of each joint (revolute or prismatic) is defined by:\n\
00553 # * the position of the joint (rad or m),\n\
00554 # * the velocity of the joint (rad/s or m/s) and \n\
00555 # * the effort that is applied in the joint (Nm or N).\n\
00556 #\n\
00557 # Each joint is uniquely identified by its name\n\
00558 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00559 # in one message have to be recorded at the same time.\n\
00560 #\n\
00561 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00562 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00563 # effort associated with them, you can leave the effort array empty. \n\
00564 #\n\
00565 # All arrays in this message should have the same size, or be empty.\n\
00566 # This is the only way to uniquely associate the joint name with the correct\n\
00567 # states.\n\
00568 \n\
00569 \n\
00570 Header header\n\
00571 \n\
00572 string[] name\n\
00573 float64[] position\n\
00574 float64[] velocity\n\
00575 float64[] effort\n\
00576 \n\
00577 ================================================================================\n\
00578 MSG: object_manipulation_msgs/ReactiveGraspActionResult\n\
00579 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00580 \n\
00581 Header header\n\
00582 actionlib_msgs/GoalStatus status\n\
00583 ReactiveGraspResult result\n\
00584 \n\
00585 ================================================================================\n\
00586 MSG: actionlib_msgs/GoalStatus\n\
00587 GoalID goal_id\n\
00588 uint8 status\n\
00589 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00590 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00591 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00592 # and has since completed its execution (Terminal State)\n\
00593 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00594 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00595 # to some failure (Terminal State)\n\
00596 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00597 # because the goal was unattainable or invalid (Terminal State)\n\
00598 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00599 # and has not yet completed execution\n\
00600 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00601 # but the action server has not yet confirmed that the goal is canceled\n\
00602 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00603 # and was successfully cancelled (Terminal State)\n\
00604 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00605 # sent over the wire by an action server\n\
00606 \n\
00607 #Allow for the user to associate a string with GoalStatus for debugging\n\
00608 string text\n\
00609 \n\
00610 \n\
00611 ================================================================================\n\
00612 MSG: object_manipulation_msgs/ReactiveGraspResult\n\
00613 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00614 \n\
00615 # the result of the reactive grasp attempt\n\
00616 \n\
00617 ManipulationResult manipulation_result\n\
00618 \n\
00619 \n\
00620 ================================================================================\n\
00621 MSG: object_manipulation_msgs/ManipulationResult\n\
00622 # Result codes for manipulation tasks\n\
00623 \n\
00624 # task completed as expected\n\
00625 # generally means you can proceed as planned\n\
00626 int32 SUCCESS = 1\n\
00627 \n\
00628 # task not possible (e.g. out of reach or obstacles in the way)\n\
00629 # generally means that the world was not disturbed, so you can try another task\n\
00630 int32 UNFEASIBLE = -1\n\
00631 \n\
00632 # task was thought possible, but failed due to unexpected events during execution\n\
00633 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00634 # your sensed world model before proceeding to another task\n\
00635 int32 FAILED = -2\n\
00636 \n\
00637 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00638 # generally requires human attention\n\
00639 int32 ERROR = -3\n\
00640 \n\
00641 # means that at some point during execution we ended up in a state that the collision-aware\n\
00642 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00643 # probably need a new collision map to move the arm out of the stuck position\n\
00644 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00645 \n\
00646 # specific to grasp actions\n\
00647 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00648 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00649 int32 LIFT_FAILED = -5\n\
00650 \n\
00651 # specific to place actions\n\
00652 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00653 # it is likely that the collision environment will see collisions between the hand and the object\n\
00654 int32 RETREAT_FAILED = -6\n\
00655 \n\
00656 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00657 int32 CANCELLED = -7\n\
00658 \n\
00659 # the actual value of this error code\n\
00660 int32 value\n\
00661 \n\
