$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/PlaceActionGoal.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEACTIONGOAL_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEACTIONGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalID.h" 00019 #include "object_manipulation_msgs/PlaceGoal.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct PlaceActionGoal_ { 00025 typedef PlaceActionGoal_<ContainerAllocator> Type; 00026 00027 PlaceActionGoal_() 00028 : header() 00029 , goal_id() 00030 , goal() 00031 { 00032 } 00033 00034 PlaceActionGoal_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , goal_id(_alloc) 00037 , goal(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type; 00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id; 00046 00047 typedef ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> _goal_type; 00048 ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> goal; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/PlaceActionGoal"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "f93c352752526d02221a81b54b167175"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalID goal_id\n\ 00070 PlaceGoal goal\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalID\n\ 00092 # The stamp should store the time at which this goal was requested.\n\ 00093 # It is used by an action server when it tries to preempt all\n\ 00094 # goals that were requested before a certain time\n\ 00095 time stamp\n\ 00096 \n\ 00097 # The id provides a way to associate feedback and\n\ 00098 # result message with specific goal requests. The id\n\ 00099 # specified must be unique.\n\ 00100 string id\n\ 00101 \n\ 00102 \n\ 00103 ================================================================================\n\ 00104 MSG: object_manipulation_msgs/PlaceGoal\n\ 00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00106 # An action for placing an object\n\ 00107 \n\ 00108 # which arm to be used for grasping\n\ 00109 string arm_name\n\ 00110 \n\ 00111 # a list of possible transformations for placing the object (place_trans)\n\ 00112 # the final pose of the wrist for placement (place_wrist_pose) is as follows:\n\ 00113 # place_wrist_pose = place_trans * grasp_pose\n\ 00114 # the frame_id for wrist_trans is defined here, and \n\ 00115 # should be the same for all place_locations\n\ 00116 geometry_msgs/PoseStamped[] place_locations\n\ 00117 \n\ 00118 # the grasp that has been executed on this object\n\ 00119 # (contains the grasp_pose referred to above)\n\ 00120 Grasp grasp\n\ 00121 \n\ 00122 # how far the retreat should ideally be away from the place location\n\ 00123 float32 desired_retreat_distance\n\ 00124 \n\ 00125 # the min distance between the retreat and the place location that must actually be feasible \n\ 00126 # for the place not to be rejected\n\ 00127 float32 min_retreat_distance\n\ 00128 \n\ 00129 # how the place location should be approached\n\ 00130 # the frame_id that this lift is specified in MUST be either the robot_frame \n\ 00131 # or the gripper_frame specified in your hand description file\n\ 00132 GripperTranslation approach\n\ 00133 \n\ 00134 # the name that the target object has in the collision map\n\ 00135 # can be left empty if no name is available\n\ 00136 string collision_object_name\n\ 00137 \n\ 00138 # the name that the support surface (e.g. table) has in the collision map\n\ 00139 # can be left empty if no name is available\n\ 00140 string collision_support_surface_name\n\ 00141 \n\ 00142 # whether collisions between the gripper and the support surface should be acceptable\n\ 00143 # during move from pre-place to place and during retreat. Collisions when moving to the\n\ 00144 # pre-place location are still not allowed even if this is set to true.\n\ 00145 bool allow_gripper_support_collision\n\ 00146 \n\ 00147 # whether reactive placing based on tactile sensors should be used\n\ 00148 bool use_reactive_place\n\ 00149 \n\ 00150 # how much the object should be padded by when deciding if the grasp\n\ 00151 # location is freasible or not\n\ 00152 float64 place_padding\n\ 00153 \n\ 00154 # set this to true if you only want to query the manipulation pipeline as to what \n\ 00155 # place locations it thinks are feasible, without actually executing them. If this is set to \n\ 00156 # true, the atempted_location_results field of the result will be populated, but no arm \n\ 00157 # movement will be attempted\n\ 00158 bool only_perform_feasibility_test\n\ 00159 \n\ 00160 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00161 # constraints to be imposed on every point in the motion of the arm\n\ 00162 arm_navigation_msgs/Constraints path_constraints\n\ 00163 \n\ 00164 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00165 # additional collision operations to be used for every arm movement performed\n\ 00166 # during placing. Note that these will be added on top of (and thus overide) other \n\ 00167 # collision operations that the grasping pipeline deems necessary. Should be used\n\ 00168 # with care and only if special behaviors are desired.