$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/PlaceGoal.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEGOAL_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "geometry_msgs/PoseStamped.h" 00018 #include "object_manipulation_msgs/Grasp.h" 00019 #include "object_manipulation_msgs/GripperTranslation.h" 00020 #include "arm_navigation_msgs/Constraints.h" 00021 #include "arm_navigation_msgs/OrderedCollisionOperations.h" 00022 #include "arm_navigation_msgs/LinkPadding.h" 00023 00024 namespace object_manipulation_msgs 00025 { 00026 template <class ContainerAllocator> 00027 struct PlaceGoal_ { 00028 typedef PlaceGoal_<ContainerAllocator> Type; 00029 00030 PlaceGoal_() 00031 : arm_name() 00032 , place_locations() 00033 , grasp() 00034 , desired_retreat_distance(0.0) 00035 , min_retreat_distance(0.0) 00036 , approach() 00037 , collision_object_name() 00038 , collision_support_surface_name() 00039 , allow_gripper_support_collision(false) 00040 , use_reactive_place(false) 00041 , place_padding(0.0) 00042 , only_perform_feasibility_test(false) 00043 , path_constraints() 00044 , additional_collision_operations() 00045 , additional_link_padding() 00046 { 00047 } 00048 00049 PlaceGoal_(const ContainerAllocator& _alloc) 00050 : arm_name(_alloc) 00051 , place_locations(_alloc) 00052 , grasp(_alloc) 00053 , desired_retreat_distance(0.0) 00054 , min_retreat_distance(0.0) 00055 , approach(_alloc) 00056 , collision_object_name(_alloc) 00057 , collision_support_surface_name(_alloc) 00058 , allow_gripper_support_collision(false) 00059 , use_reactive_place(false) 00060 , place_padding(0.0) 00061 , only_perform_feasibility_test(false) 00062 , path_constraints(_alloc) 00063 , additional_collision_operations(_alloc) 00064 , additional_link_padding(_alloc) 00065 { 00066 } 00067 00068 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type; 00069 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name; 00070 00071 typedef std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > _place_locations_type; 00072 std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > place_locations; 00073 00074 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type; 00075 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp; 00076 00077 typedef float _desired_retreat_distance_type; 00078 float desired_retreat_distance; 00079 00080 typedef float _min_retreat_distance_type; 00081 float min_retreat_distance; 00082 00083 typedef ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> _approach_type; 00084 ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> approach; 00085 00086 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type; 00087 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name; 00088 00089 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type; 00090 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name; 00091 00092 typedef uint8_t _allow_gripper_support_collision_type; 00093 uint8_t allow_gripper_support_collision; 00094 00095 typedef uint8_t _use_reactive_place_type; 00096 uint8_t use_reactive_place; 00097 00098 typedef double _place_padding_type; 00099 double place_padding; 00100 00101 typedef uint8_t _only_perform_feasibility_test_type; 00102 uint8_t only_perform_feasibility_test; 00103 00104 typedef ::arm_navigation_msgs::Constraints_<ContainerAllocator> _path_constraints_type; 00105 ::arm_navigation_msgs::Constraints_<ContainerAllocator> path_constraints; 00106 00107 typedef ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> _additional_collision_operations_type; 00108 ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> additional_collision_operations; 00109 00110 typedef std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > _additional_link_padding_type; 00111 std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > additional_link_padding; 00112 00113 00114 ROS_DEPRECATED uint32_t get_place_locations_size() const { return (uint32_t)place_locations.size(); } 00115 ROS_DEPRECATED void set_place_locations_size(uint32_t size) { place_locations.resize((size_t)size); } 00116 ROS_DEPRECATED void get_place_locations_vec(std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > & vec) const { vec = this->place_locations; } 00117 ROS_DEPRECATED void set_place_locations_vec(const std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > & vec) { this->place_locations = vec; } 00118 ROS_DEPRECATED uint32_t get_additional_link_padding_size() const { return (uint32_t)additional_link_padding.size(); } 00119 ROS_DEPRECATED void set_additional_link_padding_size(uint32_t size) { additional_link_padding.resize((size_t)size); } 00120 ROS_DEPRECATED void get_additional_link_padding_vec(std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > & vec) const { vec = this->additional_link_padding; } 00121 ROS_DEPRECATED void set_additional_link_padding_vec(const std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > & vec) { this->additional_link_padding = vec; } 00122 private: 00123 static const char* __s_getDataType_() { return "object_manipulation_msgs/PlaceGoal"; } 00124 public: 00125 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00126 00127 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00128 00129 private: 00130 static const char* __s_getMD5Sum_() { return "6313a88996ba81ffc91a8fc15ca327b6"; } 00131 public: 00132 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00133 00134 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00135 00136 private: 00137 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00138 # An action for placing an object\n\ 00139 \n\ 00140 # which arm to be used for grasping\n\ 00141 string arm_name\n\ 00142 \n\ 00143 # a list of possible transformations for placing the object (place_trans)\n\ 00144 # the final pose of the wrist for placement (place_wrist_pose) is as follows:\n\ 00145 # place_wrist_pose = place_trans * grasp_pose\n\ 00146 # the frame_id for wrist_trans is defined here, and \n\ 00147 # should be the same for all place_locations\n\ 00148 geometry_msgs/PoseStamped[] place_locations\n\ 00149 \n\ 00150 # the grasp that has been executed on this object\n\ 00151 # (contains the grasp_pose referred to above)\n\ 00152 Grasp grasp\n\ 00153 \n\ 00154 # how far the retreat should ideally be away from the place location\n\ 00155 float32 desired_retreat_distance\n\ 00156 \n\ 00157 # the min distance between the retreat and the place location that must actually be feasible \n\ 00158 # for the place not to be rejected\n\ 00159 float32 min_retreat_distance\n\ 00160 \n\ 00161 # how the place location should be approached\n\ 00162 # the frame_id that this lift is specified in MUST be either the robot_frame \n\ 00163 # or the gripper_frame specified in your hand description file\n\ 00164 GripperTranslation approach\n\ 00165 \n\ 00166 # the name that the target object has in the collision map\n\ 00167 # can be left empty if no name is available\n\ 00168 string collision_object_name\n\ 00169 \n\ 00170 # the name that the support surface (e.g. table) has in the collision map\n\ 00171 # can be left empty if no name is available\n\ 00172 string collision_support_surface_name\n\ 00173 \n\ 00174 # whether collisions between the gripper and the support surface should be acceptable\n\ 00175 # during move from pre-place to place and during retreat. Collisions when moving to the\n\ 00176 # pre-place location are still not allowed even if this is set to true.\n\ 00177 bool allow_gripper_support_collision\n\ 00178 \n\ 00179 # whether reactive placing based on tactile sensors should be used\n\ 00180 bool use_reactive_place\n\ 00181 \n\ 00182 # how much the object should be padded by when deciding if the grasp\n\ 00183 # location is freasible or not\n\ 00184 float64 place_padding\n\ 00185 \n\ 00186 # set this to true if you only want to query the manipulation pipeline as to what \n\ 00187 # place locations it thinks are feasible, without actually executing them. If this is set to \n\ 00188 # true, the atempted_location_results field of the result will be populated, but no arm \n\ 00189 # movement will be attempted\n\ 00190 bool only_perform_feasibility_test\n\ 00191 \n\ 00192 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00193 # constraints to be imposed on every point in the motion of the arm\n\ 00194 arm_navigation_msgs/Constraints path_constraints\n\ 00195 \n\ 00196 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00197 # additional collision operations to be used for every arm movement performed\n\ 00198 # during placing. Note that these will be added on top of (and thus overide) other \n\ 00199 # collision operations that the grasping pipeline deems necessary. Should be used\n\ 00200 # with care and only if special behaviors are desired.\n\ 00201 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\ 00202 \n\ 00203 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00204 # additional link paddings to be used for every arm movement performed\n\ 00205 # during placing. Note that these will be added on top of (and thus overide) other \n\ 00206 # link paddings that the grasping pipeline deems necessary. Should be used\n\ 00207 # with care and only if special behaviors are desired.\n\ 00208 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\ 00209 \n\ 00210 \n\ 00211 ================================================================================\n\ 00212 MSG: geometry_msgs/PoseStamped\n\ 00213 # A Pose with reference coordinate frame and timestamp\n\ 00214 Header header\n\ 00215 Pose pose\n\ 00216 \n\ 00217 ================================================================================\n\ 00218 MSG: std_msgs/Header\n\ 00219 # Standard metadata for higher-level stamped data types.\n\ 00220 # This is generally used to communicate timestamped data \n\ 00221 # in a particular coordinate frame.