00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "geometry_msgs/PoseStamped.h"
00018 #include "object_manipulation_msgs/Grasp.h"
00019 #include "object_manipulation_msgs/GripperTranslation.h"
00020 #include "arm_navigation_msgs/Constraints.h"
00021 #include "arm_navigation_msgs/OrderedCollisionOperations.h"
00022 #include "arm_navigation_msgs/LinkPadding.h"
00023
00024 namespace object_manipulation_msgs
00025 {
00026 template <class ContainerAllocator>
00027 struct PlaceGoal_ {
00028 typedef PlaceGoal_<ContainerAllocator> Type;
00029
00030 PlaceGoal_()
00031 : arm_name()
00032 , place_locations()
00033 , grasp()
00034 , desired_retreat_distance(0.0)
00035 , min_retreat_distance(0.0)
00036 , approach()
00037 , collision_object_name()
00038 , collision_support_surface_name()
00039 , allow_gripper_support_collision(false)
00040 , use_reactive_place(false)
00041 , place_padding(0.0)
00042 , only_perform_feasibility_test(false)
00043 , path_constraints()
00044 , additional_collision_operations()
00045 , additional_link_padding()
00046 {
00047 }
00048
00049 PlaceGoal_(const ContainerAllocator& _alloc)
00050 : arm_name(_alloc)
00051 , place_locations(_alloc)
00052 , grasp(_alloc)
00053 , desired_retreat_distance(0.0)
00054 , min_retreat_distance(0.0)
00055 , approach(_alloc)
00056 , collision_object_name(_alloc)
00057 , collision_support_surface_name(_alloc)
00058 , allow_gripper_support_collision(false)
00059 , use_reactive_place(false)
00060 , place_padding(0.0)
00061 , only_perform_feasibility_test(false)
00062 , path_constraints(_alloc)
00063 , additional_collision_operations(_alloc)
00064 , additional_link_padding(_alloc)
00065 {
00066 }
00067
00068 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00069 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00070
00071 typedef std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > _place_locations_type;
00072 std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > place_locations;
00073
00074 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type;
00075 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp;
00076
00077 typedef float _desired_retreat_distance_type;
00078 float desired_retreat_distance;
00079
00080 typedef float _min_retreat_distance_type;
00081 float min_retreat_distance;
00082
00083 typedef ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> _approach_type;
00084 ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> approach;
00085
00086 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type;
00087 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name;
00088
00089 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00090 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00091
00092 typedef uint8_t _allow_gripper_support_collision_type;
00093 uint8_t allow_gripper_support_collision;
00094
00095 typedef uint8_t _use_reactive_place_type;
00096 uint8_t use_reactive_place;
00097
00098 typedef double _place_padding_type;
00099 double place_padding;
00100
00101 typedef uint8_t _only_perform_feasibility_test_type;
00102 uint8_t only_perform_feasibility_test;
00103
00104 typedef ::arm_navigation_msgs::Constraints_<ContainerAllocator> _path_constraints_type;
00105 ::arm_navigation_msgs::Constraints_<ContainerAllocator> path_constraints;
00106
00107 typedef ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> _additional_collision_operations_type;
00108 ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> additional_collision_operations;
00109
00110 typedef std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > _additional_link_padding_type;
00111 std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > additional_link_padding;
00112
00113
00114 ROS_DEPRECATED uint32_t get_place_locations_size() const { return (uint32_t)place_locations.size(); }
00115 ROS_DEPRECATED void set_place_locations_size(uint32_t size) { place_locations.resize((size_t)size); }
00116 ROS_DEPRECATED void get_place_locations_vec(std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > & vec) const { vec = this->place_locations; }
00117 ROS_DEPRECATED void set_place_locations_vec(const std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > & vec) { this->place_locations = vec; }
00118 ROS_DEPRECATED uint32_t get_additional_link_padding_size() const { return (uint32_t)additional_link_padding.size(); }
00119 ROS_DEPRECATED void set_additional_link_padding_size(uint32_t size) { additional_link_padding.resize((size_t)size); }
00120 ROS_DEPRECATED void get_additional_link_padding_vec(std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > & vec) const { vec = this->additional_link_padding; }
00121 ROS_DEPRECATED void set_additional_link_padding_vec(const std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > & vec) { this->additional_link_padding = vec; }
00122 private:
00123 static const char* __s_getDataType_() { return "object_manipulation_msgs/PlaceGoal"; }
00124 public:
00125 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00126
00127 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00128
00129 private:
00130 static const char* __s_getMD5Sum_() { return "6313a88996ba81ffc91a8fc15ca327b6"; }
00131 public:
00132 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00133
00134 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00135
00136 private:
00137 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00138 # An action for placing an object\n\
00139 \n\
00140 # which arm to be used for grasping\n\
00141 string arm_name\n\
00142 \n\
00143 # a list of possible transformations for placing the object (place_trans)\n\
00144 # the final pose of the wrist for placement (place_wrist_pose) is as follows:\n\
00145 # place_wrist_pose = place_trans * grasp_pose\n\
00146 # the frame_id for wrist_trans is defined here, and \n\
00147 # should be the same for all place_locations\n\
00148 geometry_msgs/PoseStamped[] place_locations\n\
00149 \n\
00150 # the grasp that has been executed on this object\n\
00151 # (contains the grasp_pose referred to above)\n\
00152 Grasp grasp\n\
00153 \n\
00154 # how far the retreat should ideally be away from the place location\n\
00155 float32 desired_retreat_distance\n\
00156 \n\
00157 # the min distance between the retreat and the place location that must actually be feasible \n\
00158 # for the place not to be rejected\n\
00159 float32 min_retreat_distance\n\
00160 \n\
00161 # how the place location should be approached\n\
00162 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00163 # or the gripper_frame specified in your hand description file\n\
00164 GripperTranslation approach\n\
00165 \n\
00166 # the name that the target object has in the collision map\n\
00167 # can be left empty if no name is available\n\
00168 string collision_object_name\n\
00169 \n\
00170 # the name that the support surface (e.g. table) has in the collision map\n\
00171 # can be left empty if no name is available\n\
00172 string collision_support_surface_name\n\
00173 \n\
00174 # whether collisions between the gripper and the support surface should be acceptable\n\
00175 # during move from pre-place to place and during retreat. Collisions when moving to the\n\
00176 # pre-place location are still not allowed even if this is set to true.\n\
00177 bool allow_gripper_support_collision\n\
00178 \n\
00179 # whether reactive placing based on tactile sensors should be used\n\
00180 bool use_reactive_place\n\
00181 \n\
00182 # how much the object should be padded by when deciding if the grasp\n\
00183 # location is freasible or not\n\
00184 float64 place_padding\n\
00185 \n\
00186 # set this to true if you only want to query the manipulation pipeline as to what \n\
00187 # place locations it thinks are feasible, without actually executing them. If this is set to \n\
00188 # true, the atempted_location_results field of the result will be populated, but no arm \n\
00189 # movement will be attempted\n\
00190 bool only_perform_feasibility_test\n\
00191 \n\
00192 # OPTIONAL (These will not have to be filled out most of the time)\n\
00193 # constraints to be imposed on every point in the motion of the arm\n\
00194 arm_navigation_msgs/Constraints path_constraints\n\
00195 \n\
00196 # OPTIONAL (These will not have to be filled out most of the time)\n\
00197 # additional collision operations to be used for every arm movement performed\n\
00198 # during placing. Note that these will be added on top of (and thus overide) other \n\
00199 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00200 # with care and only if special behaviors are desired.\n\
00201 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00202 \n\
00203 # OPTIONAL (These will not have to be filled out most of the time)\n\
00204 # additional link paddings to be used for every arm movement performed\n\
00205 # during placing. Note that these will be added on top of (and thus overide) other \n\
00206 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00207 # with care and only if special behaviors are desired.\n\
00208 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00209 \n\
00210 \n\
00211 ================================================================================\n\
00212 MSG: geometry_msgs/PoseStamped\n\
00213 # A Pose with reference coordinate frame and timestamp\n\
00214 Header header\n\
00215 Pose pose\n\
00216 \n\
00217 ================================================================================\n\
00218 MSG: std_msgs/Header\n\
00219 # Standard metadata for higher-level stamped data types.\n\
00220 # This is generally used to communicate timestamped data \n\
00221 # in a particular coordinate frame.\n\
00222 # \n\
00223 # sequence ID: consecutively increasing ID \n\
00224 uint32 seq\n\
00225 #Two-integer timestamp that is expressed as:\n\
00226 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00227 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00228 # time-handling sugar is provided by the client library\n\
00229 time stamp\n\
00230 #Frame this data is associated with\n\
00231 # 0: no frame\n\
00232 # 1: global frame\n\
00233 string frame_id\n\