\n\ 00169 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\ 00170 \n\ 00171 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00172 # additional link paddings to be used for every arm movement performed\n\ 00173 # during placing. Note that these will be added on top of (and thus overide) other \n\ 00174 # link paddings that the grasping pipeline deems necessary. Should be used\n\ 00175 # with care and only if special behaviors are desired.\n\ 00176 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\ 00177 \n\ 00178 \n\ 00179 ================================================================================\n\ 00180 MSG: geometry_msgs/PoseStamped\n\ 00181 # A Pose with reference coordinate frame and timestamp\n\ 00182 Header header\n\ 00183 Pose pose\n\ 00184 \n\ 00185 ================================================================================\n\ 00186 MSG: geometry_msgs/Pose\n\ 00187 # A representation of pose in free space, composed of postion and orientation. \n\ 00188 Point position\n\ 00189 Quaternion orientation\n\ 00190 \n\ 00191 ================================================================================\n\ 00192 MSG: geometry_msgs/Point\n\ 00193 # This contains the position of a point in free space\n\ 00194 float64 x\n\ 00195 float64 y\n\ 00196 float64 z\n\ 00197 \n\ 00198 ================================================================================\n\ 00199 MSG: geometry_msgs/Quaternion\n\ 00200 # This represents an orientation in free space in quaternion form.\n\ 00201 \n\ 00202 float64 x\n\ 00203 float64 y\n\ 00204 float64 z\n\ 00205 float64 w\n\ 00206 \n\ 00207 ================================================================================\n\ 00208 MSG: object_manipulation_msgs/Grasp\n\ 00209 \n\ 00210 # The internal posture of the hand for the pre-grasp\n\ 00211 # only positions are used\n\ 00212 sensor_msgs/JointState pre_grasp_posture\n\ 00213 \n\ 00214 # The internal posture of the hand for the grasp\n\ 00215 # positions and efforts are used\n\ 00216 sensor_msgs/JointState grasp_posture\n\ 00217 \n\ 00218 # The position of the end-effector for the grasp relative to a reference frame \n\ 00219 # (that is always specified elsewhere, not in this message)\n\ 00220 geometry_msgs/Pose grasp_pose\n\ 00221 \n\ 00222 # The estimated probability of success for this grasp\n\ 00223 float64 success_probability\n\ 00224 \n\ 00225 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00226 bool cluster_rep\n\ 00227 \n\ 00228 # how far the pre-grasp should ideally be away from the grasp\n\ 00229 float32 desired_approach_distance\n\ 00230 \n\ 00231 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00232 # for the grasp not to be rejected\n\ 00233 float32 min_approach_distance\n\ 00234 \n\ 00235 # an optional list of obstacles that we have semantic information about\n\ 00236 # and that we expect might move in the course of executing this grasp\n\ 00237 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00238 # execution, grasp executors will not check for collisions against these objects\n\ 00239 GraspableObject[] moved_obstacles\n\ 00240 \n\ 00241 ================================================================================\n\ 00242 MSG: sensor_msgs/JointState\n\ 00243 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00244 #\n\ 00245 # The state of each joint (revolute or prismatic) is defined by:\n\ 00246 # * the position of the joint (rad or m),\n\ 00247 # * the velocity of the joint (rad/s or m/s) and \n\ 00248 # * the effort that is applied in the joint (Nm or N).\n\ 00249 #\n\ 00250 # Each joint is uniquely identified by its name\n\ 00251 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00252 # in one message have to be recorded at the same time.\n\ 00253 #\n\ 00254 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00255 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00256 # effort associated with them, you can leave the effort array empty. \n\ 00257 #\n\ 00258 # All arrays in this message should have the same size, or be empty.\n\ 00259 # This is the only way to uniquely associate the joint name with the correct\n\ 00260 # states.\n\ 00261 \n\ 00262 \n\ 00263 Header header\n\ 00264 \n\ 00265 string[] name\n\ 00266 float64[] position\n\ 00267 float64[] velocity\n\ 00268 float64[] effort\n\ 00269 \n\ 00270 ================================================================================\n\ 00271 MSG: object_manipulation_msgs/GraspableObject\n\ 00272 # an object that the object_manipulator can work on\n\ 00273 \n\ 00274 # a graspable object can be represented in multiple ways. This message\n\ 00275 # can contain all of them. Which one is actually used is up to the receiver\n\ 00276 # of this message. When adding new representations, one must be careful that\n\ 00277 # they have reasonable lightweight defaults indicating that that particular\n\ 00278 # representation is not available.