00662 ================================================================================\n\
00663 MSG: object_manipulation_msgs/ReactiveGraspActionFeedback\n\
00664 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00665 \n\
00666 Header header\n\
00667 actionlib_msgs/GoalStatus status\n\
00668 ReactiveGraspFeedback feedback\n\
00669 \n\
00670 ================================================================================\n\
00671 MSG: object_manipulation_msgs/ReactiveGraspFeedback\n\
00672 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00673 \n\
00674 # which phase the grasp is in\n\
00675 \n\
00676 ManipulationPhase manipulation_phase\n\
00677 \n\
00678 \n\
00679 \n\
00680 \n\
00681 ================================================================================\n\
00682 MSG: object_manipulation_msgs/ManipulationPhase\n\
00683 int32 CHECKING_FEASIBILITY = 0\n\
00684 int32 MOVING_TO_PREGRASP = 1\n\
00685 int32 MOVING_TO_GRASP = 2\n\
00686 int32 CLOSING = 3 \n\
00687 int32 ADJUSTING_GRASP = 4\n\
00688 int32 LIFTING = 5\n\
00689 int32 MOVING_WITH_OBJECT = 6\n\
00690 int32 MOVING_TO_PLACE = 7\n\
00691 int32 PLACING = 8\n\
00692 int32 OPENING = 9\n\
00693 int32 RETREATING = 10\n\
00694 int32 MOVING_WITHOUT_OBJECT = 11\n\
00695 int32 SHAKING = 12\n\
00696 int32 SUCCEEDED = 13\n\
00697 int32 FAILED = 14\n\
00698 int32 ABORTED = 15\n\
00699 int32 HOLDING_OBJECT = 16\n\
00700 \n\
00701 int32 phase\n\
00702 "; }
00703 public:
00704 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00705
00706 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00707
00708 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00709 {
00710 ros::serialization::OStream stream(write_ptr, 1000000000);
00711 ros::serialization::serialize(stream, action_goal);
00712 ros::serialization::serialize(stream, action_result);
00713 ros::serialization::serialize(stream, action_feedback);
00714 return stream.getData();
00715 }
00716
00717 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00718 {
00719 ros::serialization::IStream stream(read_ptr, 1000000000);
00720 ros::serialization::deserialize(stream, action_goal);
00721 ros::serialization::deserialize(stream, action_result);
00722 ros::serialization::deserialize(stream, action_feedback);
00723 return stream.getData();
00724 }
00725
00726 ROS_DEPRECATED virtual uint32_t serializationLength() const
00727 {
00728 uint32_t size = 0;
00729 size += ros::serialization::serializationLength(action_goal);
00730 size += ros::serialization::serializationLength(action_result);
00731 size += ros::serialization::serializationLength(action_feedback);
00732 return size;
00733 }
00734
00735 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > Ptr;
00736 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> const> ConstPtr;
00737 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00738 };
00739 typedef ::object_manipulation_msgs::ReactiveGraspAction_<std::allocator<void> > ReactiveGraspAction;
00740
00741 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction> ReactiveGraspActionPtr;
00742 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction const> ReactiveGraspActionConstPtr;
00743
00744
00745 template<typename ContainerAllocator>
00746 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> & v)
00747 {
00748 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> >::stream(s, "", v);
00749 return s;}
00750
00751 }
00752
00753 namespace ros
00754 {
00755 namespace message_traits
00756 {
00757 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > : public TrueType {};
00758 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> const> : public TrueType {};
00759 template<class ContainerAllocator>
00760 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > {
00761 static const char* value()
00762 {
00763 return "52c8ac19491b8c70004f2fefd4dbedef";
00764 }
00765
00766 static const char* value(const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> &) { return value(); }
00767 static const uint64_t static_value1 = 0x52c8ac19491b8c70ULL;
00768 static const uint64_t static_value2 = 0x004f2fefd4dbedefULL;
00769 };
00770
00771 template<class ContainerAllocator>
00772 struct DataType< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > {
00773 static const char* value()
00774 {
00775 return "object_manipulation_msgs/ReactiveGraspAction";
00776 }
00777
00778 static const char* value(const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> &) { return value(); }
00779 };
00780
00781 template<class ContainerAllocator>
00782 struct Definition< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > {
00783 static const char* value()
00784 {
00785 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00786 \n\
00787 ReactiveGraspActionGoal action_goal\n\
00788 ReactiveGraspActionResult action_result\n\
00789 ReactiveGraspActionFeedback action_feedback\n\
00790 \n\
00791 ================================================================================\n\