00234 \n\
00235 ================================================================================\n\
00236 MSG: geometry_msgs/Pose\n\
00237 # A representation of pose in free space, composed of postion and orientation. \n\
00238 Point position\n\
00239 Quaternion orientation\n\
00240 \n\
00241 ================================================================================\n\
00242 MSG: geometry_msgs/Point\n\
00243 # This contains the position of a point in free space\n\
00244 float64 x\n\
00245 float64 y\n\
00246 float64 z\n\
00247 \n\
00248 ================================================================================\n\
00249 MSG: geometry_msgs/Quaternion\n\
00250 # This represents an orientation in free space in quaternion form.\n\
00251 \n\
00252 float64 x\n\
00253 float64 y\n\
00254 float64 z\n\
00255 float64 w\n\
00256 \n\
00257 ================================================================================\n\
00258 MSG: object_manipulation_msgs/Grasp\n\
00259 \n\
00260 # The internal posture of the hand for the pre-grasp\n\
00261 # only positions are used\n\
00262 sensor_msgs/JointState pre_grasp_posture\n\
00263 \n\
00264 # The internal posture of the hand for the grasp\n\
00265 # positions and efforts are used\n\
00266 sensor_msgs/JointState grasp_posture\n\
00267 \n\
00268 # The position of the end-effector for the grasp relative to a reference frame \n\
00269 # (that is always specified elsewhere, not in this message)\n\
00270 geometry_msgs/Pose grasp_pose\n\
00271 \n\
00272 # The estimated probability of success for this grasp\n\
00273 float64 success_probability\n\
00274 \n\
00275 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00276 bool cluster_rep\n\
00277 \n\
00278 # how far the pre-grasp should ideally be away from the grasp\n\
00279 float32 desired_approach_distance\n\
00280 \n\
00281 # how much distance between pre-grasp and grasp must actually be feasible \n\
00282 # for the grasp not to be rejected\n\
00283 float32 min_approach_distance\n\
00284 \n\
00285 # an optional list of obstacles that we have semantic information about\n\
00286 # and that we expect might move in the course of executing this grasp\n\
00287 # the grasp planner is expected to make sure they move in an OK way; during\n\
00288 # execution, grasp executors will not check for collisions against these objects\n\
00289 GraspableObject[] moved_obstacles\n\
00290 \n\
00291 ================================================================================\n\
00292 MSG: sensor_msgs/JointState\n\
00293 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00294 #\n\
00295 # The state of each joint (revolute or prismatic) is defined by:\n\
00296 # * the position of the joint (rad or m),\n\
00297 # * the velocity of the joint (rad/s or m/s) and \n\
00298 # * the effort that is applied in the joint (Nm or N).\n\
00299 #\n\
00300 # Each joint is uniquely identified by its name\n\
00301 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00302 # in one message have to be recorded at the same time.\n\
00303 #\n\
00304 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00305 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00306 # effort associated with them, you can leave the effort array empty. \n\
00307 #\n\
00308 # All arrays in this message should have the same size, or be empty.\n\
00309 # This is the only way to uniquely associate the joint name with the correct\n\
00310 # states.\n\
00311 \n\
00312 \n\
00313 Header header\n\
00314 \n\
00315 string[] name\n\
00316 float64[] position\n\
00317 float64[] velocity\n\
00318 float64[] effort\n\
00319 \n\
00320 ================================================================================\n\
00321 MSG: object_manipulation_msgs/GraspableObject\n\
00322 # an object that the object_manipulator can work on\n\
00323 \n\
00324 # a graspable object can be represented in multiple ways. This message\n\
00325 # can contain all of them. Which one is actually used is up to the receiver\n\
00326 # of this message. When adding new representations, one must be careful that\n\
00327 # they have reasonable lightweight defaults indicating that that particular\n\
00328 # representation is not available.\n\
00329 \n\
00330 # the tf frame to be used as a reference frame when combining information from\n\
00331 # the different representations below\n\
00332 string reference_frame_id\n\
00333 \n\
00334 # potential recognition results from a database of models\n\
00335 # all poses are relative to the object reference pose\n\
00336 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00337 \n\
00338 # the point cloud itself\n\
00339 sensor_msgs/PointCloud cluster\n\
00340 \n\
00341 # a region of a PointCloud2 of interest\n\
00342 object_manipulation_msgs/SceneRegion region\n\
00343 \n\
00344 # the name that this object has in the collision environment\n\
00345 string collision_name\n\
00346 ================================================================================\n\
00347 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00348 # Informs that a specific model from the Model Database has been \n\
00349 # identified at a certain location\n\
00350 \n\
00351 # the database id of the model\n\
00352 int32 model_id\n\
00353 \n\
00354 # the pose that it can be found in\n\
00355 geometry_msgs/PoseStamped pose\n\
00356 \n\
00357 # a measure of the confidence level in this detection result\n\
00358 float32 confidence\n\
00359 \n\
00360 # the name of the object detector that generated this detection result\n\
00361 string detector_name\n\
00362 \n\
00363 ================================================================================\n\
00364 MSG: sensor_msgs/PointCloud\n\
00365 # This message holds a collection of 3d points, plus optional additional\n\
00366 # information about each point.\n\
00367 \n\
00368 # Time of sensor data acquisition, coordinate frame ID.\n\
00369 Header header\n\
00370 \n\
00371 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00372 # in the frame given in the header.\n\
00373 geometry_msgs/Point32[] points\n\
00374 \n\
00375 # Each channel should have the same number of elements as points array,\n\
00376 # and the data in each channel should correspond 1:1 with each point.\n\
00377 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00378 ChannelFloat32[] channels\n\
00379 \n\
00380 ================================================================================\n\
00381 MSG: geometry_msgs/Point32\n\
00382 # This contains the position of a point in free space(with 32 bits of precision).\n\
00383 # It is recommeded to use Point wherever possible instead of Point32. \n\
00384 # \n\
00385 # This recommendation is to promote interoperability. \n\
00386 #\n\
00387 # This message is designed to take up less space when sending\n\
00388 # lots of points at once, as in the case of a PointCloud. \n\
00389 \n\
00390 float32 x\n\
00391 float32 y\n\
00392 float32 z\n\
00393 ================================================================================\n\
00394 MSG: sensor_msgs/ChannelFloat32\n\
00395 # This message is used by the PointCloud message to hold optional data\n\
00396 # associated with each point in the cloud. The length of the values\n\
00397 # array should be the same as the length of the points array in the\n\
00398 # PointCloud, and each value should be associated with the corresponding\n\
00399 # point.\n\
00400 \n\
00401 # Channel names in existing practice include:\n\
00402 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00403 # This is opposite to usual conventions but remains for\n\
00404 # historical reasons. The newer PointCloud2 message has no\n\
00405 # such problem.\n\
00406 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00407 # (R,G,B) values packed into the least significant 24 bits,\n\
00408 # in order.\n\
00409 # \"intensity\" - laser or pixel intensity.\n\
00410 # \"distance\"\n\
00411 \n\
00412 # The channel name should give semantics of the channel (e.g.\n\
00413 # \"intensity\" instead of \"value\").\n\
00414 string name\n\
00415 \n\
00416 # The values array should be 1-1 with the elements of the associated\n\
00417 # PointCloud.\n\
00418 float32[] values\n\
00419 \n\
00420 ================================================================================\n\
00421 MSG: object_manipulation_msgs/SceneRegion\n\
00422 # Point cloud\n\
00423 sensor_msgs/PointCloud2 cloud\n\
00424 \n\
00425 # Indices for the region of interest\n\
00426 int32[] mask\n\
00427 \n\
00428 # One of the corresponding 2D images, if applicable\n\
00429 sensor_msgs/Image image\n\
00430 \n\
00431 # The disparity image, if applicable\n\
00432 sensor_msgs/Image disparity_image\n\
00433 \n\
00434 # Camera info for the camera that took the image\n\
00435 sensor_msgs/CameraInfo cam_info\n\
00436 \n\
00437 # a 3D region of interest for grasp planning\n\
00438 geometry_msgs/PoseStamped roi_box_pose\n\
00439 geometry_msgs/Vector3 roi_box_dims\n\
00440 \n\
00441 ================================================================================\n\
00442 MSG: sensor_msgs/PointCloud2\n\
00443 # This message holds a collection of N-dimensional points, which may\n\
00444 # contain additional information such as normals, intensity, etc. The\n\
00445 # point data is stored as a binary blob, its layout described by the\n\
00446 # contents of the \"fields\" array.\n\
00447 \n\
00448 # The point cloud data may be organized 2d (image-like) or 1d\n\
00449 # (unordered). Point clouds organized as 2d images may be produced by\n\
00450 # camera depth sensors such as stereo or time-of-flight.\n\
00451 \n\
00452 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00453 # points).\n\
00454 Header header\n\
00455 \n\
00456 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00457 # 1 and width is the length of the point cloud.\n\
00458 uint32 height\n\
00459 uint32 width\n\
00460 \n\
00461 # Describes the channels and their layout in the binary data blob.\n\
00462 PointField[] fields\n\
00463 \n\
00464 bool is_bigendian # Is this data bigendian?\n\
00465 uint32 point_step # Length of a point in bytes\n\