\n\ 00279 \n\ 00280 # the tf frame to be used as a reference frame when combining information from\n\ 00281 # the different representations below\n\ 00282 string reference_frame_id\n\ 00283 \n\ 00284 # potential recognition results from a database of models\n\ 00285 # all poses are relative to the object reference pose\n\ 00286 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00287 \n\ 00288 # the point cloud itself\n\ 00289 sensor_msgs/PointCloud cluster\n\ 00290 \n\ 00291 # a region of a PointCloud2 of interest\n\ 00292 object_manipulation_msgs/SceneRegion region\n\ 00293 \n\ 00294 # the name that this object has in the collision environment\n\ 00295 string collision_name\n\ 00296 ================================================================================\n\ 00297 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00298 # Informs that a specific model from the Model Database has been \n\ 00299 # identified at a certain location\n\ 00300 \n\ 00301 # the database id of the model\n\ 00302 int32 model_id\n\ 00303 \n\ 00304 # the pose that it can be found in\n\ 00305 geometry_msgs/PoseStamped pose\n\ 00306 \n\ 00307 # a measure of the confidence level in this detection result\n\ 00308 float32 confidence\n\ 00309 \n\ 00310 # the name of the object detector that generated this detection result\n\ 00311 string detector_name\n\ 00312 \n\ 00313 ================================================================================\n\ 00314 MSG: sensor_msgs/PointCloud\n\ 00315 # This message holds a collection of 3d points, plus optional additional\n\ 00316 # information about each point.\n\ 00317 \n\ 00318 # Time of sensor data acquisition, coordinate frame ID.\n\ 00319 Header header\n\ 00320 \n\ 00321 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00322 # in the frame given in the header.\n\ 00323 geometry_msgs/Point32[] points\n\ 00324 \n\ 00325 # Each channel should have the same number of elements as points array,\n\ 00326 # and the data in each channel should correspond 1:1 with each point.\n\ 00327 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00328 ChannelFloat32[] channels\n\ 00329 \n\ 00330 ================================================================================\n\ 00331 MSG: geometry_msgs/Point32\n\ 00332 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00333 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00334 # \n\ 00335 # This recommendation is to promote interoperability. \n\ 00336 #\n\ 00337 # This message is designed to take up less space when sending\n\ 00338 # lots of points at once, as in the case of a PointCloud. \n\ 00339 \n\ 00340 float32 x\n\ 00341 float32 y\n\ 00342 float32 z\n\ 00343 ================================================================================\n\ 00344 MSG: sensor_msgs/ChannelFloat32\n\ 00345 # This message is used by the PointCloud message to hold optional data\n\ 00346 # associated with each point in the cloud. The length of the values\n\ 00347 # array should be the same as the length of the points array in the\n\ 00348 # PointCloud, and each value should be associated with the corresponding\n\ 00349 # point.\n\ 00350 \n\ 00351 # Channel names in existing practice include:\n\ 00352 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00353 # This is opposite to usual conventions but remains for\n\ 00354 # historical reasons. The newer PointCloud2 message has no\n\ 00355 # such problem.\n\ 00356 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00357 # (R,G,B) values packed into the least significant 24 bits,\n\ 00358 # in order.\n\ 00359 # \"intensity\" - laser or pixel intensity.\n\ 00360 # \"distance\"\n\ 00361 \n\ 00362 # The channel name should give semantics of the channel (e.g.\n\ 00363 # \"intensity\" instead of \"value\").\n\ 00364 string name\n\ 00365 \n\ 00366 # The values array should be 1-1 with the elements of the associated\n\ 00367 # PointCloud.\n\ 00368 float32[] values\n\ 00369 \n\ 00370 ================================================================================\n\ 00371 MSG: object_manipulation_msgs/SceneRegion\n\ 00372 # Point cloud\n\ 00373 sensor_msgs/PointCloud2 cloud\n\ 00374 \n\ 00375 # Indices for the region of interest\n\ 00376 int32[] mask\n\ 00377 \n\ 00378 # One of the corresponding 2D images, if applicable\n\ 00379 sensor_msgs/Image image\n\ 00380 \n\ 00381 # The disparity image, if applicable\n\ 00382 sensor_msgs/Image disparity_image\n\ 00383 \n\ 00384 # Camera info for the camera that took the image\n\ 00385 sensor_msgs/CameraInfo cam_info\n\ 00386 \n\ 00387 # a 3D region of interest for grasp planning\n\ 00388 geometry_msgs/PoseStamped roi_box_pose\n\ 00389 geometry_msgs/Vector3 roi_box_dims\n\ 00390 \n\ 00391 ================================================================================\n\ 00392 MSG: sensor_msgs/PointCloud2\n\ 00393 # This message holds a collection of N-dimensional points, which may\n\ 00394 # contain additional information such as normals, intensity, etc. The\n\ 00395 # point data is stored as a binary blob, its layout described by the\n\ 00396 # contents of the \"fields\" array.