00792 MSG: object_manipulation_msgs/ReactiveGraspActionGoal\n\
00793 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00794 \n\
00795 Header header\n\
00796 actionlib_msgs/GoalID goal_id\n\
00797 ReactiveGraspGoal goal\n\
00798 \n\
00799 ================================================================================\n\
00800 MSG: std_msgs/Header\n\
00801 # Standard metadata for higher-level stamped data types.\n\
00802 # This is generally used to communicate timestamped data \n\
00803 # in a particular coordinate frame.\n\
00804 # \n\
00805 # sequence ID: consecutively increasing ID \n\
00806 uint32 seq\n\
00807 #Two-integer timestamp that is expressed as:\n\
00808 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00809 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00810 # time-handling sugar is provided by the client library\n\
00811 time stamp\n\
00812 #Frame this data is associated with\n\
00813 # 0: no frame\n\
00814 # 1: global frame\n\
00815 string frame_id\n\
00816 \n\
00817 ================================================================================\n\
00818 MSG: actionlib_msgs/GoalID\n\
00819 # The stamp should store the time at which this goal was requested.\n\
00820 # It is used by an action server when it tries to preempt all\n\
00821 # goals that were requested before a certain time\n\
00822 time stamp\n\
00823 \n\
00824 # The id provides a way to associate feedback and\n\
00825 # result message with specific goal requests. The id\n\
00826 # specified must be unique.\n\
00827 string id\n\
00828 \n\
00829 \n\
00830 ================================================================================\n\
00831 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00832 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00833 # an action for reactive grasping\n\
00834 # a reactive grasp starts from the current pose of the gripper and ends\n\
00835 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00836 \n\
00837 # the name of the arm being used\n\
00838 string arm_name\n\
00839 \n\
00840 # the object to be grasped\n\
00841 GraspableObject target\n\
00842 \n\
00843 # the desired grasp pose for the hand\n\
00844 geometry_msgs/PoseStamped final_grasp_pose\n\
00845 \n\
00846 # the joint trajectory to use for the approach (if available)\n\
00847 # this trajectory is expected to start at the current pose of the gripper\n\
00848 # and end at the desired grasp pose\n\
00849 trajectory_msgs/JointTrajectory trajectory\n\
00850 \n\
00851 # the name of the support surface in the collision environment, if any\n\
00852 string collision_support_surface_name\n\
00853 \n\
00854 # The internal posture of the hand for the pre-grasp\n\
00855 # only positions are used\n\
00856 sensor_msgs/JointState pre_grasp_posture\n\
00857 \n\
00858 # The internal posture of the hand for the grasp\n\
00859 # positions and efforts are used\n\
00860 sensor_msgs/JointState grasp_posture\n\
00861 \n\
00862 # The max contact force to use while grasping (<=0 to disable)\n\
00863 float32 max_contact_force\n\
00864 \n\
00865 \n\
00866 ================================================================================\n\
00867 MSG: object_manipulation_msgs/GraspableObject\n\
00868 # an object that the object_manipulator can work on\n\
00869 \n\
00870 # a graspable object can be represented in multiple ways. This message\n\
00871 # can contain all of them. Which one is actually used is up to the receiver\n\
00872 # of this message. When adding new representations, one must be careful that\n\
00873 # they have reasonable lightweight defaults indicating that that particular\n\
00874 # representation is not available.\n\
00875 \n\
00876 # the tf frame to be used as a reference frame when combining information from\n\
00877 # the different representations below\n\
00878 string reference_frame_id\n\
00879 \n\
00880 # potential recognition results from a database of models\n\
00881 # all poses are relative to the object reference pose\n\
00882 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00883 \n\
00884 # the point cloud itself\n\
00885 sensor_msgs/PointCloud cluster\n\
00886 \n\
00887 # a region of a PointCloud2 of interest\n\
00888 object_manipulation_msgs/SceneRegion region\n\
00889 \n\
00890 # the name that this object has in the collision environment\n\
00891 string collision_name\n\
00892 ================================================================================\n\
00893 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00894 # Informs that a specific model from the Model Database has been \n\
00895 # identified at a certain location\n\
00896 \n\
00897 # the database id of the model\n\
00898 int32 model_id\n\
00899 \n\
00900 # the pose that it can be found in\n\
00901 geometry_msgs/PoseStamped pose\n\
00902 \n\
00903 # a measure of the confidence level in this detection result\n\
00904 float32 confidence\n\