00466 uint32 row_step # Length of a row in bytes\n\
00467 uint8[] data # Actual point data, size is (row_step*height)\n\
00468 \n\
00469 bool is_dense # True if there are no invalid points\n\
00470 \n\
00471 ================================================================================\n\
00472 MSG: sensor_msgs/PointField\n\
00473 # This message holds the description of one point entry in the\n\
00474 # PointCloud2 message format.\n\
00475 uint8 INT8 = 1\n\
00476 uint8 UINT8 = 2\n\
00477 uint8 INT16 = 3\n\
00478 uint8 UINT16 = 4\n\
00479 uint8 INT32 = 5\n\
00480 uint8 UINT32 = 6\n\
00481 uint8 FLOAT32 = 7\n\
00482 uint8 FLOAT64 = 8\n\
00483 \n\
00484 string name # Name of field\n\
00485 uint32 offset # Offset from start of point struct\n\
00486 uint8 datatype # Datatype enumeration, see above\n\
00487 uint32 count # How many elements in the field\n\
00488 \n\
00489 ================================================================================\n\
00490 MSG: sensor_msgs/Image\n\
00491 # This message contains an uncompressed image\n\
00492 # (0, 0) is at top-left corner of image\n\
00493 #\n\
00494 \n\
00495 Header header # Header timestamp should be acquisition time of image\n\
00496 # Header frame_id should be optical frame of camera\n\
00497 # origin of frame should be optical center of cameara\n\
00498 # +x should point to the right in the image\n\
00499 # +y should point down in the image\n\
00500 # +z should point into to plane of the image\n\
00501 # If the frame_id here and the frame_id of the CameraInfo\n\
00502 # message associated with the image conflict\n\
00503 # the behavior is undefined\n\
00504 \n\
00505 uint32 height # image height, that is, number of rows\n\
00506 uint32 width # image width, that is, number of columns\n\
00507 \n\
00508 # The legal values for encoding are in file src/image_encodings.cpp\n\
00509 # If you want to standardize a new string format, join\n\
00510 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00511 \n\
00512 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00513 # taken from the list of strings in src/image_encodings.cpp\n\
00514 \n\
00515 uint8 is_bigendian # is this data bigendian?\n\
00516 uint32 step # Full row length in bytes\n\
00517 uint8[] data # actual matrix data, size is (step * rows)\n\
00518 \n\
00519 ================================================================================\n\
00520 MSG: sensor_msgs/CameraInfo\n\
00521 # This message defines meta information for a camera. It should be in a\n\
00522 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00523 # image topics named:\n\
00524 #\n\
00525 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00526 # image - monochrome, distorted\n\
00527 # image_color - color, distorted\n\
00528 # image_rect - monochrome, rectified\n\
00529 # image_rect_color - color, rectified\n\
00530 #\n\
00531 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00532 # for producing the four processed image topics from image_raw and\n\
00533 # camera_info. The meaning of the camera parameters are described in\n\
00534 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00535 #\n\
00536 # The image_geometry package provides a user-friendly interface to\n\
00537 # common operations using this meta information. If you want to, e.g.,\n\
00538 # project a 3d point into image coordinates, we strongly recommend\n\
00539 # using image_geometry.\n\
00540 #\n\
00541 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00542 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00543 # indicates an uncalibrated camera.\n\
00544 \n\
00545 #######################################################################\n\
00546 # Image acquisition info #\n\
00547 #######################################################################\n\
00548 \n\
00549 # Time of image acquisition, camera coordinate frame ID\n\
00550 Header header # Header timestamp should be acquisition time of image\n\
00551 # Header frame_id should be optical frame of camera\n\
00552 # origin of frame should be optical center of camera\n\
00553 # +x should point to the right in the image\n\
00554 # +y should point down in the image\n\
00555 # +z should point into the plane of the image\n\
00556 \n\
00557 \n\
00558 #######################################################################\n\
00559 # Calibration Parameters #\n\
00560 #######################################################################\n\
00561 # These are fixed during camera calibration. Their values will be the #\n\
00562 # same in all messages until the camera is recalibrated. Note that #\n\
00563 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00564 # #\n\
00565 # The internal parameters can be used to warp a raw (distorted) image #\n\
00566 # to: #\n\
00567 # 1. An undistorted image (requires D and K) #\n\
00568 # 2. A rectified image (requires D, K, R) #\n\
00569 # The projection matrix P projects 3D points into the rectified image.#\n\
00570 #######################################################################\n\
00571 \n\
00572 # The image dimensions with which the camera was calibrated. Normally\n\
00573 # this will be the full camera resolution in pixels.\n\
00574 uint32 height\n\
00575 uint32 width\n\
00576 \n\
00577 # The distortion model used. Supported models are listed in\n\
00578 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00579 # simple model of radial and tangential distortion - is sufficent.\n\
00580 string distortion_model\n\
00581 \n\
00582 # The distortion parameters, size depending on the distortion model.\n\
00583 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00584 float64[] D\n\
00585 \n\
00586 # Intrinsic camera matrix for the raw (distorted) images.\n\
00587 # [fx 0 cx]\n\
00588 # K = [ 0 fy cy]\n\
00589 # [ 0 0 1]\n\
00590 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00591 # coordinates using the focal lengths (fx, fy) and principal point\n\
00592 # (cx, cy).\n\
00593 float64[9] K # 3x3 row-major matrix\n\
00594 \n\
00595 # Rectification matrix (stereo cameras only)\n\
00596 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00597 # stereo image plane so that epipolar lines in both stereo images are\n\
00598 # parallel.\n\
00599 float64[9] R # 3x3 row-major matrix\n\
00600 \n\
00601 # Projection/camera matrix\n\
00602 # [fx' 0 cx' Tx]\n\
00603 # P = [ 0 fy' cy' Ty]\n\
00604 # [ 0 0 1 0]\n\
00605 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00606 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00607 # is the normal camera intrinsic matrix for the rectified image.\n\
00608 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00609 # coordinates using the focal lengths (fx', fy') and principal point\n\
00610 # (cx', cy') - these may differ from the values in K.\n\
00611 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00612 # also have R = the identity and P[1:3,1:3] = K.\n\
00613 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00614 # position of the optical center of the second camera in the first\n\
00615 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00616 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00617 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00618 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00619 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00620 # the rectified image is given by:\n\
00621 # [u v w]' = P * [X Y Z 1]'\n\
00622 # x = u / w\n\
00623 # y = v / w\n\
00624 # This holds for both images of a stereo pair.\n\
00625 float64[12] P # 3x4 row-major matrix\n\
00626 \n\
00627 \n\
00628 #######################################################################\n\
00629 # Operational Parameters #\n\
00630 #######################################################################\n\
00631 # These define the image region actually captured by the camera #\n\
00632 # driver. Although they affect the geometry of the output image, they #\n\
00633 # may be changed freely without recalibrating the camera. #\n\
00634 #######################################################################\n\
00635 \n\
00636 # Binning refers here to any camera setting which combines rectangular\n\
00637 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00638 # resolution of the output image to\n\
00639 # (width / binning_x) x (height / binning_y).\n\
00640 # The default values binning_x = binning_y = 0 is considered the same\n\
00641 # as binning_x = binning_y = 1 (no subsampling).\n\
00642 uint32 binning_x\n\
00643 uint32 binning_y\n\
00644 \n\
00645 # Region of interest (subwindow of full camera resolution), given in\n\
00646 # full resolution (unbinned) image coordinates. A particular ROI\n\
00647 # always denotes the same window of pixels on the camera sensor,\n\
00648 # regardless of binning settings.\n\
00649 # The default setting of roi (all values 0) is considered the same as\n\
00650 # full resolution (roi.width = width, roi.height = height).\n\
00651 RegionOfInterest roi\n\
00652 \n\
00653 ================================================================================\n\
00654 MSG: sensor_msgs/RegionOfInterest\n\
00655 # This message is used to specify a region of interest within an image.\n\
00656 #\n\
00657 # When used to specify the ROI setting of the camera when the image was\n\
00658 # taken, the height and width fields should either match the height and\n\
00659 # width fields for the associated image; or height = width = 0\n\
00660 # indicates that the full resolution image was captured.\n\
00661 \n\
00662 uint32 x_offset # Leftmost pixel of the ROI\n\
00663 # (0 if the ROI includes the left edge of the image)\n\
00664 uint32 y_offset # Topmost pixel of the ROI\n\
00665 # (0 if the ROI includes the top edge of the image)\n\
00666 uint32 height # Height of ROI\n\
00667 uint32 width # Width of ROI\n\
00668 \n\
00669 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00670 # ROI in this message. Typically this should be False if the full image\n\
00671 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00672 # used).\n\
00673 bool do_rectify\n\