\n\ 00222 # \n\ 00223 # sequence ID: consecutively increasing ID \n\ 00224 uint32 seq\n\ 00225 #Two-integer timestamp that is expressed as:\n\ 00226 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00227 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00228 # time-handling sugar is provided by the client library\n\ 00229 time stamp\n\ 00230 #Frame this data is associated with\n\ 00231 # 0: no frame\n\ 00232 # 1: global frame\n\ 00233 string frame_id\n\ 00234 \n\ 00235 ================================================================================\n\ 00236 MSG: geometry_msgs/Pose\n\ 00237 # A representation of pose in free space, composed of postion and orientation. \n\ 00238 Point position\n\ 00239 Quaternion orientation\n\ 00240 \n\ 00241 ================================================================================\n\ 00242 MSG: geometry_msgs/Point\n\ 00243 # This contains the position of a point in free space\n\ 00244 float64 x\n\ 00245 float64 y\n\ 00246 float64 z\n\ 00247 \n\ 00248 ================================================================================\n\ 00249 MSG: geometry_msgs/Quaternion\n\ 00250 # This represents an orientation in free space in quaternion form.\n\ 00251 \n\ 00252 float64 x\n\ 00253 float64 y\n\ 00254 float64 z\n\ 00255 float64 w\n\ 00256 \n\ 00257 ================================================================================\n\ 00258 MSG: object_manipulation_msgs/Grasp\n\ 00259 \n\ 00260 # The internal posture of the hand for the pre-grasp\n\ 00261 # only positions are used\n\ 00262 sensor_msgs/JointState pre_grasp_posture\n\ 00263 \n\ 00264 # The internal posture of the hand for the grasp\n\ 00265 # positions and efforts are used\n\ 00266 sensor_msgs/JointState grasp_posture\n\ 00267 \n\ 00268 # The position of the end-effector for the grasp relative to a reference frame \n\ 00269 # (that is always specified elsewhere, not in this message)\n\ 00270 geometry_msgs/Pose grasp_pose\n\ 00271 \n\ 00272 # The estimated probability of success for this grasp\n\ 00273 float64 success_probability\n\ 00274 \n\ 00275 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00276 bool cluster_rep\n\ 00277 \n\ 00278 # how far the pre-grasp should ideally be away from the grasp\n\ 00279 float32 desired_approach_distance\n\ 00280 \n\ 00281 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00282 # for the grasp not to be rejected\n\ 00283 float32 min_approach_distance\n\ 00284 \n\ 00285 # an optional list of obstacles that we have semantic information about\n\ 00286 # and that we expect might move in the course of executing this grasp\n\ 00287 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00288 # execution, grasp executors will not check for collisions against these objects\n\ 00289 GraspableObject[] moved_obstacles\n\ 00290 \n\ 00291 ================================================================================\n\ 00292 MSG: sensor_msgs/JointState\n\ 00293 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00294 #\n\ 00295 # The state of each joint (revolute or prismatic) is defined by:\n\ 00296 # * the position of the joint (rad or m),\n\ 00297 # * the velocity of the joint (rad/s or m/s) and \n\ 00298 # * the effort that is applied in the joint (Nm or N).\n\ 00299 #\n\ 00300 # Each joint is uniquely identified by its name\n\ 00301 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00302 # in one message have to be recorded at the same time.\n\ 00303 #\n\ 00304 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00305 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00306 # effort associated with them, you can leave the effort array empty. \n\ 00307 #\n\ 00308 # All arrays in this message should have the same size, or be empty.\n\ 00309 # This is the only way to uniquely associate the joint name with the correct\n\ 00310 # states.\n\ 00311 \n\ 00312 \n\ 00313 Header header\n\ 00314 \n\ 00315 string[] name\n\ 00316 float64[] position\n\ 00317 float64[] velocity\n\ 00318 float64[] effort\n\ 00319 \n\ 00320 ================================================================================\n\ 00321 MSG: object_manipulation_msgs/GraspableObject\n\ 00322 # an object that the object_manipulator can work on\n\ 00323 \n\ 00324 # a graspable object can be represented in multiple ways. This message\n\ 00325 # can contain all of them. Which one is actually used is up to the receiver\n\ 00326 # of this message. When adding new representations, one must be careful that\n\ 00327 # they have reasonable lightweight defaults indicating that that particular\n\ 00328 # representation is not available.\n\ 00329 \n\ 00330 # the tf frame to be used as a reference frame when combining information from\n\ 00331 # the different representations below\n\ 00332 string reference_frame_id\n\ 00333 \n\ 00334 # potential recognition results from a database of models\n\ 00335 # all poses are relative to the object reference pose\n\ 00336 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00337 \n\ 00338 # the point cloud itself\n\ 00339 sensor_msgs/PointCloud cluster\n\ 00340 \n\ 00341 # a region of a PointCloud2 of interest\n\ 00342 object_manipulation_msgs/SceneRegion region\n\ 00343 \n\ 00344 # the name that this object has in the collision environment\n\ 00345 string collision_name\n\ 00346 ================================================================================\n\ 00347 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00348 # Informs that a specific model from the Model Database has been \n\ 00349 # identified at a certain location\n\ 00350 \n\ 00351 # the database id of the model\n\ 00352 int32 model_id\n\ 00353 \n\ 00354 # the pose that it can be found in\n\ 00355 geometry_msgs/PoseStamped pose\n\ 00356 \n\ 00357 # a measure of the confidence level in this detection result\n\ 00358 float32 confidence\n\ 00359 \n\ 00360 # the name of the object detector that generated this detection result\n\ 00361 string detector_name\n\ 00362 \n\ 00363 ================================================================================\n\ 00364 MSG: sensor_msgs/PointCloud\n\ 00365 # This message holds a collection of 3d points, plus optional additional\n\ 00366 # information about each point.\n\ 00367 \n\ 00368 # Time of sensor data acquisition, coordinate frame ID.\n\ 00369 Header header\n\ 00370 \n\ 00371 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00372 # in the frame given in the header.\n\ 00373 geometry_msgs/Point32[] points\n\ 00374 \n\ 00375 # Each channel should have the same number of elements as points array,\n\ 00376 # and the data in each channel should correspond 1:1 with each point.\n\ 00377 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00378 ChannelFloat32[] channels\n\ 00379 \n\ 00380 ================================================================================\n\ 00381 MSG: geometry_msgs/Point32\n\ 00382 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00383 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00384 # \n\ 00385 # This recommendation is to promote interoperability. \n\ 00386 #\n\ 00387 # This message is designed to take up less space when sending\n\ 00388 # lots of points at once, as in the case of a PointCloud. \n\ 00389 \n\ 00390 float32 x\n\ 00391 float32 y\n\ 00392 float32 z\n\ 00393 ================================================================================\n\ 00394 MSG: sensor_msgs/ChannelFloat32\n\ 00395 # This message is used by the PointCloud message to hold optional data\n\ 00396 # associated with each point in the cloud. The length of the values\n\ 00397 # array should be the same as the length of the points array in the\n\ 00398 # PointCloud, and each value should be associated with the corresponding\n\ 00399 # point.\n\ 00400 \n\ 00401 # Channel names in existing practice include:\n\ 00402 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00403 # This is opposite to usual conventions but remains for\n\ 00404 # historical reasons. The newer PointCloud2 message has no\n\ 00405 # such problem.\n\ 00406 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00407 # (R,G,B) values packed into the least significant 24 bits,\n\ 00408 # in order.\n\ 00409 # \"intensity\" - laser or pixel intensity.\n\ 00410 # \"distance\"\n\ 00411 \n\ 00412 # The channel name should give semantics of the channel (e.g.\n\ 00413 # \"intensity\" instead of \"value\").\n\ 00414 string name\n\ 00415 \n\ 00416 # The values array should be 1-1 with the elements of the associated\n\ 00417 # PointCloud.\n\ 00418 float32[] values\n\ 00419 \n\ 00420 ================================================================================\n\ 00421 MSG: object_manipulation_msgs/SceneRegion\n\ 00422 # Point cloud\n\ 00423 sensor_msgs/PointCloud2 cloud\n\ 00424 \n\ 00425 # Indices for the region of interest\n\ 00426 int32[] mask\n\ 00427 \n\ 00428 # One of the corresponding 2D images, if applicable\n\ 00429 sensor_msgs/Image image\n\ 00430 \n\ 00431 # The disparity image, if applicable\n\ 00432 sensor_msgs/Image disparity_image\n\ 00433 \n\ 00434 # Camera info for the camera that took the image\n\ 00435 sensor_msgs/CameraInfo cam_info\n\ 00436 \n\ 00437 # a 3D region of interest for grasp planning\n\ 00438 geometry_msgs/PoseStamped roi_box_pose\n\ 00439 geometry_msgs/Vector3 roi_box_dims\n\ 00440 \n\ 00441 ================================================================================\n\ 00442 MSG: sensor_msgs/PointCloud2\n\ 00443 # This message holds a collection of N-dimensional points, which may\n\ 00444 # contain additional information such as normals, intensity, etc. The\n\ 00445 # point data is stored as a binary blob, its layout described by the\n\ 00446 # contents of the \"fields\" array.\n\ 00447 \n\ 00448 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00449 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00450 # camera depth sensors such as stereo or time-of-flight.\n\ 00451 \n\ 00452 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00453 # points).\n\ 00454 Header header\n\ 00455 \n\ 00456 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00457 # 1 and width is the length of the point cloud.\n\ 00458 uint32 height\n\ 00459 uint32 width\n\ 00460 \n\ 00461 # Describes the channels and their layout in the binary data blob.\n\ 00462 PointField[] fields\n\ 00463 \n\ 00464 bool is_bigendian # Is this data bigendian?