\n\ 00397 \n\ 00398 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00399 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00400 # camera depth sensors such as stereo or time-of-flight.\n\ 00401 \n\ 00402 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00403 # points).\n\ 00404 Header header\n\ 00405 \n\ 00406 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00407 # 1 and width is the length of the point cloud.\n\ 00408 uint32 height\n\ 00409 uint32 width\n\ 00410 \n\ 00411 # Describes the channels and their layout in the binary data blob.\n\ 00412 PointField[] fields\n\ 00413 \n\ 00414 bool is_bigendian # Is this data bigendian?\n\ 00415 uint32 point_step # Length of a point in bytes\n\ 00416 uint32 row_step # Length of a row in bytes\n\ 00417 uint8[] data # Actual point data, size is (row_step*height)\n\ 00418 \n\ 00419 bool is_dense # True if there are no invalid points\n\ 00420 \n\ 00421 ================================================================================\n\ 00422 MSG: sensor_msgs/PointField\n\ 00423 # This message holds the description of one point entry in the\n\ 00424 # PointCloud2 message format.\n\ 00425 uint8 INT8 = 1\n\ 00426 uint8 UINT8 = 2\n\ 00427 uint8 INT16 = 3\n\ 00428 uint8 UINT16 = 4\n\ 00429 uint8 INT32 = 5\n\ 00430 uint8 UINT32 = 6\n\ 00431 uint8 FLOAT32 = 7\n\ 00432 uint8 FLOAT64 = 8\n\ 00433 \n\ 00434 string name # Name of field\n\ 00435 uint32 offset # Offset from start of point struct\n\ 00436 uint8 datatype # Datatype enumeration, see above\n\ 00437 uint32 count # How many elements in the field\n\ 00438 \n\ 00439 ================================================================================\n\ 00440 MSG: sensor_msgs/Image\n\ 00441 # This message contains an uncompressed image\n\ 00442 # (0, 0) is at top-left corner of image\n\ 00443 #\n\ 00444 \n\ 00445 Header header # Header timestamp should be acquisition time of image\n\ 00446 # Header frame_id should be optical frame of camera\n\ 00447 # origin of frame should be optical center of cameara\n\ 00448 # +x should point to the right in the image\n\ 00449 # +y should point down in the image\n\ 00450 # +z should point into to plane of the image\n\ 00451 # If the frame_id here and the frame_id of the CameraInfo\n\ 00452 # message associated with the image conflict\n\ 00453 # the behavior is undefined\n\ 00454 \n\ 00455 uint32 height # image height, that is, number of rows\n\ 00456 uint32 width # image width, that is, number of columns\n\ 00457 \n\ 00458 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00459 # If you want to standardize a new string format, join\n\ 00460 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00461 \n\ 00462 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00463 # taken from the list of strings in src/image_encodings.cpp\n\ 00464 \n\ 00465 uint8 is_bigendian # is this data bigendian?\n\ 00466 uint32 step # Full row length in bytes\n\ 00467 uint8[] data # actual matrix data, size is (step * rows)\n\ 00468 \n\ 00469 ================================================================================\n\ 00470 MSG: sensor_msgs/CameraInfo\n\ 00471 # This message defines meta information for a camera. It should be in a\n\ 00472 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00473 # image topics named:\n\ 00474 #\n\ 00475 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00476 # image - monochrome, distorted\n\ 00477 # image_color - color, distorted\n\ 00478 # image_rect - monochrome, rectified\n\ 00479 # image_rect_color - color, rectified\n\ 00480 #\n\ 00481 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00482 # for producing the four processed image topics from image_raw and\n\ 00483 # camera_info. The meaning of the camera parameters are described in\n\ 00484 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00485 #\n\ 00486 # The image_geometry package provides a user-friendly interface to\n\ 00487 # common operations using this meta information. If you want to, e.g.,\n\ 00488 # project a 3d point into image coordinates, we strongly recommend\n\ 00489 # using image_geometry.\n\ 00490 #\n\ 00491 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00492 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00493 # indicates an uncalibrated camera.