00674 \n\
00675 ================================================================================\n\
00676 MSG: geometry_msgs/Vector3\n\
00677 # This represents a vector in free space. \n\
00678 \n\
00679 float64 x\n\
00680 float64 y\n\
00681 float64 z\n\
00682 ================================================================================\n\
00683 MSG: object_manipulation_msgs/GripperTranslation\n\
00684 # defines a translation for the gripper, used in pickup or place tasks\n\
00685 # for example for lifting an object off a table or approaching the table for placing\n\
00686 \n\
00687 # the direction of the translation\n\
00688 geometry_msgs/Vector3Stamped direction\n\
00689 \n\
00690 # the desired translation distance\n\
00691 float32 desired_distance\n\
00692 \n\
00693 # the min distance that must be considered feasible before the\n\
00694 # grasp is even attempted\n\
00695 float32 min_distance\n\
00696 ================================================================================\n\
00697 MSG: geometry_msgs/Vector3Stamped\n\
00698 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00699 Header header\n\
00700 Vector3 vector\n\
00701 \n\
00702 ================================================================================\n\
00703 MSG: arm_navigation_msgs/Constraints\n\
00704 # This message contains a list of motion planning constraints.\n\
00705 \n\
00706 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00707 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00708 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00709 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00710 \n\
00711 ================================================================================\n\
00712 MSG: arm_navigation_msgs/JointConstraint\n\
00713 # Constrain the position of a joint to be within a certain bound\n\
00714 string joint_name\n\
00715 \n\
00716 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00717 float64 position\n\
00718 float64 tolerance_above\n\
00719 float64 tolerance_below\n\
00720 \n\
00721 # A weighting factor for this constraint\n\
00722 float64 weight\n\
00723 ================================================================================\n\
00724 MSG: arm_navigation_msgs/PositionConstraint\n\
00725 # This message contains the definition of a position constraint.\n\
00726 Header header\n\
00727 \n\
00728 # The robot link this constraint refers to\n\
00729 string link_name\n\
00730 \n\
00731 # The offset (in the link frame) for the target point on the link we are planning for\n\
00732 geometry_msgs/Point target_point_offset\n\
00733 \n\
00734 # The nominal/target position for the point we are planning for\n\
00735 geometry_msgs/Point position\n\
00736 \n\
00737 # The shape of the bounded region that constrains the position of the end-effector\n\
00738 # This region is always centered at the position defined above\n\
00739 arm_navigation_msgs/Shape constraint_region_shape\n\
00740 \n\
00741 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00742 # This allows the specification of non-axis aligned constraints\n\
00743 geometry_msgs/Quaternion constraint_region_orientation\n\
00744 \n\
00745 # Constraint weighting factor - a weight for this constraint\n\
00746 float64 weight\n\
00747 \n\
00748 ================================================================================\n\
00749 MSG: arm_navigation_msgs/Shape\n\
00750 byte SPHERE=0\n\
00751 byte BOX=1\n\
00752 byte CYLINDER=2\n\
00753 byte MESH=3\n\
00754 \n\
00755 byte type\n\
00756 \n\
00757 \n\
00758 #### define sphere, box, cylinder ####\n\
00759 # the origin of each shape is considered at the shape's center\n\
00760 \n\
00761 # for sphere\n\
00762 # radius := dimensions[0]\n\
00763 \n\
00764 # for cylinder\n\
00765 # radius := dimensions[0]\n\
00766 # length := dimensions[1]\n\
00767 # the length is along the Z axis\n\
00768 \n\
00769 # for box\n\
00770 # size_x := dimensions[0]\n\
00771 # size_y := dimensions[1]\n\
00772 # size_z := dimensions[2]\n\
00773 float64[] dimensions\n\
00774 \n\
00775 \n\
00776 #### define mesh ####\n\
00777 \n\
00778 # list of triangles; triangle k is defined by tre vertices located\n\
00779 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00780 int32[] triangles\n\
00781 geometry_msgs/Point[] vertices\n\
00782 \n\
00783 ================================================================================\n\
00784 MSG: arm_navigation_msgs/OrientationConstraint\n\
00785 # This message contains the definition of an orientation constraint.\n\
00786 Header header\n\
00787 \n\
00788 # The robot link this constraint refers to\n\
00789 string link_name\n\
00790 \n\
00791 # The type of the constraint\n\
00792 int32 type\n\
00793 int32 LINK_FRAME=0\n\
00794 int32 HEADER_FRAME=1\n\
00795 \n\
00796 # The desired orientation of the robot link specified as a quaternion\n\
00797 geometry_msgs/Quaternion orientation\n\
00798 \n\
00799 # optional RPY error tolerances specified if \n\
00800 float64 absolute_roll_tolerance\n\
00801 float64 absolute_pitch_tolerance\n\
00802 float64 absolute_yaw_tolerance\n\
00803 \n\
00804 # Constraint weighting factor - a weight for this constraint\n\
00805 float64 weight\n\
00806 \n\
00807 ================================================================================\n\
00808 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00809 # This message contains the definition of a visibility constraint.\n\
00810 Header header\n\
00811 \n\
00812 # The point stamped target that needs to be kept within view of the sensor\n\
00813 geometry_msgs/PointStamped target\n\
00814 \n\
00815 # The local pose of the frame in which visibility is to be maintained\n\
00816 # The frame id should represent the robot link to which the sensor is attached\n\
00817 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00818 geometry_msgs/PoseStamped sensor_pose\n\
00819 \n\
00820 # The deviation (in radians) that will be tolerated\n\
00821 # Constraint error will be measured as the solid angle between the \n\
00822 # X axis of the frame defined above and the vector between the origin \n\
00823 # of the frame defined above and the target location\n\
00824 float64 absolute_tolerance\n\
00825 \n\
00826 \n\
00827 ================================================================================\n\
00828 MSG: geometry_msgs/PointStamped\n\
00829 # This represents a Point with reference coordinate frame and timestamp\n\
00830 Header header\n\
00831 Point point\n\
00832 \n\
00833 ================================================================================\n\
00834 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00835 # A set of collision operations that will be performed in the order they are specified\n\
00836 CollisionOperation[] collision_operations\n\
00837 ================================================================================\n\
00838 MSG: arm_navigation_msgs/CollisionOperation\n\
00839 # A definition of a collision operation\n\
00840 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00841 # between the gripper and all objects in the collision space\n\
00842 \n\
00843 string object1\n\
00844 string object2\n\
00845 string COLLISION_SET_ALL=\"all\"\n\
00846 string COLLISION_SET_OBJECTS=\"objects\"\n\
00847 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00848 \n\
00849 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00850 float64 penetration_distance\n\
00851 \n\
00852 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00853 int32 operation\n\
00854 int32 DISABLE=0\n\
00855 int32 ENABLE=1\n\
00856 \n\
00857 ================================================================================\n\
00858 MSG: arm_navigation_msgs/LinkPadding\n\
00859 #name for the link\n\
00860 string link_name\n\
00861 \n\
00862 # padding to apply to the link\n\
00863 float64 padding\n\
00864 \n\
00865 "; }
00866 public:
00867 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00868
00869 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00870
00871 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00872 {
00873 ros::serialization::OStream stream(write_ptr, 1000000000);
00874 ros::serialization::serialize(stream, arm_name);
00875 ros::serialization::serialize(stream, place_locations);
00876 ros::serialization::serialize(stream, grasp);
00877 ros::serialization::serialize(stream, desired_retreat_distance);
00878 ros::serialization::serialize(stream, min_retreat_distance);
00879 ros::serialization::serialize(stream, approach);
00880 ros::serialization::serialize(stream, collision_object_name);
00881 ros::serialization::serialize(stream, collision_support_surface_name);
00882 ros::serialization::serialize(stream, allow_gripper_support_collision);
00883 ros::serialization::serialize(stream, use_reactive_place);
00884 ros::serialization::serialize(stream, place_padding);
00885 ros::serialization::serialize(stream, only_perform_feasibility_test);
00886 ros::serialization::serialize(stream, path_constraints);
00887 ros::serialization::serialize(stream, additional_collision_operations);
00888 ros::serialization::serialize(stream, additional_link_padding);
00889 return stream.getData();
00890 }
00891
00892 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00893 {
00894 ros::serialization::IStream stream(read_ptr, 1000000000);
00895 ros::serialization::deserialize(stream, arm_name);
00896 ros::serialization::deserialize(stream, place_locations);
00897 ros::serialization::deserialize(stream, grasp);
00898 ros::serialization::deserialize(stream, desired_retreat_distance);
00899 ros::serialization::deserialize(stream, min_retreat_distance);
00900 ros::serialization::deserialize(stream, approach);
00901 ros::serialization::deserialize(stream, collision_object_name);
00902 ros::serialization::deserialize(stream, collision_support_surface_name);
00903 ros::serialization::deserialize(stream, allow_gripper_support_collision);
00904 ros::serialization::deserialize(stream, use_reactive_place);
00905 ros::serialization::deserialize(stream, place_padding);
00906 ros::serialization::deserialize(stream, only_perform_feasibility_test);