00905 \n\
00906 # the name of the object detector that generated this detection result\n\
00907 string detector_name\n\
00908 \n\
00909 ================================================================================\n\
00910 MSG: geometry_msgs/PoseStamped\n\
00911 # A Pose with reference coordinate frame and timestamp\n\
00912 Header header\n\
00913 Pose pose\n\
00914 \n\
00915 ================================================================================\n\
00916 MSG: geometry_msgs/Pose\n\
00917 # A representation of pose in free space, composed of postion and orientation. \n\
00918 Point position\n\
00919 Quaternion orientation\n\
00920 \n\
00921 ================================================================================\n\
00922 MSG: geometry_msgs/Point\n\
00923 # This contains the position of a point in free space\n\
00924 float64 x\n\
00925 float64 y\n\
00926 float64 z\n\
00927 \n\
00928 ================================================================================\n\
00929 MSG: geometry_msgs/Quaternion\n\
00930 # This represents an orientation in free space in quaternion form.\n\
00931 \n\
00932 float64 x\n\
00933 float64 y\n\
00934 float64 z\n\
00935 float64 w\n\
00936 \n\
00937 ================================================================================\n\
00938 MSG: sensor_msgs/PointCloud\n\
00939 # This message holds a collection of 3d points, plus optional additional\n\
00940 # information about each point.\n\
00941 \n\
00942 # Time of sensor data acquisition, coordinate frame ID.\n\
00943 Header header\n\
00944 \n\
00945 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00946 # in the frame given in the header.\n\
00947 geometry_msgs/Point32[] points\n\
00948 \n\
00949 # Each channel should have the same number of elements as points array,\n\
00950 # and the data in each channel should correspond 1:1 with each point.\n\
00951 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00952 ChannelFloat32[] channels\n\
00953 \n\
00954 ================================================================================\n\
00955 MSG: geometry_msgs/Point32\n\
00956 # This contains the position of a point in free space(with 32 bits of precision).\n\
00957 # It is recommeded to use Point wherever possible instead of Point32. \n\
00958 # \n\
00959 # This recommendation is to promote interoperability. \n\
00960 #\n\
00961 # This message is designed to take up less space when sending\n\
00962 # lots of points at once, as in the case of a PointCloud. \n\
00963 \n\
00964 float32 x\n\
00965 float32 y\n\
00966 float32 z\n\
00967 ================================================================================\n\
00968 MSG: sensor_msgs/ChannelFloat32\n\
00969 # This message is used by the PointCloud message to hold optional data\n\
00970 # associated with each point in the cloud. The length of the values\n\
00971 # array should be the same as the length of the points array in the\n\
00972 # PointCloud, and each value should be associated with the corresponding\n\
00973 # point.\n\
00974 \n\
00975 # Channel names in existing practice include:\n\
00976 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00977 # This is opposite to usual conventions but remains for\n\
00978 # historical reasons. The newer PointCloud2 message has no\n\
00979 # such problem.\n\
00980 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00981 # (R,G,B) values packed into the least significant 24 bits,\n\
00982 # in order.\n\
00983 # \"intensity\" - laser or pixel intensity.\n\
00984 # \"distance\"\n\
00985 \n\
00986 # The channel name should give semantics of the channel (e.g.\n\
00987 # \"intensity\" instead of \"value\").\n\
00988 string name\n\
00989 \n\
00990 # The values array should be 1-1 with the elements of the associated\n\
00991 # PointCloud.\n\
00992 float32[] values\n\
00993 \n\
00994 ================================================================================\n\
00995 MSG: object_manipulation_msgs/SceneRegion\n\
00996 # Point cloud\n\
00997 sensor_msgs/PointCloud2 cloud\n\
00998 \n\
00999 # Indices for the region of interest\n\
01000 int32[] mask\n\
01001 \n\
01002 # One of the corresponding 2D images, if applicable\n\
01003 sensor_msgs/Image image\n\
01004 \n\
01005 # The disparity image, if applicable\n\
01006 sensor_msgs/Image disparity_image\n\
01007 \n\
01008 # Camera info for the camera that took the image\n\
01009 sensor_msgs/CameraInfo cam_info\n\
01010 \n\
01011 # a 3D region of interest for grasp planning\n\
01012 geometry_msgs/PoseStamped roi_box_pose\n\
01013 geometry_msgs/Vector3 roi_box_dims\n\
01014 \n\
01015 ================================================================================\n\
01016 MSG: sensor_msgs/PointCloud2\n\
01017 # This message holds a collection of N-dimensional points, which may\n\
01018 # contain additional information such as normals, intensity, etc. The\n\