\n\ 00465 uint32 point_step # Length of a point in bytes\n\ 00466 uint32 row_step # Length of a row in bytes\n\ 00467 uint8[] data # Actual point data, size is (row_step*height)\n\ 00468 \n\ 00469 bool is_dense # True if there are no invalid points\n\ 00470 \n\ 00471 ================================================================================\n\ 00472 MSG: sensor_msgs/PointField\n\ 00473 # This message holds the description of one point entry in the\n\ 00474 # PointCloud2 message format.\n\ 00475 uint8 INT8 = 1\n\ 00476 uint8 UINT8 = 2\n\ 00477 uint8 INT16 = 3\n\ 00478 uint8 UINT16 = 4\n\ 00479 uint8 INT32 = 5\n\ 00480 uint8 UINT32 = 6\n\ 00481 uint8 FLOAT32 = 7\n\ 00482 uint8 FLOAT64 = 8\n\ 00483 \n\ 00484 string name # Name of field\n\ 00485 uint32 offset # Offset from start of point struct\n\ 00486 uint8 datatype # Datatype enumeration, see above\n\ 00487 uint32 count # How many elements in the field\n\ 00488 \n\ 00489 ================================================================================\n\ 00490 MSG: sensor_msgs/Image\n\ 00491 # This message contains an uncompressed image\n\ 00492 # (0, 0) is at top-left corner of image\n\ 00493 #\n\ 00494 \n\ 00495 Header header # Header timestamp should be acquisition time of image\n\ 00496 # Header frame_id should be optical frame of camera\n\ 00497 # origin of frame should be optical center of cameara\n\ 00498 # +x should point to the right in the image\n\ 00499 # +y should point down in the image\n\ 00500 # +z should point into to plane of the image\n\ 00501 # If the frame_id here and the frame_id of the CameraInfo\n\ 00502 # message associated with the image conflict\n\ 00503 # the behavior is undefined\n\ 00504 \n\ 00505 uint32 height # image height, that is, number of rows\n\ 00506 uint32 width # image width, that is, number of columns\n\ 00507 \n\ 00508 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00509 # If you want to standardize a new string format, join\n\ 00510 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00511 \n\ 00512 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00513 # taken from the list of strings in src/image_encodings.cpp\n\ 00514 \n\ 00515 uint8 is_bigendian # is this data bigendian?\n\ 00516 uint32 step # Full row length in bytes\n\ 00517 uint8[] data # actual matrix data, size is (step * rows)\n\ 00518 \n\ 00519 ================================================================================\n\ 00520 MSG: sensor_msgs/CameraInfo\n\ 00521 # This message defines meta information for a camera. It should be in a\n\ 00522 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00523 # image topics named:\n\ 00524 #\n\ 00525 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00526 # image - monochrome, distorted\n\ 00527 # image_color - color, distorted\n\ 00528 # image_rect - monochrome, rectified\n\ 00529 # image_rect_color - color, rectified\n\ 00530 #\n\ 00531 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00532 # for producing the four processed image topics from image_raw and\n\ 00533 # camera_info. The meaning of the camera parameters are described in\n\ 00534 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00535 #\n\ 00536 # The image_geometry package provides a user-friendly interface to\n\ 00537 # common operations using this meta information. If you want to, e.g.,\n\ 00538 # project a 3d point into image coordinates, we strongly recommend\n\ 00539 # using image_geometry.\n\ 00540 #\n\ 00541 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00542 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00543 # indicates an uncalibrated camera.\n\ 00544 \n\ 00545 #######################################################################\n\ 00546 # Image acquisition info #\n\ 00547 #######################################################################\n\ 00548 \n\ 00549 # Time of image acquisition, camera coordinate frame ID\n\ 00550 Header header # Header timestamp should be acquisition time of image\n\ 00551 # Header frame_id should be optical frame of camera\n\ 00552 # origin of frame should be optical center of camera\n\ 00553 # +x should point to the right in the image\n\ 00554 # +y should point down in the image\n\ 00555 # +z should point into the plane of the image\n\ 00556 \n\ 00557 \n\ 00558 #######################################################################\n\ 00559 # Calibration Parameters #\n\ 00560 #######################################################################\n\ 00561 # These are fixed during camera calibration. Their values will be the #\n\ 00562 # same in all messages until the camera is recalibrated. Note that #\n\ 00563 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00564 # #\n\ 00565 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00566 # to: #\n\ 00567 # 1. An undistorted image (requires D and K) #\n\ 00568 # 2. A rectified image (requires D, K, R) #\n\ 00569 # The projection matrix P projects 3D points into the rectified image.#\n\ 00570 #######################################################################\n\ 00571 \n\ 00572 # The image dimensions with which the camera was calibrated. Normally\n\ 00573 # this will be the full camera resolution in pixels.\n\ 00574 uint32 height\n\ 00575 uint32 width\n\ 00576 \n\ 00577 # The distortion model used. Supported models are listed in\n\ 00578 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00579 # simple model of radial and tangential distortion - is sufficent.\n\ 00580 string distortion_model\n\ 00581 \n\ 00582 # The distortion parameters, size depending on the distortion model.\n\ 00583 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00584 float64[] D\n\ 00585 \n\ 00586 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00587 # [fx 0 cx]\n\ 00588 # K = [ 0 fy cy]\n\ 00589 # [ 0 0 1]\n\ 00590 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00591 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00592 # (cx, cy).\n\ 00593 float64[9] K # 3x3 row-major matrix\n\ 00594 \n\ 00595 # Rectification matrix (stereo cameras only)\n\ 00596 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00597 # stereo image plane so that epipolar lines in both stereo images are\n\ 00598 # parallel.\n\ 00599 float64[9] R # 3x3 row-major matrix\n\ 00600 \n\ 00601 # Projection/camera matrix\n\ 00602 # [fx' 0 cx' Tx]\n\ 00603 # P = [ 0 fy' cy' Ty]\n\ 00604 # [ 0 0 1 0]\n\ 00605 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00606 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00607 # is the normal camera intrinsic matrix for the rectified image.\n\ 00608 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00609 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00610 # (cx', cy') - these may differ from the values in K.\n\ 00611 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00612 # also have R = the identity and P[1:3,1:3] = K.\n\ 00613 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00614 # position of the optical center of the second camera in the first\n\ 00615 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00616 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00617 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00618 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00619 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00620 # the rectified image is given by:\n\ 00621 # [u v w]' = P * [X Y Z 1]'\n\ 00622 # x = u / w\n\ 00623 # y = v / w\n\ 00624 # This holds for both images of a stereo pair.\n\ 00625 float64[12] P # 3x4 row-major matrix\n\ 00626 \n\ 00627 \n\ 00628 #######################################################################\n\ 00629 # Operational Parameters #\n\ 00630 #######################################################################\n\ 00631 # These define the image region actually captured by the camera #\n\ 00632 # driver. Although they affect the geometry of the output image, they #\n\ 00633 # may be changed freely without recalibrating the camera. #\n\ 00634 #######################################################################\n\ 00635 \n\ 00636 # Binning refers here to any camera setting which combines rectangular\n\ 00637 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00638 # resolution of the output image to\n\ 00639 # (width / binning_x) x (height / binning_y).\n\ 00640 # The default values binning_x = binning_y = 0 is considered the same\n\ 00641 # as binning_x = binning_y = 1 (no subsampling).\n\ 00642 uint32 binning_x\n\ 00643 uint32 binning_y\n\ 00644 \n\ 00645 # Region of interest (subwindow of full camera resolution), given in\n\ 00646 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00647 # always denotes the same window of pixels on the camera sensor,\n\ 00648 # regardless of binning settings.\n\ 00649 # The default setting of roi (all values 0) is considered the same as\n\ 00650 # full resolution (roi.width = width, roi.height = height).\n\ 00651 RegionOfInterest roi\n\ 00652 \n\ 00653 ================================================================================\n\ 00654 MSG: sensor_msgs/RegionOfInterest\n\ 00655 # This message is used to specify a region of interest within an image.\n\ 00656 #\n\ 00657 # When used to specify the ROI setting of the camera when the image was\n\ 00658 # taken, the height and width fields should either match the height and\n\ 00659 # width fields for the associated image; or height = width = 0\n\ 00660 # indicates that the full resolution image was captured.\n\ 00661 \n\ 00662 uint32 x_offset # Leftmost pixel of the ROI\n\ 00663 # (0 if the ROI includes the left edge of the image)\n\ 00664 uint32 y_offset # Topmost pixel of the ROI\n\ 00665 # (0 if the ROI includes the top edge of the image)\n\ 00666 uint32 height # Height of ROI\n\ 00667 uint32 width # Width of ROI\n\ 00668 \n\ 00669 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00670 # ROI in this message. Typically this should be False if the full image\n\ 00671 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00672 # used).