00907 ros::serialization::deserialize(stream, path_constraints);
00908 ros::serialization::deserialize(stream, additional_collision_operations);
00909 ros::serialization::deserialize(stream, additional_link_padding);
00910 return stream.getData();
00911 }
00912
00913 ROS_DEPRECATED virtual uint32_t serializationLength() const
00914 {
00915 uint32_t size = 0;
00916 size += ros::serialization::serializationLength(arm_name);
00917 size += ros::serialization::serializationLength(place_locations);
00918 size += ros::serialization::serializationLength(grasp);
00919 size += ros::serialization::serializationLength(desired_retreat_distance);
00920 size += ros::serialization::serializationLength(min_retreat_distance);
00921 size += ros::serialization::serializationLength(approach);
00922 size += ros::serialization::serializationLength(collision_object_name);
00923 size += ros::serialization::serializationLength(collision_support_surface_name);
00924 size += ros::serialization::serializationLength(allow_gripper_support_collision);
00925 size += ros::serialization::serializationLength(use_reactive_place);
00926 size += ros::serialization::serializationLength(place_padding);
00927 size += ros::serialization::serializationLength(only_perform_feasibility_test);
00928 size += ros::serialization::serializationLength(path_constraints);
00929 size += ros::serialization::serializationLength(additional_collision_operations);
00930 size += ros::serialization::serializationLength(additional_link_padding);
00931 return size;
00932 }
00933
00934 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > Ptr;
00935 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> const> ConstPtr;
00936 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00937 };
00938 typedef ::object_manipulation_msgs::PlaceGoal_<std::allocator<void> > PlaceGoal;
00939
00940 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal> PlaceGoalPtr;
00941 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal const> PlaceGoalConstPtr;
00942
00943
00944 template<typename ContainerAllocator>
00945 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> & v)
00946 {
00947 ros::message_operations::Printer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> >::stream(s, "", v);
00948 return s;}
00949
00950 }
00951
00952 namespace ros
00953 {
00954 namespace message_traits
00955 {
00956 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > : public TrueType {};
00957 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> const> : public TrueType {};
00958 template<class ContainerAllocator>
00959 struct MD5Sum< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > {
00960 static const char* value()
00961 {
00962 return "6313a88996ba81ffc91a8fc15ca327b6";
00963 }
00964
00965 static const char* value(const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> &) { return value(); }
00966 static const uint64_t static_value1 = 0x6313a88996ba81ffULL;
00967 static const uint64_t static_value2 = 0xc91a8fc15ca327b6ULL;
00968 };
00969
00970 template<class ContainerAllocator>
00971 struct DataType< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > {
00972 static const char* value()
00973 {
00974 return "object_manipulation_msgs/PlaceGoal";
00975 }
00976
00977 static const char* value(const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> &) { return value(); }
00978 };
00979
00980 template<class ContainerAllocator>
00981 struct Definition< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > {
00982 static const char* value()
00983 {
00984 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00985 # An action for placing an object\n\
00986 \n\
00987 # which arm to be used for grasping\n\
00988 string arm_name\n\
00989 \n\
00990 # a list of possible transformations for placing the object (place_trans)\n\
00991 # the final pose of the wrist for placement (place_wrist_pose) is as follows:\n\
00992 # place_wrist_pose = place_trans * grasp_pose\n\
00993 # the frame_id for wrist_trans is defined here, and \n\
00994 # should be the same for all place_locations\n\
00995 geometry_msgs/PoseStamped[] place_locations\n\
00996 \n\
00997 # the grasp that has been executed on this object\n\
00998 # (contains the grasp_pose referred to above)\n\
00999 Grasp grasp\n\
01000 \n\
01001 # how far the retreat should ideally be away from the place location\n\
01002 float32 desired_retreat_distance\n\
01003 \n\
01004 # the min distance between the retreat and the place location that must actually be feasible \n\
01005 # for the place not to be rejected\n\
01006 float32 min_retreat_distance\n\
01007 \n\
01008 # how the place location should be approached\n\
01009 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
01010 # or the gripper_frame specified in your hand description file\n\
01011 GripperTranslation approach\n\
01012 \n\
01013 # the name that the target object has in the collision map\n\
01014 # can be left empty if no name is available\n\
01015 string collision_object_name\n\
01016 \n\
01017 # the name that the support surface (e.g. table) has in the collision map\n\
01018 # can be left empty if no name is available\n\
01019 string collision_support_surface_name\n\
01020 \n\
01021 # whether collisions between the gripper and the support surface should be acceptable\n\
01022 # during move from pre-place to place and during retreat. Collisions when moving to the\n\
01023 # pre-place location are still not allowed even if this is set to true.\n\
01024 bool allow_gripper_support_collision\n\
01025 \n\
01026 # whether reactive placing based on tactile sensors should be used\n\
01027 bool use_reactive_place\n\
01028 \n\
01029 # how much the object should be padded by when deciding if the grasp\n\
01030 # location is freasible or not\n\
01031 float64 place_padding\n\
01032 \n\
01033 # set this to true if you only want to query the manipulation pipeline as to what \n\
01034 # place locations it thinks are feasible, without actually executing them. If this is set to \n\
01035 # true, the atempted_location_results field of the result will be populated, but no arm \n\
01036 # movement will be attempted\n\
01037 bool only_perform_feasibility_test\n\
01038 \n\
01039 # OPTIONAL (These will not have to be filled out most of the time)\n\
01040 # constraints to be imposed on every point in the motion of the arm\n\
01041 arm_navigation_msgs/Constraints path_constraints\n\
01042 \n\
01043 # OPTIONAL (These will not have to be filled out most of the time)\n\
01044 # additional collision operations to be used for every arm movement performed\n\
01045 # during placing. Note that these will be added on top of (and thus overide) other \n\
01046 # collision operations that the grasping pipeline deems necessary. Should be used\n\
01047 # with care and only if special behaviors are desired.\n\
01048 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
01049 \n\
01050 # OPTIONAL (These will not have to be filled out most of the time)\n\
01051 # additional link paddings to be used for every arm movement performed\n\
01052 # during placing. Note that these will be added on top of (and thus overide) other \n\
01053 # link paddings that the grasping pipeline deems necessary. Should be used\n\
01054 # with care and only if special behaviors are desired.\n\
01055 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
01056 \n\
01057 \n\
01058 ================================================================================\n\
01059 MSG: geometry_msgs/PoseStamped\n\
01060 # A Pose with reference coordinate frame and timestamp\n\
01061 Header header\n\
01062 Pose pose\n\
01063 \n\
01064 ================================================================================\n\
01065 MSG: std_msgs/Header\n\
01066 # Standard metadata for higher-level stamped data types.\n\
01067 # This is generally used to communicate timestamped data \n\
01068 # in a particular coordinate frame.\n\
01069 # \n\
01070 # sequence ID: consecutively increasing ID \n\
01071 uint32 seq\n\
01072 #Two-integer timestamp that is expressed as:\n\
01073 # * stamp.secs: seconds (stamp_secs) since epoch\n\
01074 # * stamp.nsecs: nanoseconds since stamp_secs\n\
01075 # time-handling sugar is provided by the client library\n\
01076 time stamp\n\
01077 #Frame this data is associated with\n\
01078 # 0: no frame\n\
01079 # 1: global frame\n\
01080 string frame_id\n\
01081 \n\
01082 ================================================================================\n\
01083 MSG: geometry_msgs/Pose\n\
01084 # A representation of pose in free space, composed of postion and orientation. \n\
01085 Point position\n\
01086 Quaternion orientation\n\
01087 \n\
01088 ================================================================================\n\
01089 MSG: geometry_msgs/Point\n\
01090 # This contains the position of a point in free space\n\
01091 float64 x\n\
01092 float64 y\n\
01093 float64 z\n\
01094 \n\
01095 ================================================================================\n\
01096 MSG: geometry_msgs/Quaternion\n\
01097 # This represents an orientation in free space in quaternion form.\n\
01098 \n\
01099 float64 x\n\
01100 float64 y\n\
01101 float64 z\n\
01102 float64 w\n\
01103 \n\
01104 ================================================================================\n\
01105 MSG: object_manipulation_msgs/Grasp\n\
01106 \n\
01107 # The internal posture of the hand for the pre-grasp\n\
01108 # only positions are used\n\
01109 sensor_msgs/JointState pre_grasp_posture\n\
01110 \n\
01111 # The internal posture of the hand for the grasp\n\
01112 # positions and efforts are used\n\
01113 sensor_msgs/JointState grasp_posture\n\
01114 \n\
01115 # The position of the end-effector for the grasp relative to a reference frame \n\
01116 # (that is always specified elsewhere, not in this message)\n\
01117 geometry_msgs/Pose grasp_pose\n\
01118 \n\
01119 # The estimated probability of success for this grasp\n\
01120 float64 success_probability\n\
01121 \n\
01122 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01123 bool cluster_rep\n\
01124 \n\