01019 # point data is stored as a binary blob, its layout described by the\n\
01020 # contents of the \"fields\" array.\n\
01021 \n\
01022 # The point cloud data may be organized 2d (image-like) or 1d\n\
01023 # (unordered). Point clouds organized as 2d images may be produced by\n\
01024 # camera depth sensors such as stereo or time-of-flight.\n\
01025 \n\
01026 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01027 # points).\n\
01028 Header header\n\
01029 \n\
01030 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01031 # 1 and width is the length of the point cloud.\n\
01032 uint32 height\n\
01033 uint32 width\n\
01034 \n\
01035 # Describes the channels and their layout in the binary data blob.\n\
01036 PointField[] fields\n\
01037 \n\
01038 bool is_bigendian # Is this data bigendian?\n\
01039 uint32 point_step # Length of a point in bytes\n\
01040 uint32 row_step # Length of a row in bytes\n\
01041 uint8[] data # Actual point data, size is (row_step*height)\n\
01042 \n\
01043 bool is_dense # True if there are no invalid points\n\
01044 \n\
01045 ================================================================================\n\
01046 MSG: sensor_msgs/PointField\n\
01047 # This message holds the description of one point entry in the\n\
01048 # PointCloud2 message format.\n\
01049 uint8 INT8 = 1\n\
01050 uint8 UINT8 = 2\n\
01051 uint8 INT16 = 3\n\
01052 uint8 UINT16 = 4\n\
01053 uint8 INT32 = 5\n\
01054 uint8 UINT32 = 6\n\
01055 uint8 FLOAT32 = 7\n\
01056 uint8 FLOAT64 = 8\n\
01057 \n\
01058 string name # Name of field\n\
01059 uint32 offset # Offset from start of point struct\n\
01060 uint8 datatype # Datatype enumeration, see above\n\
01061 uint32 count # How many elements in the field\n\
01062 \n\
01063 ================================================================================\n\
01064 MSG: sensor_msgs/Image\n\
01065 # This message contains an uncompressed image\n\
01066 # (0, 0) is at top-left corner of image\n\
01067 #\n\
01068 \n\
01069 Header header # Header timestamp should be acquisition time of image\n\
01070 # Header frame_id should be optical frame of camera\n\
01071 # origin of frame should be optical center of cameara\n\
01072 # +x should point to the right in the image\n\
01073 # +y should point down in the image\n\
01074 # +z should point into to plane of the image\n\
01075 # If the frame_id here and the frame_id of the CameraInfo\n\
01076 # message associated with the image conflict\n\
01077 # the behavior is undefined\n\
01078 \n\
01079 uint32 height # image height, that is, number of rows\n\
01080 uint32 width # image width, that is, number of columns\n\
01081 \n\
01082 # The legal values for encoding are in file src/image_encodings.cpp\n\
01083 # If you want to standardize a new string format, join\n\
01084 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01085 \n\
01086 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01087 # taken from the list of strings in src/image_encodings.cpp\n\
01088 \n\
01089 uint8 is_bigendian # is this data bigendian?\n\
01090 uint32 step # Full row length in bytes\n\
01091 uint8[] data # actual matrix data, size is (step * rows)\n\
01092 \n\
01093 ================================================================================\n\
01094 MSG: sensor_msgs/CameraInfo\n\
01095 # This message defines meta information for a camera. It should be in a\n\
01096 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01097 # image topics named:\n\
01098 #\n\
01099 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01100 # image - monochrome, distorted\n\
01101 # image_color - color, distorted\n\
01102 # image_rect - monochrome, rectified\n\
01103 # image_rect_color - color, rectified\n\
01104 #\n\
01105 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01106 # for producing the four processed image topics from image_raw and\n\
01107 # camera_info. The meaning of the camera parameters are described in\n\
01108 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01109 #\n\
01110 # The image_geometry package provides a user-friendly interface to\n\
01111 # common operations using this meta information. If you want to, e.g.,\n\
01112 # project a 3d point into image coordinates, we strongly recommend\n\
01113 # using image_geometry.\n\
01114 #\n\
01115 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01116 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01117 # indicates an uncalibrated camera.\n\
01118 \n\
01119 #######################################################################\n\
01120 # Image acquisition info #\n\
01121 #######################################################################\n\
01122 \n\
01123 # Time of image acquisition, camera coordinate frame ID\n\
01124 Header header # Header timestamp should be acquisition time of image\n\
01125 # Header frame_id should be optical frame of camera\n\
01126 # origin of frame should be optical center of camera\n\