\n\ 00673 bool do_rectify\n\ 00674 \n\ 00675 ================================================================================\n\ 00676 MSG: geometry_msgs/Vector3\n\ 00677 # This represents a vector in free space. \n\ 00678 \n\ 00679 float64 x\n\ 00680 float64 y\n\ 00681 float64 z\n\ 00682 ================================================================================\n\ 00683 MSG: object_manipulation_msgs/GripperTranslation\n\ 00684 # defines a translation for the gripper, used in pickup or place tasks\n\ 00685 # for example for lifting an object off a table or approaching the table for placing\n\ 00686 \n\ 00687 # the direction of the translation\n\ 00688 geometry_msgs/Vector3Stamped direction\n\ 00689 \n\ 00690 # the desired translation distance\n\ 00691 float32 desired_distance\n\ 00692 \n\ 00693 # the min distance that must be considered feasible before the\n\ 00694 # grasp is even attempted\n\ 00695 float32 min_distance\n\ 00696 ================================================================================\n\ 00697 MSG: geometry_msgs/Vector3Stamped\n\ 00698 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 00699 Header header\n\ 00700 Vector3 vector\n\ 00701 \n\ 00702 ================================================================================\n\ 00703 MSG: arm_navigation_msgs/Constraints\n\ 00704 # This message contains a list of motion planning constraints.\n\ 00705 \n\ 00706 arm_navigation_msgs/JointConstraint[] joint_constraints\n\ 00707 arm_navigation_msgs/PositionConstraint[] position_constraints\n\ 00708 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\ 00709 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\ 00710 \n\ 00711 ================================================================================\n\ 00712 MSG: arm_navigation_msgs/JointConstraint\n\ 00713 # Constrain the position of a joint to be within a certain bound\n\ 00714 string joint_name\n\ 00715 \n\ 00716 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\ 00717 float64 position\n\ 00718 float64 tolerance_above\n\ 00719 float64 tolerance_below\n\ 00720 \n\ 00721 # A weighting factor for this constraint\n\ 00722 float64 weight\n\ 00723 ================================================================================\n\ 00724 MSG: arm_navigation_msgs/PositionConstraint\n\ 00725 # This message contains the definition of a position constraint.\n\ 00726 Header header\n\ 00727 \n\ 00728 # The robot link this constraint refers to\n\ 00729 string link_name\n\ 00730 \n\ 00731 # The offset (in the link frame) for the target point on the link we are planning for\n\ 00732 geometry_msgs/Point target_point_offset\n\ 00733 \n\ 00734 # The nominal/target position for the point we are planning for\n\ 00735 geometry_msgs/Point position\n\ 00736 \n\ 00737 # The shape of the bounded region that constrains the position of the end-effector\n\ 00738 # This region is always centered at the position defined above\n\ 00739 arm_navigation_msgs/Shape constraint_region_shape\n\ 00740 \n\ 00741 # The orientation of the bounded region that constrains the position of the end-effector. \n\ 00742 # This allows the specification of non-axis aligned constraints\n\ 00743 geometry_msgs/Quaternion constraint_region_orientation\n\ 00744 \n\ 00745 # Constraint weighting factor - a weight for this constraint\n\ 00746 float64 weight\n\ 00747 \n\ 00748 ================================================================================\n\ 00749 MSG: arm_navigation_msgs/Shape\n\ 00750 byte SPHERE=0\n\ 00751 byte BOX=1\n\ 00752 byte CYLINDER=2\n\ 00753 byte MESH=3\n\ 00754 \n\ 00755 byte type\n\ 00756 \n\ 00757 \n\ 00758 #### define sphere, box, cylinder ####\n\ 00759 # the origin of each shape is considered at the shape's center\n\ 00760 \n\ 00761 # for sphere\n\ 00762 # radius := dimensions[0]\n\ 00763 \n\ 00764 # for cylinder\n\ 00765 # radius := dimensions[0]\n\ 00766 # length := dimensions[1]\n\ 00767 # the length is along the Z axis\n\ 00768 \n\ 00769 # for box\n\ 00770 # size_x := dimensions[0]\n\ 00771 # size_y := dimensions[1]\n\ 00772 # size_z := dimensions[2]\n\ 00773 float64[] dimensions\n\ 00774 \n\ 00775 \n\ 00776 #### define mesh ####\n\ 00777 \n\ 00778 # list of triangles; triangle k is defined by tre vertices located\n\ 00779 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00780 int32[] triangles\n\ 00781 geometry_msgs/Point[] vertices\n\ 00782 \n\ 00783 ================================================================================\n\ 00784 MSG: arm_navigation_msgs/OrientationConstraint\n\ 00785 # This message contains the definition of an orientation constraint.\n\ 00786 Header header\n\ 00787 \n\ 00788 # The robot link this constraint refers to\n\ 00789 string link_name\n\ 00790 \n\ 00791 # The type of the constraint\n\ 00792 int32 type\n\ 00793 int32 LINK_FRAME=0\n\ 00794 int32 HEADER_FRAME=1\n\ 00795 \n\ 00796 # The desired orientation of the robot link specified as a quaternion\n\ 00797 geometry_msgs/Quaternion orientation\n\ 00798 \n\ 00799 # optional RPY error tolerances specified if \n\ 00800 float64 absolute_roll_tolerance\n\ 00801 float64 absolute_pitch_tolerance\n\ 00802 float64 absolute_yaw_tolerance\n\ 00803 \n\ 00804 # Constraint weighting factor - a weight for this constraint\n\ 00805 float64 weight\n\ 00806 \n\ 00807 ================================================================================\n\ 00808 MSG: arm_navigation_msgs/VisibilityConstraint\n\ 00809 # This message contains the definition of a visibility constraint.\n\ 00810 Header header\n\ 00811 \n\ 00812 # The point stamped target that needs to be kept within view of the sensor\n\ 00813 geometry_msgs/PointStamped target\n\ 00814 \n\ 00815 # The local pose of the frame in which visibility is to be maintained\n\ 00816 # The frame id should represent the robot link to which the sensor is attached\n\ 00817 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\ 00818 geometry_msgs/PoseStamped sensor_pose\n\ 00819 \n\ 00820 # The deviation (in radians) that will be tolerated\n\ 00821 # Constraint error will be measured as the solid angle between the \n\ 00822 # X axis of the frame defined above and the vector between the origin \n\ 00823 # of the frame defined above and the target location\n\ 00824 float64 absolute_tolerance\n\ 00825 \n\ 00826 \n\ 00827 ================================================================================\n\ 00828 MSG: geometry_msgs/PointStamped\n\ 00829 # This represents a Point with reference coordinate frame and timestamp\n\ 00830 Header header\n\ 00831 Point point\n\ 00832 \n\ 00833 ================================================================================\n\ 00834 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\ 00835 # A set of collision operations that will be performed in the order they are specified\n\ 00836 CollisionOperation[] collision_operations\n\ 00837 ================================================================================\n\ 00838 MSG: arm_navigation_msgs/CollisionOperation\n\ 00839 # A definition of a collision operation\n\ 00840 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\ 00841 # between the gripper and all objects in the collision space\n\ 00842 \n\ 00843 string object1\n\ 00844 string object2\n\ 00845 string COLLISION_SET_ALL=\"all\"\n\ 00846 string COLLISION_SET_OBJECTS=\"objects\"\n\ 00847 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\ 00848 \n\ 00849 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\ 00850 float64 penetration_distance\n\ 00851 \n\ 00852 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\ 00853 int32 operation\n\ 00854 int32 DISABLE=0\n\ 00855 int32 ENABLE=1\n\ 00856 \n\ 00857 ================================================================================\n\ 00858 MSG: arm_navigation_msgs/LinkPadding\n\ 00859 #name for the link\n\ 00860 string link_name\n\ 00861 \n\ 00862 # padding to apply to the link\n\ 00863 float64 padding\n\ 00864 \n\ 00865 "; } 00866 public: 00867 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00868 00869 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00870 00871 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00872 { 00873 ros::serialization::OStream stream(write_ptr, 1000000000); 00874 ros::serialization::serialize(stream, arm_name); 00875 ros::serialization::serialize(stream, place_locations); 00876 ros::serialization::serialize(stream, grasp); 00877 ros::serialization::serialize(stream, desired_retreat_distance); 00878 ros::serialization::serialize(stream, min_retreat_distance); 00879 ros::serialization::serialize(stream, approach); 00880 ros::serialization::serialize(stream, collision_object_name); 00881 ros::serialization::serialize(stream, collision_support_surface_name); 00882 ros::serialization::serialize(stream, allow_gripper_support_collision); 00883 ros::serialization::serialize(stream, use_reactive_place); 00884 ros::serialization::serialize(stream, place_padding); 00885 ros::serialization::serialize(stream, only_perform_feasibility_test); 00886 ros::serialization::serialize(stream, path_constraints); 00887 ros::serialization::serialize(stream, additional_collision_operations); 00888 ros::serialization::serialize(stream, additional_link_padding); 00889 return stream.getData(); 00890 } 00891 00892 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00893 { 00894 ros::serialization::IStream stream(read_ptr, 1000000000); 00895 ros::serialization::deserialize(stream, arm_name); 00896 ros::serialization::deserialize(stream, place_locations); 00897 ros::serialization::deserialize(stream, grasp); 00898 ros::serialization::deserialize(stream, desired_retreat_distance); 00899 ros::serialization::deserialize(stream, min_retreat_distance); 00900 ros::serialization::deserialize(stream, approach); 00901 ros::serialization::deserialize(stream, collision_object_name); 00902 ros::serialization::deserialize(stream, collision_support_surface_name); 00903 ros::serialization::deserialize(stream, allow_gripper_support_collision); 00904 ros::serialization::deserialize(stream, use_reactive_place); 00905 ros::serialization::deserialize(stream, place_padding); 00906 ros::serialization::deserialize(stream, only_perform_feasibility_test); 00907 ros::serialization::deserialize(stream, path_constraints); 