01125 # how far the pre-grasp should ideally be away from the grasp\n\
01126 float32 desired_approach_distance\n\
01127 \n\
01128 # how much distance between pre-grasp and grasp must actually be feasible \n\
01129 # for the grasp not to be rejected\n\
01130 float32 min_approach_distance\n\
01131 \n\
01132 # an optional list of obstacles that we have semantic information about\n\
01133 # and that we expect might move in the course of executing this grasp\n\
01134 # the grasp planner is expected to make sure they move in an OK way; during\n\
01135 # execution, grasp executors will not check for collisions against these objects\n\
01136 GraspableObject[] moved_obstacles\n\
01137 \n\
01138 ================================================================================\n\
01139 MSG: sensor_msgs/JointState\n\
01140 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01141 #\n\
01142 # The state of each joint (revolute or prismatic) is defined by:\n\
01143 # * the position of the joint (rad or m),\n\
01144 # * the velocity of the joint (rad/s or m/s) and \n\
01145 # * the effort that is applied in the joint (Nm or N).\n\
01146 #\n\
01147 # Each joint is uniquely identified by its name\n\
01148 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01149 # in one message have to be recorded at the same time.\n\
01150 #\n\
01151 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01152 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01153 # effort associated with them, you can leave the effort array empty. \n\
01154 #\n\
01155 # All arrays in this message should have the same size, or be empty.\n\
01156 # This is the only way to uniquely associate the joint name with the correct\n\
01157 # states.\n\
01158 \n\
01159 \n\
01160 Header header\n\
01161 \n\
01162 string[] name\n\
01163 float64[] position\n\
01164 float64[] velocity\n\
01165 float64[] effort\n\
01166 \n\
01167 ================================================================================\n\
01168 MSG: object_manipulation_msgs/GraspableObject\n\
01169 # an object that the object_manipulator can work on\n\
01170 \n\
01171 # a graspable object can be represented in multiple ways. This message\n\
01172 # can contain all of them. Which one is actually used is up to the receiver\n\
01173 # of this message. When adding new representations, one must be careful that\n\
01174 # they have reasonable lightweight defaults indicating that that particular\n\
01175 # representation is not available.\n\
01176 \n\
01177 # the tf frame to be used as a reference frame when combining information from\n\
01178 # the different representations below\n\
01179 string reference_frame_id\n\
01180 \n\
01181 # potential recognition results from a database of models\n\
01182 # all poses are relative to the object reference pose\n\
01183 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
01184 \n\
01185 # the point cloud itself\n\
01186 sensor_msgs/PointCloud cluster\n\
01187 \n\
01188 # a region of a PointCloud2 of interest\n\
01189 object_manipulation_msgs/SceneRegion region\n\
01190 \n\
01191 # the name that this object has in the collision environment\n\
01192 string collision_name\n\
01193 ================================================================================\n\
01194 MSG: household_objects_database_msgs/DatabaseModelPose\n\
01195 # Informs that a specific model from the Model Database has been \n\
01196 # identified at a certain location\n\
01197 \n\
01198 # the database id of the model\n\
01199 int32 model_id\n\
01200 \n\
01201 # the pose that it can be found in\n\
01202 geometry_msgs/PoseStamped pose\n\
01203 \n\
01204 # a measure of the confidence level in this detection result\n\
01205 float32 confidence\n\
01206 \n\
01207 # the name of the object detector that generated this detection result\n\
01208 string detector_name\n\
01209 \n\
01210 ================================================================================\n\
01211 MSG: sensor_msgs/PointCloud\n\
01212 # This message holds a collection of 3d points, plus optional additional\n\
01213 # information about each point.\n\
01214 \n\
01215 # Time of sensor data acquisition, coordinate frame ID.\n\
01216 Header header\n\
01217 \n\
01218 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01219 # in the frame given in the header.\n\
01220 geometry_msgs/Point32[] points\n\
01221 \n\
01222 # Each channel should have the same number of elements as points array,\n\
01223 # and the data in each channel should correspond 1:1 with each point.\n\
01224 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01225 ChannelFloat32[] channels\n\
01226 \n\
01227 ================================================================================\n\
01228 MSG: geometry_msgs/Point32\n\
01229 # This contains the position of a point in free space(with 32 bits of precision).\n\
01230 # It is recommeded to use Point wherever possible instead of Point32. \n\
01231 # \n\
01232 # This recommendation is to promote interoperability. \n\
01233 #\n\
01234 # This message is designed to take up less space when sending\n\
01235 # lots of points at once, as in the case of a PointCloud. \n\
01236 \n\
01237 float32 x\n\
01238 float32 y\n\
01239 float32 z\n\
01240 ================================================================================\n\
01241 MSG: sensor_msgs/ChannelFloat32\n\
01242 # This message is used by the PointCloud message to hold optional data\n\
01243 # associated with each point in the cloud. The length of the values\n\
01244 # array should be the same as the length of the points array in the\n\
01245 # PointCloud, and each value should be associated with the corresponding\n\
01246 # point.\n\
01247 \n\
01248 # Channel names in existing practice include:\n\
01249 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01250 # This is opposite to usual conventions but remains for\n\
01251 # historical reasons. The newer PointCloud2 message has no\n\
01252 # such problem.\n\
01253 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01254 # (R,G,B) values packed into the least significant 24 bits,\n\
01255 # in order.\n\
01256 # \"intensity\" - laser or pixel intensity.\n\
01257 # \"distance\"\n\
01258 \n\
01259 # The channel name should give semantics of the channel (e.g.\n\
01260 # \"intensity\" instead of \"value\").\n\
01261 string name\n\
01262 \n\
01263 # The values array should be 1-1 with the elements of the associated\n\
01264 # PointCloud.\n\
01265 float32[] values\n\
01266 \n\
01267 ================================================================================\n\
01268 MSG: object_manipulation_msgs/SceneRegion\n\
01269 # Point cloud\n\
01270 sensor_msgs/PointCloud2 cloud\n\
01271 \n\
01272 # Indices for the region of interest\n\
01273 int32[] mask\n\
01274 \n\
01275 # One of the corresponding 2D images, if applicable\n\
01276 sensor_msgs/Image image\n\
01277 \n\
01278 # The disparity image, if applicable\n\
01279 sensor_msgs/Image disparity_image\n\
01280 \n\
01281 # Camera info for the camera that took the image\n\
01282 sensor_msgs/CameraInfo cam_info\n\
01283 \n\
01284 # a 3D region of interest for grasp planning\n\
01285 geometry_msgs/PoseStamped roi_box_pose\n\
01286 geometry_msgs/Vector3 roi_box_dims\n\
01287 \n\
01288 ================================================================================\n\
01289 MSG: sensor_msgs/PointCloud2\n\
01290 # This message holds a collection of N-dimensional points, which may\n\
01291 # contain additional information such as normals, intensity, etc. The\n\
01292 # point data is stored as a binary blob, its layout described by the\n\
01293 # contents of the \"fields\" array.\n\
01294 \n\
01295 # The point cloud data may be organized 2d (image-like) or 1d\n\
01296 # (unordered). Point clouds organized as 2d images may be produced by\n\
01297 # camera depth sensors such as stereo or time-of-flight.\n\
01298 \n\
01299 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01300 # points).\n\
01301 Header header\n\
01302 \n\
01303 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01304 # 1 and width is the length of the point cloud.\n\
01305 uint32 height\n\
01306 uint32 width\n\
01307 \n\
01308 # Describes the channels and their layout in the binary data blob.\n\
01309 PointField[] fields\n\
01310 \n\
01311 bool is_bigendian # Is this data bigendian?\n\
01312 uint32 point_step # Length of a point in bytes\n\
01313 uint32 row_step # Length of a row in bytes\n\
01314 uint8[] data # Actual point data, size is (row_step*height)\n\
01315 \n\
01316 bool is_dense # True if there are no invalid points\n\
01317 \n\
01318 ================================================================================\n\
01319 MSG: sensor_msgs/PointField\n\
01320 # This message holds the description of one point entry in the\n\
01321 # PointCloud2 message format.\n\
01322 uint8 INT8 = 1\n\
01323 uint8 UINT8 = 2\n\
01324 uint8 INT16 = 3\n\
01325 uint8 UINT16 = 4\n\
01326 uint8 INT32 = 5\n\
01327 uint8 UINT32 = 6\n\
01328 uint8 FLOAT32 = 7\n\
01329 uint8 FLOAT64 = 8\n\
01330 \n\
01331 string name # Name of field\n\
01332 uint32 offset # Offset from start of point struct\n\
01333 uint8 datatype # Datatype enumeration, see above\n\
01334 uint32 count # How many elements in the field\n\
01335 \n\
01336 ================================================================================\n\
01337 MSG: sensor_msgs/Image\n\
01338 # This message contains an uncompressed image\n\
01339 # (0, 0) is at top-left corner of image\n\
01340 #\n\
01341 \n\
01342 Header header # Header timestamp should be acquisition time of image\n\
01343 # Header frame_id should be optical frame of camera\n\
01344 # origin of frame should be optical center of cameara\n\
01345 # +x should point to the right in the image\n\
01346 # +y should point down in the image\n\
01347 # +z should point into to plane of the image\n\
01348 # If the frame_id here and the frame_id of the CameraInfo\n\
01349 # message associated with the image conflict\n\
01350 # the behavior is undefined\n\
01351 \n\
01352 uint32 height # image height, that is, number of rows\n\