\n\ 00494 \n\ 00495 #######################################################################\n\ 00496 # Image acquisition info #\n\ 00497 #######################################################################\n\ 00498 \n\ 00499 # Time of image acquisition, camera coordinate frame ID\n\ 00500 Header header # Header timestamp should be acquisition time of image\n\ 00501 # Header frame_id should be optical frame of camera\n\ 00502 # origin of frame should be optical center of camera\n\ 00503 # +x should point to the right in the image\n\ 00504 # +y should point down in the image\n\ 00505 # +z should point into the plane of the image\n\ 00506 \n\ 00507 \n\ 00508 #######################################################################\n\ 00509 # Calibration Parameters #\n\ 00510 #######################################################################\n\ 00511 # These are fixed during camera calibration. Their values will be the #\n\ 00512 # same in all messages until the camera is recalibrated. Note that #\n\ 00513 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00514 # #\n\ 00515 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00516 # to: #\n\ 00517 # 1. An undistorted image (requires D and K) #\n\ 00518 # 2. A rectified image (requires D, K, R) #\n\ 00519 # The projection matrix P projects 3D points into the rectified image.#\n\ 00520 #######################################################################\n\ 00521 \n\ 00522 # The image dimensions with which the camera was calibrated. Normally\n\ 00523 # this will be the full camera resolution in pixels.\n\ 00524 uint32 height\n\ 00525 uint32 width\n\ 00526 \n\ 00527 # The distortion model used. Supported models are listed in\n\ 00528 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00529 # simple model of radial and tangential distortion - is sufficent.\n\ 00530 string distortion_model\n\ 00531 \n\ 00532 # The distortion parameters, size depending on the distortion model.\n\ 00533 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00534 float64[] D\n\ 00535 \n\ 00536 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00537 # [fx 0 cx]\n\ 00538 # K = [ 0 fy cy]\n\ 00539 # [ 0 0 1]\n\ 00540 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00541 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00542 # (cx, cy).\n\ 00543 float64[9] K # 3x3 row-major matrix\n\ 00544 \n\ 00545 # Rectification matrix (stereo cameras only)\n\ 00546 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00547 # stereo image plane so that epipolar lines in both stereo images are\n\ 00548 # parallel.\n\ 00549 float64[9] R # 3x3 row-major matrix\n\ 00550 \n\ 00551 # Projection/camera matrix\n\ 00552 # [fx' 0 cx' Tx]\n\ 00553 # P = [ 0 fy' cy' Ty]\n\ 00554 # [ 0 0 1 0]\n\ 00555 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00556 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00557 # is the normal camera intrinsic matrix for the rectified image.\n\ 00558 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00559 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00560 # (cx', cy') - these may differ from the values in K.\n\ 00561 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00562 # also have R = the identity and P[1:3,1:3] = K.\n\ 00563 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00564 # position of the optical center of the second camera in the first\n\ 00565 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00566 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00567 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00568 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00569 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00570 # the rectified image is given by:\n\ 00571 # [u v w]' = P * [X Y Z 1]'\n\ 00572 # x = u / w\n\ 00573 # y = v / w\n\ 00574 # This holds for both images of a stereo pair.\n\ 00575 float64[12] P # 3x4 row-major matrix\n\ 00576 \n\ 00577 \n\ 00578 #######################################################################\n\ 00579 # Operational Parameters #\n\ 00580 #######################################################################\n\ 00581 # These define the image region actually captured by the camera #\n\ 00582 # driver. Although they affect the geometry of the output image, they #\n\ 00583 # may be changed freely without recalibrating the camera. #\n\ 00584 #######################################################################\n\ 00585 \n\ 00586 # Binning refers here to any camera setting which combines rectangular\n\ 00587 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00588 # resolution of the output image to\n\ 00589 # (width / binning_x) x (height / binning_y).\n\ 00590 # The default values binning_x = binning_y = 0 is considered the same\n\ 00591 # as binning_x = binning_y = 1 (no subsampling).\n\ 00592 uint32 binning_x\n\ 00593 uint32 binning_y\n\ 00594 \n\ 00595 # Region of interest (subwindow of full camera resolution), given in\n\ 00596 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00597 # always denotes the same window of pixels on the camera sensor,\n\ 00598 # regardless of binning settings.\n\ 00599 # The default setting of roi (all values 0) is considered the same as\n\ 00600 # full resolution (roi.width = width, roi.height = height).\n\ 00601 RegionOfInterest roi\n\ 00602 \n\ 00603 ================================================================================\n\ 00604 MSG: sensor_msgs/RegionOfInterest\n\ 00605 # This message is used to specify a region of interest within an image.