00908 ros::serialization::deserialize(stream, additional_collision_operations); 00909 ros::serialization::deserialize(stream, additional_link_padding); 00910 return stream.getData(); 00911 } 00912 00913 ROS_DEPRECATED virtual uint32_t serializationLength() const 00914 { 00915 uint32_t size = 0; 00916 size += ros::serialization::serializationLength(arm_name); 00917 size += ros::serialization::serializationLength(place_locations); 00918 size += ros::serialization::serializationLength(grasp); 00919 size += ros::serialization::serializationLength(desired_retreat_distance); 00920 size += ros::serialization::serializationLength(min_retreat_distance); 00921 size += ros::serialization::serializationLength(approach); 00922 size += ros::serialization::serializationLength(collision_object_name); 00923 size += ros::serialization::serializationLength(collision_support_surface_name); 00924 size += ros::serialization::serializationLength(allow_gripper_support_collision); 00925 size += ros::serialization::serializationLength(use_reactive_place); 00926 size += ros::serialization::serializationLength(place_padding); 00927 size += ros::serialization::serializationLength(only_perform_feasibility_test); 00928 size += ros::serialization::serializationLength(path_constraints); 00929 size += ros::serialization::serializationLength(additional_collision_operations); 00930 size += ros::serialization::serializationLength(additional_link_padding); 00931 return size; 00932 } 00933 00934 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > Ptr; 00935 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> const> ConstPtr; 00936 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00937 }; // struct PlaceGoal 00938 typedef ::object_manipulation_msgs::PlaceGoal_<std::allocator<void> > PlaceGoal; 00939 00940 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal> PlaceGoalPtr; 00941 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal const> PlaceGoalConstPtr; 00942 00943 00944 template<typename ContainerAllocator> 00945 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> & v) 00946 { 00947 ros::message_operations::Printer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> >::stream(s, "", v); 00948 return s;} 00949 00950 } // namespace object_manipulation_msgs 00951 00952 namespace ros 00953 { 00954 namespace message_traits 00955 { 00956 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > : public TrueType {}; 00957 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> const> : public TrueType {}; 00958 template<class ContainerAllocator> 00959 struct MD5Sum< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > { 00960 static const char* value() 00961 { 00962 return "6313a88996ba81ffc91a8fc15ca327b6"; 00963 } 00964 00965 static const char* value(const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> &) { return value(); } 00966 static const uint64_t static_value1 = 0x6313a88996ba81ffULL; 00967 static const uint64_t static_value2 = 0xc91a8fc15ca327b6ULL; 00968 }; 00969 00970 template<class ContainerAllocator> 00971 struct DataType< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > { 00972 static const char* value() 00973 { 00974 return "object_manipulation_msgs/PlaceGoal"; 00975 } 00976 00977 static const char* value(const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> &) { return value(); } 00978 }; 00979 00980 template<class ContainerAllocator> 00981 struct Definition< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > { 00982 static const char* value() 00983 { 00984 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00985 # An action for placing an object\n\ 00986 \n\ 00987 # which arm to be used for grasping\n\ 00988 string arm_name\n\ 00989 \n\ 00990 # a list of possible transformations for placing the object (place_trans)\n\ 00991 # the final pose of the wrist for placement (place_wrist_pose) is as follows:\n\ 00992 # place_wrist_pose = place_trans * grasp_pose\n\ 00993 # the frame_id for wrist_trans is defined here, and \n\ 00994 # should be the same for all place_locations\n\ 00995 geometry_msgs/PoseStamped[] place_locations\n\ 00996 \n\ 00997 # the grasp that has been executed on this object\n\ 00998 # (contains the grasp_pose referred to above)\n\ 00999 Grasp grasp\n\ 01000 \n\ 01001 # how far the retreat should ideally be away from the place location\n\ 01002 float32 desired_retreat_distance\n\ 01003 \n\ 01004 # the min distance between the retreat and the place location that must actually be feasible \n\ 01005 # for the place not to be rejected\n\ 01006 float32 min_retreat_distance\n\ 01007 \n\ 01008 # how the place location should be approached\n\ 01009 # the frame_id that this lift is specified in MUST be either the robot_frame \n\ 01010 # or the gripper_frame specified in your hand description file\n\ 01011 GripperTranslation approach\n\ 01012 \n\ 01013 # the name that the target object has in the collision map\n\ 01014 # can be left empty if no name is available\n\ 01015 string collision_object_name\n\ 01016 \n\ 01017 # the name that the support surface (e.g. table) has in the collision map\n\ 01018 # can be left empty if no name is available\n\ 01019 string collision_support_surface_name\n\ 01020 \n\ 01021 # whether collisions between the gripper and the support surface should be acceptable\n\ 01022 # during move from pre-place to place and during retreat. Collisions when moving to the\n\ 01023 # pre-place location are still not allowed even if this is set to true.\n\ 01024 bool allow_gripper_support_collision\n\ 01025 \n\ 01026 # whether reactive placing based on tactile sensors should be used\n\ 01027 bool use_reactive_place\n\ 01028 \n\ 01029 # how much the object should be padded by when deciding if the grasp\n\ 01030 # location is freasible or not\n\ 01031 float64 place_padding\n\ 01032 \n\ 01033 # set this to true if you only want to query the manipulation pipeline as to what \n\ 01034 # place locations it thinks are feasible, without actually executing them. If this is set to \n\ 01035 # true, the atempted_location_results field of the result will be populated, but no arm \n\ 01036 # movement will be attempted\n\ 01037 bool only_perform_feasibility_test\n\ 01038 \n\ 01039 # OPTIONAL (These will not have to be filled out most of the time)\n\ 01040 # constraints to be imposed on every point in the motion of the arm\n\ 01041 arm_navigation_msgs/Constraints path_constraints\n\ 01042 \n\ 01043 # OPTIONAL (These will not have to be filled out most of the time)\n\ 01044 # additional collision operations to be used for every arm movement performed\n\ 01045 # during placing. Note that these will be added on top of (and thus overide) other \n\ 01046 # collision operations that the grasping pipeline deems necessary. Should be used\n\ 01047 # with care and only if special behaviors are desired.\n\ 01048 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\ 01049 \n\ 01050 # OPTIONAL (These will not have to be filled out most of the time)\n\ 01051 # additional link paddings to be used for every arm movement performed\n\ 01052 # during placing. Note that these will be added on top of (and thus overide) other \n\ 01053 # link paddings that the grasping pipeline deems necessary. Should be used\n\ 01054 # with care and only if special behaviors are desired.\n\ 01055 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\ 01056 \n\ 01057 \n\ 01058 ================================================================================\n\ 01059 MSG: geometry_msgs/PoseStamped\n\ 01060 # A Pose with reference coordinate frame and timestamp\n\ 01061 Header header\n\ 01062 Pose pose\n\ 01063 \n\ 01064 ================================================================================\n\ 01065 MSG: std_msgs/Header\n\ 01066 # Standard metadata for higher-level stamped data types.\n\ 01067 # This is generally used to communicate timestamped data \n\ 01068 # in a particular coordinate frame.\n\ 01069 # \n\ 01070 # sequence ID: consecutively increasing ID \n\ 01071 uint32 seq\n\ 01072 #Two-integer timestamp that is expressed as:\n\ 01073 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 01074 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 01075 # time-handling sugar is provided by the client library\n\ 01076 time stamp\n\ 01077 #Frame this data is associated with\n\ 01078 # 0: no frame\n\ 01079 # 1: global frame\n\ 01080 string frame_id\n\ 01081 \n\ 01082 ================================================================================\n\ 01083 MSG: geometry_msgs/Pose\n\ 01084 # A representation of pose in free space, composed of postion and orientation. \n\ 01085 Point position\n\ 01086 Quaternion orientation\n\ 01087 \n\ 01088 ================================================================================\n\ 01089 MSG: geometry_msgs/Point\n\ 01090 # This contains the position of a point in free space\n\ 01091 float64 x\n\ 01092 float64 y\n\ 01093 float64 z\n\ 01094 \n\ 01095 ================================================================================\n\ 01096 MSG: geometry_msgs/Quaternion\n\ 01097 # This represents an orientation in free space in quaternion form.