01127 # +x should point to the right in the image\n\
01128 # +y should point down in the image\n\
01129 # +z should point into the plane of the image\n\
01130 \n\
01131 \n\
01132 #######################################################################\n\
01133 # Calibration Parameters #\n\
01134 #######################################################################\n\
01135 # These are fixed during camera calibration. Their values will be the #\n\
01136 # same in all messages until the camera is recalibrated. Note that #\n\
01137 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01138 # #\n\
01139 # The internal parameters can be used to warp a raw (distorted) image #\n\
01140 # to: #\n\
01141 # 1. An undistorted image (requires D and K) #\n\
01142 # 2. A rectified image (requires D, K, R) #\n\
01143 # The projection matrix P projects 3D points into the rectified image.#\n\
01144 #######################################################################\n\
01145 \n\
01146 # The image dimensions with which the camera was calibrated. Normally\n\
01147 # this will be the full camera resolution in pixels.\n\
01148 uint32 height\n\
01149 uint32 width\n\
01150 \n\
01151 # The distortion model used. Supported models are listed in\n\
01152 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01153 # simple model of radial and tangential distortion - is sufficent.\n\
01154 string distortion_model\n\
01155 \n\
01156 # The distortion parameters, size depending on the distortion model.\n\
01157 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01158 float64[] D\n\
01159 \n\
01160 # Intrinsic camera matrix for the raw (distorted) images.\n\
01161 # [fx 0 cx]\n\
01162 # K = [ 0 fy cy]\n\
01163 # [ 0 0 1]\n\
01164 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01165 # coordinates using the focal lengths (fx, fy) and principal point\n\
01166 # (cx, cy).\n\
01167 float64[9] K # 3x3 row-major matrix\n\
01168 \n\
01169 # Rectification matrix (stereo cameras only)\n\
01170 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01171 # stereo image plane so that epipolar lines in both stereo images are\n\
01172 # parallel.\n\
01173 float64[9] R # 3x3 row-major matrix\n\
01174 \n\
01175 # Projection/camera matrix\n\
01176 # [fx' 0 cx' Tx]\n\
01177 # P = [ 0 fy' cy' Ty]\n\
01178 # [ 0 0 1 0]\n\
01179 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01180 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01181 # is the normal camera intrinsic matrix for the rectified image.\n\
01182 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01183 # coordinates using the focal lengths (fx', fy') and principal point\n\
01184 # (cx', cy') - these may differ from the values in K.\n\
01185 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01186 # also have R = the identity and P[1:3,1:3] = K.\n\
01187 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01188 # position of the optical center of the second camera in the first\n\
01189 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01190 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01191 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01192 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01193 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01194 # the rectified image is given by:\n\
01195 # [u v w]' = P * [X Y Z 1]'\n\
01196 # x = u / w\n\
01197 # y = v / w\n\
01198 # This holds for both images of a stereo pair.\n\
01199 float64[12] P # 3x4 row-major matrix\n\
01200 \n\
01201 \n\
01202 #######################################################################\n\
01203 # Operational Parameters #\n\
01204 #######################################################################\n\
01205 # These define the image region actually captured by the camera #\n\
01206 # driver. Although they affect the geometry of the output image, they #\n\
01207 # may be changed freely without recalibrating the camera. #\n\
01208 #######################################################################\n\
01209 \n\
01210 # Binning refers here to any camera setting which combines rectangular\n\
01211 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01212 # resolution of the output image to\n\
01213 # (width / binning_x) x (height / binning_y).\n\
01214 # The default values binning_x = binning_y = 0 is considered the same\n\
01215 # as binning_x = binning_y = 1 (no subsampling).\n\
01216 uint32 binning_x\n\
01217 uint32 binning_y\n\
01218 \n\
01219 # Region of interest (subwindow of full camera resolution), given in\n\
01220 # full resolution (unbinned) image coordinates. A particular ROI\n\
01221 # always denotes the same window of pixels on the camera sensor,\n\
01222 # regardless of binning settings.\n\
01223 # The default setting of roi (all values 0) is considered the same as\n\
01224 # full resolution (roi.width = width, roi.height = height).\n\
01225 RegionOfInterest roi\n\