01353 uint32 width # image width, that is, number of columns\n\
01354 \n\
01355 # The legal values for encoding are in file src/image_encodings.cpp\n\
01356 # If you want to standardize a new string format, join\n\
01357 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01358 \n\
01359 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01360 # taken from the list of strings in src/image_encodings.cpp\n\
01361 \n\
01362 uint8 is_bigendian # is this data bigendian?\n\
01363 uint32 step # Full row length in bytes\n\
01364 uint8[] data # actual matrix data, size is (step * rows)\n\
01365 \n\
01366 ================================================================================\n\
01367 MSG: sensor_msgs/CameraInfo\n\
01368 # This message defines meta information for a camera. It should be in a\n\
01369 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01370 # image topics named:\n\
01371 #\n\
01372 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01373 # image - monochrome, distorted\n\
01374 # image_color - color, distorted\n\
01375 # image_rect - monochrome, rectified\n\
01376 # image_rect_color - color, rectified\n\
01377 #\n\
01378 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01379 # for producing the four processed image topics from image_raw and\n\
01380 # camera_info. The meaning of the camera parameters are described in\n\
01381 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01382 #\n\
01383 # The image_geometry package provides a user-friendly interface to\n\
01384 # common operations using this meta information. If you want to, e.g.,\n\
01385 # project a 3d point into image coordinates, we strongly recommend\n\
01386 # using image_geometry.\n\
01387 #\n\
01388 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01389 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01390 # indicates an uncalibrated camera.\n\
01391 \n\
01392 #######################################################################\n\
01393 # Image acquisition info #\n\
01394 #######################################################################\n\
01395 \n\
01396 # Time of image acquisition, camera coordinate frame ID\n\
01397 Header header # Header timestamp should be acquisition time of image\n\
01398 # Header frame_id should be optical frame of camera\n\
01399 # origin of frame should be optical center of camera\n\
01400 # +x should point to the right in the image\n\
01401 # +y should point down in the image\n\
01402 # +z should point into the plane of the image\n\
01403 \n\
01404 \n\
01405 #######################################################################\n\
01406 # Calibration Parameters #\n\
01407 #######################################################################\n\
01408 # These are fixed during camera calibration. Their values will be the #\n\
01409 # same in all messages until the camera is recalibrated. Note that #\n\
01410 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01411 # #\n\
01412 # The internal parameters can be used to warp a raw (distorted) image #\n\
01413 # to: #\n\
01414 # 1. An undistorted image (requires D and K) #\n\
01415 # 2. A rectified image (requires D, K, R) #\n\
01416 # The projection matrix P projects 3D points into the rectified image.#\n\
01417 #######################################################################\n\
01418 \n\
01419 # The image dimensions with which the camera was calibrated. Normally\n\
01420 # this will be the full camera resolution in pixels.\n\
01421 uint32 height\n\
01422 uint32 width\n\
01423 \n\
01424 # The distortion model used. Supported models are listed in\n\
01425 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01426 # simple model of radial and tangential distortion - is sufficent.\n\
01427 string distortion_model\n\
01428 \n\
01429 # The distortion parameters, size depending on the distortion model.\n\
01430 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01431 float64[] D\n\
01432 \n\
01433 # Intrinsic camera matrix for the raw (distorted) images.\n\
01434 # [fx 0 cx]\n\
01435 # K = [ 0 fy cy]\n\
01436 # [ 0 0 1]\n\
01437 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01438 # coordinates using the focal lengths (fx, fy) and principal point\n\
01439 # (cx, cy).\n\
01440 float64[9] K # 3x3 row-major matrix\n\
01441 \n\
01442 # Rectification matrix (stereo cameras only)\n\
01443 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01444 # stereo image plane so that epipolar lines in both stereo images are\n\
01445 # parallel.\n\
01446 float64[9] R # 3x3 row-major matrix\n\
01447 \n\
01448 # Projection/camera matrix\n\
01449 # [fx' 0 cx' Tx]\n\
01450 # P = [ 0 fy' cy' Ty]\n\
01451 # [ 0 0 1 0]\n\
01452 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01453 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01454 # is the normal camera intrinsic matrix for the rectified image.\n\
01455 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01456 # coordinates using the focal lengths (fx', fy') and principal point\n\
01457 # (cx', cy') - these may differ from the values in K.\n\
01458 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01459 # also have R = the identity and P[1:3,1:3] = K.\n\
01460 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01461 # position of the optical center of the second camera in the first\n\
01462 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01463 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01464 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01465 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01466 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01467 # the rectified image is given by:\n\
01468 # [u v w]' = P * [X Y Z 1]'\n\
01469 # x = u / w\n\
01470 # y = v / w\n\
01471 # This holds for both images of a stereo pair.\n\
01472 float64[12] P # 3x4 row-major matrix\n\
01473 \n\
01474 \n\
01475 #######################################################################\n\
01476 # Operational Parameters #\n\
01477 #######################################################################\n\
01478 # These define the image region actually captured by the camera #\n\
01479 # driver. Although they affect the geometry of the output image, they #\n\
01480 # may be changed freely without recalibrating the camera. #\n\
01481 #######################################################################\n\
01482 \n\
01483 # Binning refers here to any camera setting which combines rectangular\n\
01484 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01485 # resolution of the output image to\n\
01486 # (width / binning_x) x (height / binning_y).\n\
01487 # The default values binning_x = binning_y = 0 is considered the same\n\
01488 # as binning_x = binning_y = 1 (no subsampling).\n\
01489 uint32 binning_x\n\
01490 uint32 binning_y\n\
01491 \n\
01492 # Region of interest (subwindow of full camera resolution), given in\n\
01493 # full resolution (unbinned) image coordinates. A particular ROI\n\
01494 # always denotes the same window of pixels on the camera sensor,\n\
01495 # regardless of binning settings.\n\
01496 # The default setting of roi (all values 0) is considered the same as\n\
01497 # full resolution (roi.width = width, roi.height = height).\n\
01498 RegionOfInterest roi\n\
01499 \n\
01500 ================================================================================\n\
01501 MSG: sensor_msgs/RegionOfInterest\n\
01502 # This message is used to specify a region of interest within an image.\n\
01503 #\n\
01504 # When used to specify the ROI setting of the camera when the image was\n\
01505 # taken, the height and width fields should either match the height and\n\
01506 # width fields for the associated image; or height = width = 0\n\
01507 # indicates that the full resolution image was captured.\n\
01508 \n\
01509 uint32 x_offset # Leftmost pixel of the ROI\n\
01510 # (0 if the ROI includes the left edge of the image)\n\
01511 uint32 y_offset # Topmost pixel of the ROI\n\
01512 # (0 if the ROI includes the top edge of the image)\n\
01513 uint32 height # Height of ROI\n\
01514 uint32 width # Width of ROI\n\
01515 \n\
01516 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01517 # ROI in this message. Typically this should be False if the full image\n\
01518 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01519 # used).\n\
01520 bool do_rectify\n\
01521 \n\
01522 ================================================================================\n\
01523 MSG: geometry_msgs/Vector3\n\
01524 # This represents a vector in free space. \n\
01525 \n\
01526 float64 x\n\
01527 float64 y\n\
01528 float64 z\n\
01529 ================================================================================\n\
01530 MSG: object_manipulation_msgs/GripperTranslation\n\
01531 # defines a translation for the gripper, used in pickup or place tasks\n\
01532 # for example for lifting an object off a table or approaching the table for placing\n\
01533 \n\
01534 # the direction of the translation\n\
01535 geometry_msgs/Vector3Stamped direction\n\
01536 \n\
01537 # the desired translation distance\n\
01538 float32 desired_distance\n\
01539 \n\
01540 # the min distance that must be considered feasible before the\n\
01541 # grasp is even attempted\n\
01542 float32 min_distance\n\
01543 ================================================================================\n\
01544 MSG: geometry_msgs/Vector3Stamped\n\
01545 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01546 Header header\n\
01547 Vector3 vector\n\
01548 \n\
01549 ================================================================================\n\
01550 MSG: arm_navigation_msgs/Constraints\n\
01551 # This message contains a list of motion planning constraints.\n\
01552 \n\
01553 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
01554 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
01555 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
01556 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
01557 \n\
01558 ================================================================================\n\