\n\ 01098 \n\ 01099 float64 x\n\ 01100 float64 y\n\ 01101 float64 z\n\ 01102 float64 w\n\ 01103 \n\ 01104 ================================================================================\n\ 01105 MSG: object_manipulation_msgs/Grasp\n\ 01106 \n\ 01107 # The internal posture of the hand for the pre-grasp\n\ 01108 # only positions are used\n\ 01109 sensor_msgs/JointState pre_grasp_posture\n\ 01110 \n\ 01111 # The internal posture of the hand for the grasp\n\ 01112 # positions and efforts are used\n\ 01113 sensor_msgs/JointState grasp_posture\n\ 01114 \n\ 01115 # The position of the end-effector for the grasp relative to a reference frame \n\ 01116 # (that is always specified elsewhere, not in this message)\n\ 01117 geometry_msgs/Pose grasp_pose\n\ 01118 \n\ 01119 # The estimated probability of success for this grasp\n\ 01120 float64 success_probability\n\ 01121 \n\ 01122 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 01123 bool cluster_rep\n\ 01124 \n\ 01125 # how far the pre-grasp should ideally be away from the grasp\n\ 01126 float32 desired_approach_distance\n\ 01127 \n\ 01128 # how much distance between pre-grasp and grasp must actually be feasible \n\ 01129 # for the grasp not to be rejected\n\ 01130 float32 min_approach_distance\n\ 01131 \n\ 01132 # an optional list of obstacles that we have semantic information about\n\ 01133 # and that we expect might move in the course of executing this grasp\n\ 01134 # the grasp planner is expected to make sure they move in an OK way; during\n\ 01135 # execution, grasp executors will not check for collisions against these objects\n\ 01136 GraspableObject[] moved_obstacles\n\ 01137 \n\ 01138 ================================================================================\n\ 01139 MSG: sensor_msgs/JointState\n\ 01140 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01141 #\n\ 01142 # The state of each joint (revolute or prismatic) is defined by:\n\ 01143 # * the position of the joint (rad or m),\n\ 01144 # * the velocity of the joint (rad/s or m/s) and \n\ 01145 # * the effort that is applied in the joint (Nm or N).\n\ 01146 #\n\ 01147 # Each joint is uniquely identified by its name\n\ 01148 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01149 # in one message have to be recorded at the same time.\n\ 01150 #\n\ 01151 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01152 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01153 # effort associated with them, you can leave the effort array empty. \n\ 01154 #\n\ 01155 # All arrays in this message should have the same size, or be empty.\n\ 01156 # This is the only way to uniquely associate the joint name with the correct\n\ 01157 # states.\n\ 01158 \n\ 01159 \n\ 01160 Header header\n\ 01161 \n\ 01162 string[] name\n\ 01163 float64[] position\n\ 01164 float64[] velocity\n\ 01165 float64[] effort\n\ 01166 \n\ 01167 ================================================================================\n\ 01168 MSG: object_manipulation_msgs/GraspableObject\n\ 01169 # an object that the object_manipulator can work on\n\ 01170 \n\ 01171 # a graspable object can be represented in multiple ways. This message\n\ 01172 # can contain all of them. Which one is actually used is up to the receiver\n\ 01173 # of this message. When adding new representations, one must be careful that\n\ 01174 # they have reasonable lightweight defaults indicating that that particular\n\ 01175 # representation is not available.\n\ 01176 \n\ 01177 # the tf frame to be used as a reference frame when combining information from\n\ 01178 # the different representations below\n\ 01179 string reference_frame_id\n\ 01180 \n\ 01181 # potential recognition results from a database of models\n\ 01182 # all poses are relative to the object reference pose\n\ 01183 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 01184 \n\ 01185 # the point cloud itself\n\ 01186 sensor_msgs/PointCloud cluster\n\ 01187 \n\ 01188 # a region of a PointCloud2 of interest\n\ 01189 object_manipulation_msgs/SceneRegion region\n\ 01190 \n\ 01191 # the name that this object has in the collision environment\n\ 01192 string collision_name\n\ 01193 ================================================================================\n\ 01194 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 01195 # Informs that a specific model from the Model Database has been \n\ 01196 # identified at a certain location\n\ 01197 \n\ 01198 # the database id of the model\n\ 01199 int32 model_id\n\ 01200 \n\ 01201 # the pose that it can be found in\n\ 01202 geometry_msgs/PoseStamped pose\n\ 01203 \n\ 01204 # a measure of the confidence level in this detection result\n\ 01205 float32 confidence\n\ 01206 \n\ 01207 # the name of the object detector that generated this detection result\n\ 01208 string detector_name\n\ 01209 \n\ 01210 ================================================================================\n\ 01211 MSG: sensor_msgs/PointCloud\n\ 01212 # This message holds a collection of 3d points, plus optional additional\n\ 01213 # information about each point.\n\ 01214 \n\ 01215 # Time of sensor data acquisition, coordinate frame ID.\n\ 01216 Header header\n\ 01217 \n\ 01218 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 01219 # in the frame given in the header.\n\ 01220 geometry_msgs/Point32[] points\n\ 01221 \n\ 01222 # Each channel should have the same number of elements as points array,\n\ 01223 # and the data in each channel should correspond 1:1 with each point.\n\ 01224 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 01225 ChannelFloat32[] channels\n\ 01226 \n\ 01227 ================================================================================\n\ 01228 MSG: geometry_msgs/Point32\n\ 01229 # This contains the position of a point in free space(with 32 bits of precision).\n\ 01230 # It is recommeded to use Point wherever possible instead of Point32. \n\ 01231 # \n\ 01232 # This recommendation is to promote interoperability. \n\ 01233 #\n\ 01234 # This message is designed to take up less space when sending\n\ 01235 # lots of points at once, as in the case of a PointCloud. \n\ 01236 \n\ 01237 float32 x\n\ 01238 float32 y\n\ 01239 float32 z\n\ 01240 ================================================================================\n\ 01241 MSG: sensor_msgs/ChannelFloat32\n\ 01242 # This message is used by the PointCloud message to hold optional data\n\ 01243 # associated with each point in the cloud. The length of the values\n\ 01244 # array should be the same as the length of the points array in the\n\ 01245 # PointCloud, and each value should be associated with the corresponding\n\ 01246 # point.\n\ 01247 \n\ 01248 # Channel names in existing practice include:\n\ 01249 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01250 # This is opposite to usual conventions but remains for\n\ 01251 # historical reasons. The newer PointCloud2 message has no\n\ 01252 # such problem.\n\ 01253 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01254 # (R,G,B) values packed into the least significant 24 bits,\n\ 01255 # in order.\n\ 01256 # \"intensity\" - laser or pixel intensity.\n\ 01257 # \"distance\"\n\ 01258 \n\ 01259 # The channel name should give semantics of the channel (e.g.\n\ 01260 # \"intensity\" instead of \"value\").\n\ 01261 string name\n\ 01262 \n\ 01263 # The values array should be 1-1 with the elements of the associated\n\ 01264 # PointCloud.\n\ 01265 float32[] values\n\ 01266 \n\ 01267 ================================================================================\n\ 01268 MSG: object_manipulation_msgs/SceneRegion\n\ 01269 # Point cloud\n\ 01270 sensor_msgs/PointCloud2 cloud\n\ 01271 \n\ 01272 # Indices for the region of interest\n\ 01273 int32[] mask\n\ 01274 \n\ 01275 # One of the corresponding 2D images, if applicable\n\ 01276 sensor_msgs/Image image\n\ 01277 \n\ 01278 # The disparity image, if applicable\n\ 01279 sensor_msgs/Image disparity_image\n\ 01280 \n\ 01281 # Camera info for the camera that took the image\n\ 01282 sensor_msgs/CameraInfo cam_info\n\ 01283 \n\ 01284 # a 3D region of interest for grasp planning\n\ 01285 geometry_msgs/PoseStamped roi_box_pose\n\ 01286 geometry_msgs/Vector3 roi_box_dims\n\ 01287 \n\ 01288 ================================================================================\n\ 01289 MSG: sensor_msgs/PointCloud2\n\ 01290 # This message holds a collection of N-dimensional points, which may\n\ 01291 # contain additional information such as normals, intensity, etc. The\n\ 01292 # point data is stored as a binary blob, its layout described by the\n\ 01293 # contents of the \"fields\" array.\n\ 01294 \n\ 01295 # The point cloud data may be organized 2d (image-like) or 1d\n\ 01296 # (unordered). Point clouds organized as 2d images may be produced by\n\ 01297 # camera depth sensors such as stereo or time-of-flight.\n\ 01298 \n\ 01299 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 01300 # points).\n\ 01301 Header header\n\ 01302 \n\ 01303 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 01304 # 1 and width is the length of the point cloud.\n\ 01305 uint32 height\n\ 01306 uint32 width\n\ 01307 \n\ 01308 # Describes the channels and their layout in the binary data blob.\n\ 01309 PointField[] fields\n\ 01310 \n\ 01311 bool is_bigendian # Is this data bigendian?\n\ 01312 uint32 point_step # Length of a point in bytes\n\ 01313 uint32 row_step # Length of a row in bytes\n\ 01314 uint8[] data # Actual point data, size is (row_step*height)\n\ 01315 \n\ 01316 bool is_dense # True if there are no invalid points\n\ 01317 \n\ 01318 ================================================================================\n\ 01319 MSG: sensor_msgs/PointField\n\ 01320 # This message holds the description of one point entry in the\n\ 01321 # PointCloud2 message format.\n\ 01322 uint8 INT8 = 1\n\ 01323 uint8 UINT8 = 2\n\ 01324 uint8 INT16 = 3\n\ 01325 uint8 UINT16 = 4\n\ 01326 uint8 INT32 = 5\n\ 01327 uint8 UINT32 = 6\n\ 01328 uint8 FLOAT32 = 7\n\ 01329 uint8 FLOAT64 = 8\n\ 01330 \n\ 01331 string name # Name of field\n\ 01332 uint32 offset # Offset from start of point struct\n\ 01333 uint8 datatype # Datatype enumeration, see above\n\ 01334 uint32 count # How many elements in the field\n\ 01335 \n\ 01336 ================================================================================\n\ 01337 MSG: sensor_msgs/Image\n\ 01338 # This message contains an uncompressed image\n\ 01339 # (0, 0) is at top-left corner of image\n\ 01340 #\n\ 01341 \n\ 01342 Header header # Header timestamp should be acquisition time of image\n\ 01343 # Header frame_id should be optical frame of camera\n\ 01344 # origin of frame should be optical center of cameara\n\ 01345 # +x should point to the right in the image\n\ 01346 # +y should point down in the image\n\ 01347 # +z should point into to plane of the image\n\ 01348 # If the frame_id here and the frame_id of the CameraInfo\n\ 01349 # message associated with the image conflict\n\ 01350 # the behavior is undefined\n\ 01351 \n\ 01352 uint32 height # image height, that is, number of rows\n\ 01353 uint32 width # image width, that is, number of columns\n\ 01354 \n\ 01355 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01356 # If you want to standardize a new string format, join\n\ 01357 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01358 \n\ 01359 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01360 # taken from the list of strings in src/image_encodings.cpp\n\ 01361 \n\ 01362 uint8 is_bigendian # is this data bigendian?