01226 \n\
01227 ================================================================================\n\
01228 MSG: sensor_msgs/RegionOfInterest\n\
01229 # This message is used to specify a region of interest within an image.\n\
01230 #\n\
01231 # When used to specify the ROI setting of the camera when the image was\n\
01232 # taken, the height and width fields should either match the height and\n\
01233 # width fields for the associated image; or height = width = 0\n\
01234 # indicates that the full resolution image was captured.\n\
01235 \n\
01236 uint32 x_offset # Leftmost pixel of the ROI\n\
01237 # (0 if the ROI includes the left edge of the image)\n\
01238 uint32 y_offset # Topmost pixel of the ROI\n\
01239 # (0 if the ROI includes the top edge of the image)\n\
01240 uint32 height # Height of ROI\n\
01241 uint32 width # Width of ROI\n\
01242 \n\
01243 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01244 # ROI in this message. Typically this should be False if the full image\n\
01245 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01246 # used).\n\
01247 bool do_rectify\n\
01248 \n\
01249 ================================================================================\n\
01250 MSG: geometry_msgs/Vector3\n\
01251 # This represents a vector in free space. \n\
01252 \n\
01253 float64 x\n\
01254 float64 y\n\
01255 float64 z\n\
01256 ================================================================================\n\
01257 MSG: trajectory_msgs/JointTrajectory\n\
01258 Header header\n\
01259 string[] joint_names\n\
01260 JointTrajectoryPoint[] points\n\
01261 ================================================================================\n\
01262 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01263 float64[] positions\n\
01264 float64[] velocities\n\
01265 float64[] accelerations\n\
01266 duration time_from_start\n\
01267 ================================================================================\n\
01268 MSG: sensor_msgs/JointState\n\
01269 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01270 #\n\
01271 # The state of each joint (revolute or prismatic) is defined by:\n\
01272 # * the position of the joint (rad or m),\n\
01273 # * the velocity of the joint (rad/s or m/s) and \n\
01274 # * the effort that is applied in the joint (Nm or N).\n\
01275 #\n\
01276 # Each joint is uniquely identified by its name\n\
01277 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01278 # in one message have to be recorded at the same time.\n\
01279 #\n\
01280 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01281 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01282 # effort associated with them, you can leave the effort array empty. \n\
01283 #\n\
01284 # All arrays in this message should have the same size, or be empty.\n\
01285 # This is the only way to uniquely associate the joint name with the correct\n\
01286 # states.\n\
01287 \n\
01288 \n\
01289 Header header\n\
01290 \n\
01291 string[] name\n\
01292 float64[] position\n\
01293 float64[] velocity\n\
01294 float64[] effort\n\
01295 \n\
01296 ================================================================================\n\
01297 MSG: object_manipulation_msgs/ReactiveGraspActionResult\n\
01298 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01299 \n\
01300 Header header\n\
01301 actionlib_msgs/GoalStatus status\n\
01302 ReactiveGraspResult result\n\
01303 \n\
01304 ================================================================================\n\
01305 MSG: actionlib_msgs/GoalStatus\n\
01306 GoalID goal_id\n\
01307 uint8 status\n\
01308 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
01309 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
01310 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
01311 # and has since completed its execution (Terminal State)\n\
01312 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
01313 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
01314 # to some failure (Terminal State)\n\
01315 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
01316 # because the goal was unattainable or invalid (Terminal State)\n\
01317 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
01318 # and has not yet completed execution\n\
01319 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
01320 # but the action server has not yet confirmed that the goal is canceled\n\
01321 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
01322 # and was successfully cancelled (Terminal State)\n\
01323 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
01324 # sent over the wire by an action server\n\
01325 \n\
01326 #Allow for the user to associate a string with GoalStatus for debugging\n\
01327 string text\n\
01328 \n\
01329 \n\
01330 ================================================================================\n\
01331 MSG: object_manipulation_msgs/ReactiveGraspResult\n\