01559 MSG: arm_navigation_msgs/JointConstraint\n\
01560 # Constrain the position of a joint to be within a certain bound\n\
01561 string joint_name\n\
01562 \n\
01563 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
01564 float64 position\n\
01565 float64 tolerance_above\n\
01566 float64 tolerance_below\n\
01567 \n\
01568 # A weighting factor for this constraint\n\
01569 float64 weight\n\
01570 ================================================================================\n\
01571 MSG: arm_navigation_msgs/PositionConstraint\n\
01572 # This message contains the definition of a position constraint.\n\
01573 Header header\n\
01574 \n\
01575 # The robot link this constraint refers to\n\
01576 string link_name\n\
01577 \n\
01578 # The offset (in the link frame) for the target point on the link we are planning for\n\
01579 geometry_msgs/Point target_point_offset\n\
01580 \n\
01581 # The nominal/target position for the point we are planning for\n\
01582 geometry_msgs/Point position\n\
01583 \n\
01584 # The shape of the bounded region that constrains the position of the end-effector\n\
01585 # This region is always centered at the position defined above\n\
01586 arm_navigation_msgs/Shape constraint_region_shape\n\
01587 \n\
01588 # The orientation of the bounded region that constrains the position of the end-effector. \n\
01589 # This allows the specification of non-axis aligned constraints\n\
01590 geometry_msgs/Quaternion constraint_region_orientation\n\
01591 \n\
01592 # Constraint weighting factor - a weight for this constraint\n\
01593 float64 weight\n\
01594 \n\
01595 ================================================================================\n\
01596 MSG: arm_navigation_msgs/Shape\n\
01597 byte SPHERE=0\n\
01598 byte BOX=1\n\
01599 byte CYLINDER=2\n\
01600 byte MESH=3\n\
01601 \n\
01602 byte type\n\
01603 \n\
01604 \n\
01605 #### define sphere, box, cylinder ####\n\
01606 # the origin of each shape is considered at the shape's center\n\
01607 \n\
01608 # for sphere\n\
01609 # radius := dimensions[0]\n\
01610 \n\
01611 # for cylinder\n\
01612 # radius := dimensions[0]\n\
01613 # length := dimensions[1]\n\
01614 # the length is along the Z axis\n\
01615 \n\
01616 # for box\n\
01617 # size_x := dimensions[0]\n\
01618 # size_y := dimensions[1]\n\
01619 # size_z := dimensions[2]\n\
01620 float64[] dimensions\n\
01621 \n\
01622 \n\
01623 #### define mesh ####\n\
01624 \n\
01625 # list of triangles; triangle k is defined by tre vertices located\n\
01626 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
01627 int32[] triangles\n\
01628 geometry_msgs/Point[] vertices\n\
01629 \n\
01630 ================================================================================\n\
01631 MSG: arm_navigation_msgs/OrientationConstraint\n\
01632 # This message contains the definition of an orientation constraint.\n\
01633 Header header\n\
01634 \n\
01635 # The robot link this constraint refers to\n\
01636 string link_name\n\
01637 \n\
01638 # The type of the constraint\n\
01639 int32 type\n\
01640 int32 LINK_FRAME=0\n\
01641 int32 HEADER_FRAME=1\n\
01642 \n\
01643 # The desired orientation of the robot link specified as a quaternion\n\
01644 geometry_msgs/Quaternion orientation\n\
01645 \n\
01646 # optional RPY error tolerances specified if \n\
01647 float64 absolute_roll_tolerance\n\
01648 float64 absolute_pitch_tolerance\n\
01649 float64 absolute_yaw_tolerance\n\
01650 \n\
01651 # Constraint weighting factor - a weight for this constraint\n\
01652 float64 weight\n\
01653 \n\
01654 ================================================================================\n\
01655 MSG: arm_navigation_msgs/VisibilityConstraint\n\
01656 # This message contains the definition of a visibility constraint.\n\
01657 Header header\n\
01658 \n\
01659 # The point stamped target that needs to be kept within view of the sensor\n\
01660 geometry_msgs/PointStamped target\n\
01661 \n\
01662 # The local pose of the frame in which visibility is to be maintained\n\
01663 # The frame id should represent the robot link to which the sensor is attached\n\
01664 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
01665 geometry_msgs/PoseStamped sensor_pose\n\
01666 \n\
01667 # The deviation (in radians) that will be tolerated\n\
01668 # Constraint error will be measured as the solid angle between the \n\
01669 # X axis of the frame defined above and the vector between the origin \n\
01670 # of the frame defined above and the target location\n\
01671 float64 absolute_tolerance\n\
01672 \n\
01673 \n\
01674 ================================================================================\n\
01675 MSG: geometry_msgs/PointStamped\n\
01676 # This represents a Point with reference coordinate frame and timestamp\n\
01677 Header header\n\
01678 Point point\n\
01679 \n\
01680 ================================================================================\n\
01681 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
01682 # A set of collision operations that will be performed in the order they are specified\n\
01683 CollisionOperation[] collision_operations\n\
01684 ================================================================================\n\
01685 MSG: arm_navigation_msgs/CollisionOperation\n\
01686 # A definition of a collision operation\n\
01687 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
01688 # between the gripper and all objects in the collision space\n\
01689 \n\
01690 string object1\n\
01691 string object2\n\
01692 string COLLISION_SET_ALL=\"all\"\n\
01693 string COLLISION_SET_OBJECTS=\"objects\"\n\
01694 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
01695 \n\
01696 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
01697 float64 penetration_distance\n\
01698 \n\
01699 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
01700 int32 operation\n\
01701 int32 DISABLE=0\n\
01702 int32 ENABLE=1\n\
01703 \n\
01704 ================================================================================\n\
01705 MSG: arm_navigation_msgs/LinkPadding\n\
01706 #name for the link\n\
01707 string link_name\n\
01708 \n\
01709 # padding to apply to the link\n\
01710 float64 padding\n\
01711 \n\
01712 ";
01713 }
01714
01715 static const char* value(const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> &) { return value(); }
01716 };
01717
01718 }
01719 }
01720
01721 namespace ros
01722 {
01723 namespace serialization
01724 {
01725
01726 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> >
01727 {
01728 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01729 {
01730 stream.next(m.arm_name);
01731 stream.next(m.place_locations);
01732 stream.next(m.grasp);
01733 stream.next(m.desired_retreat_distance);
01734 stream.next(m.min_retreat_distance);
01735 stream.next(m.approach);
01736 stream.next(m.collision_object_name);
01737 stream.next(m.collision_support_surface_name);
01738 stream.next(m.allow_gripper_support_collision);
01739 stream.next(m.use_reactive_place);
01740 stream.next(m.place_padding);
01741 stream.next(m.only_perform_feasibility_test);
01742 stream.next(m.path_constraints);
01743 stream.next(m.additional_collision_operations);
01744 stream.next(m.additional_link_padding);
01745 }
01746
01747 ROS_DECLARE_ALLINONE_SERIALIZER;
01748 };
01749 }
01750 }
01751
01752 namespace ros
01753 {
01754 namespace message_operations
01755 {
01756
01757 template<class ContainerAllocator>
01758 struct Printer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> >
01759 {
01760 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> & v)
01761 {
01762 s << indent << "arm_name: ";
01763 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
01764 s << indent << "place_locations[]" << std::endl;
01765 for (size_t i = 0; i < v.place_locations.size(); ++i)
01766 {
01767 s << indent << " place_locations[" << i << "]: ";
01768 s << std::endl;
01769 s << indent;
01770 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.place_locations[i]);
01771 }
01772 s << indent << "grasp: ";
01773 s << std::endl;
01774 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasp);
01775 s << indent << "desired_retreat_distance: ";
01776 Printer<float>::stream(s, indent + " ", v.desired_retreat_distance);
01777 s << indent << "min_retreat_distance: ";
01778 Printer<float>::stream(s, indent + " ", v.min_retreat_distance);
01779 s << indent << "approach: ";
01780 s << std::endl;
01781 Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + " ", v.approach);
01782 s << indent << "collision_object_name: ";
01783 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_object_name);
01784 s << indent << "collision_support_surface_name: ";
01785 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name);
01786 s << indent << "allow_gripper_support_collision: ";
01787 Printer<uint8_t>::stream(s, indent + " ", v.allow_gripper_support_collision);
01788 s << indent << "use_reactive_place: ";
01789 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_place);
01790 s << indent << "place_padding: ";
01791 Printer<double>::stream(s, indent + " ", v.place_padding);
01792 s << indent << "only_perform_feasibility_test: ";
01793 Printer<uint8_t>::stream(s, indent + " ", v.only_perform_feasibility_test);
01794 s << indent << "path_constraints: ";
01795 s << std::endl;
01796 Printer< ::arm_navigation_msgs::Constraints_<ContainerAllocator> >::stream(s, indent + " ", v.path_constraints);
01797 s << indent << "additional_collision_operations: ";
01798 s << std::endl;
01799 Printer< ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> >::stream(s, indent + " ", v.additional_collision_operations);
01800 s << indent << "additional_link_padding[]" << std::endl;
01801 for (size_t i = 0; i < v.additional_link_padding.size(); ++i)
01802 {
01803 s << indent << " additional_link_padding[" << i << "]: ";
01804 s << std::endl;
01805 s << indent;
01806 Printer< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::stream(s, indent + " ", v.additional_link_padding[i]);
01807 }
01808 }
01809 };
01810
01811
01812 }
01813 }
01814
01815 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEGOAL_H
01816