\n\ 01363 uint32 step # Full row length in bytes\n\ 01364 uint8[] data # actual matrix data, size is (step * rows)\n\ 01365 \n\ 01366 ================================================================================\n\ 01367 MSG: sensor_msgs/CameraInfo\n\ 01368 # This message defines meta information for a camera. It should be in a\n\ 01369 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01370 # image topics named:\n\ 01371 #\n\ 01372 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01373 # image - monochrome, distorted\n\ 01374 # image_color - color, distorted\n\ 01375 # image_rect - monochrome, rectified\n\ 01376 # image_rect_color - color, rectified\n\ 01377 #\n\ 01378 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01379 # for producing the four processed image topics from image_raw and\n\ 01380 # camera_info. The meaning of the camera parameters are described in\n\ 01381 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01382 #\n\ 01383 # The image_geometry package provides a user-friendly interface to\n\ 01384 # common operations using this meta information. If you want to, e.g.,\n\ 01385 # project a 3d point into image coordinates, we strongly recommend\n\ 01386 # using image_geometry.\n\ 01387 #\n\ 01388 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01389 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01390 # indicates an uncalibrated camera.\n\ 01391 \n\ 01392 #######################################################################\n\ 01393 # Image acquisition info #\n\ 01394 #######################################################################\n\ 01395 \n\ 01396 # Time of image acquisition, camera coordinate frame ID\n\ 01397 Header header # Header timestamp should be acquisition time of image\n\ 01398 # Header frame_id should be optical frame of camera\n\ 01399 # origin of frame should be optical center of camera\n\ 01400 # +x should point to the right in the image\n\ 01401 # +y should point down in the image\n\ 01402 # +z should point into the plane of the image\n\ 01403 \n\ 01404 \n\ 01405 #######################################################################\n\ 01406 # Calibration Parameters #\n\ 01407 #######################################################################\n\ 01408 # These are fixed during camera calibration. Their values will be the #\n\ 01409 # same in all messages until the camera is recalibrated. Note that #\n\ 01410 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01411 # #\n\ 01412 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01413 # to: #\n\ 01414 # 1. An undistorted image (requires D and K) #\n\ 01415 # 2. A rectified image (requires D, K, R) #\n\ 01416 # The projection matrix P projects 3D points into the rectified image.#\n\ 01417 #######################################################################\n\ 01418 \n\ 01419 # The image dimensions with which the camera was calibrated. Normally\n\ 01420 # this will be the full camera resolution in pixels.\n\ 01421 uint32 height\n\ 01422 uint32 width\n\ 01423 \n\ 01424 # The distortion model used. Supported models are listed in\n\ 01425 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01426 # simple model of radial and tangential distortion - is sufficent.\n\ 01427 string distortion_model\n\ 01428 \n\ 01429 # The distortion parameters, size depending on the distortion model.\n\ 01430 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01431 float64[] D\n\ 01432 \n\ 01433 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01434 # [fx 0 cx]\n\ 01435 # K = [ 0 fy cy]\n\ 01436 # [ 0 0 1]\n\ 01437 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01438 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01439 # (cx, cy).\n\ 01440 float64[9] K # 3x3 row-major matrix\n\ 01441 \n\ 01442 # Rectification matrix (stereo cameras only)\n\ 01443 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01444 # stereo image plane so that epipolar lines in both stereo images are\n\ 01445 # parallel.\n\ 01446 float64[9] R # 3x3 row-major matrix\n\ 01447 \n\ 01448 # Projection/camera matrix\n\ 01449 # [fx' 0 cx' Tx]\n\ 01450 # P = [ 0 fy' cy' Ty]\n\ 01451 # [ 0 0 1 0]\n\ 01452 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01453 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01454 # is the normal camera intrinsic matrix for the rectified image.\n\ 01455 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01456 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01457 # (cx', cy') - these may differ from the values in K.\n\ 01458 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01459 # also have R = the identity and P[1:3,1:3] = K.\n\ 01460 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01461 # position of the optical center of the second camera in the first\n\ 01462 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01463 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01464 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01465 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01466 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01467 # the rectified image is given by:\n\ 01468 # [u v w]' = P * [X Y Z 1]'\n\ 01469 # x = u / w\n\ 01470 # y = v / w\n\ 01471 # This holds for both images of a stereo pair.\n\ 01472 float64[12] P # 3x4 row-major matrix\n\ 01473 \n\ 01474 \n\ 01475 #######################################################################\n\ 01476 # Operational Parameters #\n\ 01477 #######################################################################\n\ 01478 # These define the image region actually captured by the camera #\n\ 01479 # driver. Although they affect the geometry of the output image, they #\n\ 01480 # may be changed freely without recalibrating the camera. #\n\ 01481 #######################################################################\n\ 01482 \n\ 01483 # Binning refers here to any camera setting which combines rectangular\n\ 01484 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01485 # resolution of the output image to\n\ 01486 # (width / binning_x) x (height / binning_y).\n\ 01487 # The default values binning_x = binning_y = 0 is considered the same\n\ 01488 # as binning_x = binning_y = 1 (no subsampling).\n\ 01489 uint32 binning_x\n\ 01490 uint32 binning_y\n\ 01491 \n\ 01492 # Region of interest (subwindow of full camera resolution), given in\n\ 01493 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01494 # always denotes the same window of pixels on the camera sensor,\n\ 01495 # regardless of binning settings.\n\ 01496 # The default setting of roi (all values 0) is considered the same as\n\ 01497 # full resolution (roi.width = width, roi.height = height).\n\ 01498 RegionOfInterest roi\n\ 01499 \n\ 01500 ================================================================================\n\ 01501 MSG: sensor_msgs/RegionOfInterest\n\ 01502 # This message is used to specify a region of interest within an image.\n\ 01503 #\n\ 01504 # When used to specify the ROI setting of the camera when the image was\n\ 01505 # taken, the height and width fields should either match the height and\n\ 01506 # width fields for the associated image; or height = width = 0\n\ 01507 # indicates that the full resolution image was captured.\n\ 01508 \n\ 01509 uint32 x_offset # Leftmost pixel of the ROI\n\ 01510 # (0 if the ROI includes the left edge of the image)\n\ 01511 uint32 y_offset # Topmost pixel of the ROI\n\ 01512 # (0 if the ROI includes the top edge of the image)\n\ 01513 uint32 height # Height of ROI\n\ 01514 uint32 width # Width of ROI\n\ 01515 \n\ 01516 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01517 # ROI in this message. Typically this should be False if the full image\n\ 01518 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01519 # used).\n\ 01520 bool do_rectify\n\ 01521 \n\ 01522 ================================================================================\n\ 01523 MSG: geometry_msgs/Vector3\n\ 01524 # This represents a vector in free space. \n\ 01525 \n\ 01526 float64 x\n\ 01527 float64 y\n\ 01528 float64 z\n\ 01529 ================================================================================\n\ 01530 MSG: object_manipulation_msgs/GripperTranslation\n\ 01531 # defines a translation for the gripper, used in pickup or place tasks\n\ 01532 # for example for lifting an object off a table or approaching the table for placing\n\ 01533 \n\ 01534 # the direction of the translation\n\ 01535 geometry_msgs/Vector3Stamped direction\n\ 01536 \n\ 01537 # the desired translation distance\n\ 01538 float32 desired_distance\n\ 01539 \n\ 01540 # the min distance that must be considered feasible before the\n\ 01541 # grasp is even attempted\n\ 01542 float32 min_distance\n\ 01543 ================================================================================\n\ 01544 MSG: geometry_msgs/Vector3Stamped\n\ 01545 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 01546 Header header\n\ 01547 Vector3 vector\n\ 01548 \n\ 01549 ================================================================================\n\ 01550 MSG: arm_navigation_msgs/Constraints\n\ 01551 # This message contains a list of motion planning constraints.\n\ 01552 \n\ 01553 arm_navigation_msgs/JointConstraint[] joint_constraints\n\ 01554 arm_navigation_msgs/PositionConstraint[] position_constraints\n\ 01555 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\ 01556 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\ 01557 \n\ 01558 ================================================================================\n\ 01559 MSG: arm_navigation_msgs/JointConstraint\n\ 01560 # Constrain the position of a joint to be within a certain bound\n\ 01561 string joint_name\n\ 01562 \n\ 01563 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\ 01564 float64 position\n\ 01565 float64 tolerance_above\n\ 01566 float64 tolerance_below\n\ 01567 \n\ 01568 # A weighting factor for this constraint\n\ 01569 float64 weight\n\ 01570 ================================================================================\n\ 01571 MSG: arm_navigation_msgs/PositionConstraint\n\ 01572 # This message contains the definition of a position constraint.