\n\ 00606 #\n\ 00607 # When used to specify the ROI setting of the camera when the image was\n\ 00608 # taken, the height and width fields should either match the height and\n\ 00609 # width fields for the associated image; or height = width = 0\n\ 00610 # indicates that the full resolution image was captured.\n\ 00611 \n\ 00612 uint32 x_offset # Leftmost pixel of the ROI\n\ 00613 # (0 if the ROI includes the left edge of the image)\n\ 00614 uint32 y_offset # Topmost pixel of the ROI\n\ 00615 # (0 if the ROI includes the top edge of the image)\n\ 00616 uint32 height # Height of ROI\n\ 00617 uint32 width # Width of ROI\n\ 00618 \n\ 00619 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00620 # ROI in this message. Typically this should be False if the full image\n\ 00621 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00622 # used).\n\ 00623 bool do_rectify\n\ 00624 \n\ 00625 ================================================================================\n\ 00626 MSG: geometry_msgs/Vector3\n\ 00627 # This represents a vector in free space. \n\ 00628 \n\ 00629 float64 x\n\ 00630 float64 y\n\ 00631 float64 z\n\ 00632 ================================================================================\n\ 00633 MSG: object_manipulation_msgs/GripperTranslation\n\ 00634 # defines a translation for the gripper, used in pickup or place tasks\n\ 00635 # for example for lifting an object off a table or approaching the table for placing\n\ 00636 \n\ 00637 # the direction of the translation\n\ 00638 geometry_msgs/Vector3Stamped direction\n\ 00639 \n\ 00640 # the desired translation distance\n\ 00641 float32 desired_distance\n\ 00642 \n\ 00643 # the min distance that must be considered feasible before the\n\ 00644 # grasp is even attempted\n\ 00645 float32 min_distance\n\ 00646 ================================================================================\n\ 00647 MSG: geometry_msgs/Vector3Stamped\n\ 00648 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 00649 Header header\n\ 00650 Vector3 vector\n\ 00651 \n\ 00652 ================================================================================\n\ 00653 MSG: arm_navigation_msgs/Constraints\n\ 00654 # This message contains a list of motion planning constraints.\n\ 00655 \n\ 00656 arm_navigation_msgs/JointConstraint[] joint_constraints\n\ 00657 arm_navigation_msgs/PositionConstraint[] position_constraints\n\ 00658 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\ 00659 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\ 00660 \n\ 00661 ================================================================================\n\ 00662 MSG: arm_navigation_msgs/JointConstraint\n\ 00663 # Constrain the position of a joint to be within a certain bound\n\ 00664 string joint_name\n\ 00665 \n\ 00666 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\ 00667 float64 position\n\ 00668 float64 tolerance_above\n\ 00669 float64 tolerance_below\n\ 00670 \n\ 00671 # A weighting factor for this constraint\n\ 00672 float64 weight\n\ 00673 ================================================================================\n\ 00674 MSG: arm_navigation_msgs/PositionConstraint\n\ 00675 # This message contains the definition of a position constraint.\n\ 00676 Header header\n\ 00677 \n\ 00678 # The robot link this constraint refers to\n\ 00679 string link_name\n\ 00680 \n\ 00681 # The offset (in the link frame) for the target point on the link we are planning for\n\ 00682 geometry_msgs/Point target_point_offset\n\ 00683 \n\ 00684 # The nominal/target position for the point we are planning for\n\ 00685 geometry_msgs/Point position\n\ 00686 \n\ 00687 # The shape of the bounded region that constrains the position of the end-effector\n\ 00688 # This region is always centered at the position defined above\n\ 00689 arm_navigation_msgs/Shape constraint_region_shape\n\ 00690 \n\ 00691 # The orientation of the bounded region that constrains the position of the end-effector. \n\ 00692 # This allows the specification of non-axis aligned constraints\n\ 00693 geometry_msgs/Quaternion constraint_region_orientation\n\ 00694 \n\ 00695 # Constraint weighting factor - a weight for this constraint\n\ 00696 float64 weight\n\ 00697 \n\ 00698 ================================================================================\n\ 00699 MSG: arm_navigation_msgs/Shape\n\ 00700 byte SPHERE=0\n\ 00701 byte BOX=1\n\ 00702 byte CYLINDER=2\n\ 00703 byte MESH=3\n\ 00704 \n\ 00705 byte type\n\ 00706 \n\ 00707 \n\ 00708 #### define sphere, box, cylinder ####\n\ 00709 # the origin of each shape is considered at the shape's center\n\ 00710 \n\ 00711 # for sphere\n\ 00712 # radius := dimensions[0]\n\ 00713 \n\ 00714 # for cylinder\n\ 00715 # radius := dimensions[0]\n\ 00716 # length := dimensions[1]\n\ 00717 # the length is along the Z axis\n\ 00718 \n\ 00719 # for box\n\ 00720 # size_x := dimensions[0]\n\ 00721 # size_y := dimensions[1]\n\ 00722 # size_z := dimensions[2]\n\ 00723 float64[] dimensions\n\ 00724 \n\ 00725 \n\ 00726 #### define mesh ####\n\ 00727 \n\ 00728 # list of triangles; triangle k is defined by tre vertices located\n\ 00729 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00730 int32[] triangles\n\ 00731 geometry_msgs/Point[] vertices\n\ 00732 \n\ 00733 ================================================================================\n\ 00734 MSG: arm_navigation_msgs/OrientationConstraint\n\ 00735 # This message contains the definition of an orientation constraint.