01332 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01333 \n\
01334 # the result of the reactive grasp attempt\n\
01335 \n\
01336 ManipulationResult manipulation_result\n\
01337 \n\
01338 \n\
01339 ================================================================================\n\
01340 MSG: object_manipulation_msgs/ManipulationResult\n\
01341 # Result codes for manipulation tasks\n\
01342 \n\
01343 # task completed as expected\n\
01344 # generally means you can proceed as planned\n\
01345 int32 SUCCESS = 1\n\
01346 \n\
01347 # task not possible (e.g. out of reach or obstacles in the way)\n\
01348 # generally means that the world was not disturbed, so you can try another task\n\
01349 int32 UNFEASIBLE = -1\n\
01350 \n\
01351 # task was thought possible, but failed due to unexpected events during execution\n\
01352 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
01353 # your sensed world model before proceeding to another task\n\
01354 int32 FAILED = -2\n\
01355 \n\
01356 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
01357 # generally requires human attention\n\
01358 int32 ERROR = -3\n\
01359 \n\
01360 # means that at some point during execution we ended up in a state that the collision-aware\n\
01361 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
01362 # probably need a new collision map to move the arm out of the stuck position\n\
01363 int32 ARM_MOVEMENT_PREVENTED = -4\n\
01364 \n\
01365 # specific to grasp actions\n\
01366 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
01367 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
01368 int32 LIFT_FAILED = -5\n\
01369 \n\
01370 # specific to place actions\n\
01371 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
01372 # it is likely that the collision environment will see collisions between the hand and the object\n\
01373 int32 RETREAT_FAILED = -6\n\
01374 \n\
01375 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
01376 int32 CANCELLED = -7\n\
01377 \n\
01378 # the actual value of this error code\n\
01379 int32 value\n\
01380 \n\
01381 ================================================================================\n\
01382 MSG: object_manipulation_msgs/ReactiveGraspActionFeedback\n\
01383 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01384 \n\
01385 Header header\n\
01386 actionlib_msgs/GoalStatus status\n\
01387 ReactiveGraspFeedback feedback\n\
01388 \n\
01389 ================================================================================\n\
01390 MSG: object_manipulation_msgs/ReactiveGraspFeedback\n\
01391 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01392 \n\
01393 # which phase the grasp is in\n\
01394 \n\
01395 ManipulationPhase manipulation_phase\n\
01396 \n\
01397 \n\
01398 \n\
01399 \n\
01400 ================================================================================\n\
01401 MSG: object_manipulation_msgs/ManipulationPhase\n\
01402 int32 CHECKING_FEASIBILITY = 0\n\
01403 int32 MOVING_TO_PREGRASP = 1\n\
01404 int32 MOVING_TO_GRASP = 2\n\
01405 int32 CLOSING = 3 \n\
01406 int32 ADJUSTING_GRASP = 4\n\
01407 int32 LIFTING = 5\n\
01408 int32 MOVING_WITH_OBJECT = 6\n\
01409 int32 MOVING_TO_PLACE = 7\n\
01410 int32 PLACING = 8\n\
01411 int32 OPENING = 9\n\
01412 int32 RETREATING = 10\n\
01413 int32 MOVING_WITHOUT_OBJECT = 11\n\
01414 int32 SHAKING = 12\n\
01415 int32 SUCCEEDED = 13\n\
01416 int32 FAILED = 14\n\
01417 int32 ABORTED = 15\n\
01418 int32 HOLDING_OBJECT = 16\n\
01419 \n\
01420 int32 phase\n\
01421 ";
01422 }
01423
01424 static const char* value(const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> &) { return value(); }
01425 };
01426
01427 }
01428 }
01429
01430 namespace ros
01431 {
01432 namespace serialization
01433 {
01434
01435 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> >
01436 {
01437 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01438 {
01439 stream.next(m.action_goal);
01440 stream.next(m.action_result);
01441 stream.next(m.action_feedback);
01442 }
01443
01444 ROS_DECLARE_ALLINONE_SERIALIZER;
01445 };
01446 }
01447 }
01448
01449 namespace ros
01450 {
01451 namespace message_operations
01452 {
01453
01454 template<class ContainerAllocator>
01455 struct Printer< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> >
01456 {
01457 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> & v)
01458 {
01459 s << indent << "action_goal: ";
01460 s << std::endl;
01461 Printer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
01462 s << indent << "action_result: ";
01463 s << std::endl;
01464 Printer< ::object_manipulation_msgs::ReactiveGraspActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
01465 s << indent << "action_feedback: ";
01466 s << std::endl;
01467 Printer< ::object_manipulation_msgs::ReactiveGraspActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
01468 }
01469 };
01470
01471
01472 }
01473 }
01474
01475 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTION_H
01476