\n\ 01573 Header header\n\ 01574 \n\ 01575 # The robot link this constraint refers to\n\ 01576 string link_name\n\ 01577 \n\ 01578 # The offset (in the link frame) for the target point on the link we are planning for\n\ 01579 geometry_msgs/Point target_point_offset\n\ 01580 \n\ 01581 # The nominal/target position for the point we are planning for\n\ 01582 geometry_msgs/Point position\n\ 01583 \n\ 01584 # The shape of the bounded region that constrains the position of the end-effector\n\ 01585 # This region is always centered at the position defined above\n\ 01586 arm_navigation_msgs/Shape constraint_region_shape\n\ 01587 \n\ 01588 # The orientation of the bounded region that constrains the position of the end-effector. \n\ 01589 # This allows the specification of non-axis aligned constraints\n\ 01590 geometry_msgs/Quaternion constraint_region_orientation\n\ 01591 \n\ 01592 # Constraint weighting factor - a weight for this constraint\n\ 01593 float64 weight\n\ 01594 \n\ 01595 ================================================================================\n\ 01596 MSG: arm_navigation_msgs/Shape\n\ 01597 byte SPHERE=0\n\ 01598 byte BOX=1\n\ 01599 byte CYLINDER=2\n\ 01600 byte MESH=3\n\ 01601 \n\ 01602 byte type\n\ 01603 \n\ 01604 \n\ 01605 #### define sphere, box, cylinder ####\n\ 01606 # the origin of each shape is considered at the shape's center\n\ 01607 \n\ 01608 # for sphere\n\ 01609 # radius := dimensions[0]\n\ 01610 \n\ 01611 # for cylinder\n\ 01612 # radius := dimensions[0]\n\ 01613 # length := dimensions[1]\n\ 01614 # the length is along the Z axis\n\ 01615 \n\ 01616 # for box\n\ 01617 # size_x := dimensions[0]\n\ 01618 # size_y := dimensions[1]\n\ 01619 # size_z := dimensions[2]\n\ 01620 float64[] dimensions\n\ 01621 \n\ 01622 \n\ 01623 #### define mesh ####\n\ 01624 \n\ 01625 # list of triangles; triangle k is defined by tre vertices located\n\ 01626 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 01627 int32[] triangles\n\ 01628 geometry_msgs/Point[] vertices\n\ 01629 \n\ 01630 ================================================================================\n\ 01631 MSG: arm_navigation_msgs/OrientationConstraint\n\ 01632 # This message contains the definition of an orientation constraint.\n\ 01633 Header header\n\ 01634 \n\ 01635 # The robot link this constraint refers to\n\ 01636 string link_name\n\ 01637 \n\ 01638 # The type of the constraint\n\ 01639 int32 type\n\ 01640 int32 LINK_FRAME=0\n\ 01641 int32 HEADER_FRAME=1\n\ 01642 \n\ 01643 # The desired orientation of the robot link specified as a quaternion\n\ 01644 geometry_msgs/Quaternion orientation\n\ 01645 \n\ 01646 # optional RPY error tolerances specified if \n\ 01647 float64 absolute_roll_tolerance\n\ 01648 float64 absolute_pitch_tolerance\n\ 01649 float64 absolute_yaw_tolerance\n\ 01650 \n\ 01651 # Constraint weighting factor - a weight for this constraint\n\ 01652 float64 weight\n\ 01653 \n\ 01654 ================================================================================\n\ 01655 MSG: arm_navigation_msgs/VisibilityConstraint\n\ 01656 # This message contains the definition of a visibility constraint.\n\ 01657 Header header\n\ 01658 \n\ 01659 # The point stamped target that needs to be kept within view of the sensor\n\ 01660 geometry_msgs/PointStamped target\n\ 01661 \n\ 01662 # The local pose of the frame in which visibility is to be maintained\n\ 01663 # The frame id should represent the robot link to which the sensor is attached\n\ 01664 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\ 01665 geometry_msgs/PoseStamped sensor_pose\n\ 01666 \n\ 01667 # The deviation (in radians) that will be tolerated\n\ 01668 # Constraint error will be measured as the solid angle between the \n\ 01669 # X axis of the frame defined above and the vector between the origin \n\ 01670 # of the frame defined above and the target location\n\ 01671 float64 absolute_tolerance\n\ 01672 \n\ 01673 \n\ 01674 ================================================================================\n\ 01675 MSG: geometry_msgs/PointStamped\n\ 01676 # This represents a Point with reference coordinate frame and timestamp\n\ 01677 Header header\n\ 01678 Point point\n\ 01679 \n\ 01680 ================================================================================\n\ 01681 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\ 01682 # A set of collision operations that will be performed in the order they are specified\n\ 01683 CollisionOperation[] collision_operations\n\ 01684 ================================================================================\n\ 01685 MSG: arm_navigation_msgs/CollisionOperation\n\ 01686 # A definition of a collision operation\n\ 01687 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\ 01688 # between the gripper and all objects in the collision space\n\ 01689 \n\ 01690 string object1\n\ 01691 string object2\n\ 01692 string COLLISION_SET_ALL=\"all\"\n\ 01693 string COLLISION_SET_OBJECTS=\"objects\"\n\ 01694 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\ 01695 \n\ 01696 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\ 01697 float64 penetration_distance\n\ 01698 \n\ 01699 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\ 01700 int32 operation\n\ 01701 int32 DISABLE=0\n\ 01702 int32 ENABLE=1\n\ 01703 \n\ 01704 ================================================================================\n\ 01705 MSG: arm_navigation_msgs/LinkPadding\n\ 01706 #name for the link\n\ 01707 string link_name\n\ 01708 \n\ 01709 # padding to apply to the link\n\ 01710 float64 padding\n\ 01711 \n\ 01712 "; 01713 } 01714 01715 static const char* value(const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> &) { return value(); } 01716 }; 01717 01718 } // namespace message_traits 01719 } // namespace ros 01720 01721 namespace ros 01722 { 01723 namespace serialization 01724 { 01725 01726 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > 01727 { 01728 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01729 { 01730 stream.next(m.arm_name); 01731 stream.next(m.place_locations); 01732 stream.next(m.grasp); 01733 stream.next(m.desired_retreat_distance); 01734 stream.next(m.min_retreat_distance); 01735 stream.next(m.approach); 01736 stream.next(m.collision_object_name); 01737 stream.next(m.collision_support_surface_name); 01738 stream.next(m.allow_gripper_support_collision); 01739 stream.next(m.use_reactive_place); 01740 stream.next(m.place_padding); 01741 stream.next(m.only_perform_feasibility_test); 01742 stream.next(m.path_constraints); 01743 stream.next(m.additional_collision_operations); 01744 stream.next(m.additional_link_padding); 01745 } 01746 01747 ROS_DECLARE_ALLINONE_SERIALIZER; 01748 }; // struct PlaceGoal_ 01749 } // namespace serialization 01750 } // namespace ros 01751 01752 namespace ros 01753 { 01754 namespace message_operations 01755 { 01756 01757 template<class ContainerAllocator> 01758 struct Printer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > 01759 { 01760 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> & v) 01761 { 01762 s << indent << "arm_name: "; 01763 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name); 01764 s << indent << "place_locations[]" << std::endl; 01765 for (size_t i = 0; i < v.place_locations.size(); ++i) 01766 { 01767 s << indent << " place_locations[" << i << "]: "; 01768 s << std::endl; 01769 s << indent; 01770 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.place_locations[i]); 01771 } 01772 s << indent << "grasp: "; 01773 s << std::endl; 01774 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasp); 01775 s << indent << "desired_retreat_distance: "; 01776 Printer<float>::stream(s, indent + " ", v.desired_retreat_distance); 01777 s << indent << "min_retreat_distance: "; 01778 Printer<float>::stream(s, indent + " ", v.min_retreat_distance); 01779 s << indent << "approach: "; 01780 s << std::endl; 01781 Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + " ", v.approach); 01782 s << indent << "collision_object_name: "; 01783 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_object_name); 01784 s << indent << "collision_support_surface_name: "; 01785 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name); 01786 s << indent << "allow_gripper_support_collision: "; 01787 Printer<uint8_t>::stream(s, indent + " ", v.allow_gripper_support_collision); 01788 s << indent << "use_reactive_place: "; 01789 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_place); 01790 s << indent << "place_padding: "; 01791 Printer<double>::stream(s, indent + " ", v.place_padding); 01792 s << indent << "only_perform_feasibility_test: "; 01793 Printer<uint8_t>::stream(s, indent + " ", v.only_perform_feasibility_test); 01794 s << indent << "path_constraints: "; 01795 s << std::endl; 01796 Printer< ::arm_navigation_msgs::Constraints_<ContainerAllocator> >::stream(s, indent + " ", v.path_constraints); 01797 s << indent << "additional_collision_operations: "; 01798 s << std::endl; 01799 Printer< ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> >::stream(s, indent + " ", v.additional_collision_operations); 01800 s << indent << "additional_link_padding[]" << std::endl; 01801 for (size_t i = 0; i < v.additional_link_padding.size(); ++i) 01802 { 01803 s << indent << " additional_link_padding[" << i << "]: "; 01804 s << std::endl; 01805 s << indent; 01806 Printer< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::stream(s, indent + " ", v.additional_link_padding[i]); 01807 } 01808 } 01809 }; 01810 01811 01812 } // namespace message_operations 01813 } // namespace ros 01814 01815 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEGOAL_H 01816