\n\ 00736 Header header\n\ 00737 \n\ 00738 # The robot link this constraint refers to\n\ 00739 string link_name\n\ 00740 \n\ 00741 # The type of the constraint\n\ 00742 int32 type\n\ 00743 int32 LINK_FRAME=0\n\ 00744 int32 HEADER_FRAME=1\n\ 00745 \n\ 00746 # The desired orientation of the robot link specified as a quaternion\n\ 00747 geometry_msgs/Quaternion orientation\n\ 00748 \n\ 00749 # optional RPY error tolerances specified if \n\ 00750 float64 absolute_roll_tolerance\n\ 00751 float64 absolute_pitch_tolerance\n\ 00752 float64 absolute_yaw_tolerance\n\ 00753 \n\ 00754 # Constraint weighting factor - a weight for this constraint\n\ 00755 float64 weight\n\ 00756 \n\ 00757 ================================================================================\n\ 00758 MSG: arm_navigation_msgs/VisibilityConstraint\n\ 00759 # This message contains the definition of a visibility constraint.\n\ 00760 Header header\n\ 00761 \n\ 00762 # The point stamped target that needs to be kept within view of the sensor\n\ 00763 geometry_msgs/PointStamped target\n\ 00764 \n\ 00765 # The local pose of the frame in which visibility is to be maintained\n\ 00766 # The frame id should represent the robot link to which the sensor is attached\n\ 00767 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\ 00768 geometry_msgs/PoseStamped sensor_pose\n\ 00769 \n\ 00770 # The deviation (in radians) that will be tolerated\n\ 00771 # Constraint error will be measured as the solid angle between the \n\ 00772 # X axis of the frame defined above and the vector between the origin \n\ 00773 # of the frame defined above and the target location\n\ 00774 float64 absolute_tolerance\n\ 00775 \n\ 00776 \n\ 00777 ================================================================================\n\ 00778 MSG: geometry_msgs/PointStamped\n\ 00779 # This represents a Point with reference coordinate frame and timestamp\n\ 00780 Header header\n\ 00781 Point point\n\ 00782 \n\ 00783 ================================================================================\n\ 00784 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\ 00785 # A set of collision operations that will be performed in the order they are specified\n\ 00786 CollisionOperation[] collision_operations\n\ 00787 ================================================================================\n\ 00788 MSG: arm_navigation_msgs/CollisionOperation\n\ 00789 # A definition of a collision operation\n\ 00790 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\ 00791 # between the gripper and all objects in the collision space\n\ 00792 \n\ 00793 string object1\n\ 00794 string object2\n\ 00795 string COLLISION_SET_ALL=\"all\"\n\ 00796 string COLLISION_SET_OBJECTS=\"objects\"\n\ 00797 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\ 00798 \n\ 00799 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\ 00800 float64 penetration_distance\n\ 00801 \n\ 00802 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\ 00803 int32 operation\n\ 00804 int32 DISABLE=0\n\ 00805 int32 ENABLE=1\n\ 00806 \n\ 00807 ================================================================================\n\ 00808 MSG: arm_navigation_msgs/LinkPadding\n\ 00809 #name for the link\n\ 00810 string link_name\n\ 00811 \n\ 00812 # padding to apply to the link\n\ 00813 float64 padding\n\ 00814 \n\ 00815 "; } 00816 public: 00817 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00818 00819 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00820 00821 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00822 { 00823 ros::serialization::OStream stream(write_ptr, 1000000000); 00824 ros::serialization::serialize(stream, header); 00825 ros::serialization::serialize(stream, goal_id); 00826 ros::serialization::serialize(stream, goal); 00827 return stream.getData(); 00828 } 00829 00830 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00831 { 00832 ros::serialization::IStream stream(read_ptr, 1000000000); 00833 ros::serialization::deserialize(stream, header); 00834 ros::serialization::deserialize(stream, goal_id); 00835 ros::serialization::deserialize(stream, goal); 00836 return stream.getData(); 00837 } 00838 00839 ROS_DEPRECATED virtual uint32_t serializationLength() const 00840 { 00841 uint32_t size = 0; 00842 size += ros::serialization::serializationLength(header); 00843 size += ros::serialization::serializationLength(goal_id); 00844 size += ros::serialization::serializationLength(goal); 00845 return size; 00846 } 00847 00848 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > Ptr; 00849 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> const> ConstPtr; 00850 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00851 }; // struct PlaceActionGoal 00852 typedef ::object_manipulation_msgs::PlaceActionGoal_<std::allocator<void> > PlaceActionGoal; 00853 00854 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal> PlaceActionGoalPtr; 00855 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal const> PlaceActionGoalConstPtr; 00856 00857 00858 template<typename ContainerAllocator> 00859 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> & v) 00860 { 00861 ros::message_operations::Printer< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> >::stream(s, "", v); 00862 return s;} 00863 00864 } // namespace object_manipulation_msgs 00865 00866 namespace ros 00867 { 00868 namespace message_traits 00869 { 00870 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > : public TrueType {}; 00871 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> const> : public TrueType {}; 00872 template<class ContainerAllocator> 00873 struct MD5Sum< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > { 00874 static const char* value() 00875 { 00876 return "f93c352752526d02221a81b54b167175"; 00877 } 00878 00879 static const char* value(const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> &) { return value(); } 00880 static const uint64_t static_value1 = 0xf93c352752526d02ULL; 00881 static const uint64_t static_value2 = 0x221a81b54b167175ULL; 00882 }; 00883 00884 template<class ContainerAllocator> 00885 struct DataType< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > { 00886 static const char* value() 00887 { 00888 return "object_manipulation_msgs/PlaceActionGoal"; 00889 } 00890 00891 static const char* value(const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> &) { return value(); } 00892 }; 00893 00894 template<class ContainerAllocator> 00895 struct Definition< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > { 00896 static const char* value() 00897 { 00898 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00899 \n\ 00900 Header header\n\ 00901 actionlib_msgs/GoalID goal_id\n\ 00902 PlaceGoal goal\n\ 00903 \n\ 00904 ================================================================================\n\ 00905 MSG: std_msgs/Header\n\ 00906 # Standard metadata for higher-level stamped data types.\n\ 00907 # This is generally used to communicate timestamped data \n\ 00908 # in a particular coordinate frame.\n\ 00909 # \n\ 00910 # sequence ID: consecutively increasing ID \n\ 00911 uint32 seq\n\ 00912 #Two-integer timestamp that is expressed as:\n\ 00913 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00914 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00915 # time-handling sugar is provided by the client library\n\ 00916 time stamp\n\ 00917 #Frame this data is associated with\n\ 00918 # 0: no frame\n\ 00919 # 1: global frame\n\ 00920 string frame_id\n\ 00921 \n\ 00922 ================================================================================\n\ 00923 MSG: actionlib_msgs/GoalID\n\ 00924 # The stamp should store the time at which this goal was requested.\n\ 00925 # It is used by an action server when it tries to preempt all\n\ 00926 # goals that were requested before a certain time\n\ 00927 time stamp\n\ 00928 \n\ 00929 # The id provides a way to associate feedback and\n\ 00930 # result message with specific goal requests. The id\n\ 00931 # specified must be unique.\n\ 00932 string id\n\ 00933 \n\ 00934 \n\ 00935 ================================================================================\n\ 00936 MSG: object_manipulation_msgs/PlaceGoal\n\ 00937 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00938 # An action for placing an object\n\ 00939 \n\ 00940 # which arm to be used for grasping\n\ 00941 string arm_name\n\ 00942 \n\ 00943 # a list of possible transformations for placing the object (place_trans)\n\ 00944 # the final pose of the wrist for placement (place_wrist_pose) is as follows:\n\ 00945 # place_wrist_pose = place_trans * grasp_pose\n\ 00946 # the frame_id for wrist_trans is defined here, and \n\ 00947 # should be the same for all place_locations\n\ 00948 geometry_msgs/PoseStamped[] place_locations\n\ 00949 \n\ 00950 # the grasp that has been executed on this object\n\ 00951 # (contains the grasp_pose referred to above)\n\ 00952 Grasp grasp\n\ 00953 \n\ 00954 # how far the retreat should ideally be away from the place location\n\ 00955 float32 desired_retreat_distance\n\ 00956 \n\ 00957 # the min distance between the retreat and the place location that must actually be feasible \n\ 00958 # for the place not to be rejected\n\ 00959 float32 min_retreat_distance\n\ 00960 \n\ 00961 # how the place location should be approached\n\ 00962 # the frame_id that this lift is specified in MUST be either the robot_frame \n\ 00963 # or the gripper_frame specified in your hand description file\n\ 00964 GripperTranslation approach\n\ 00965 \n\ 00966 # the name that the target object has in the collision map\n\ 00967 # can be left empty if no name is available\n\ 00968 string collision_object_name\n\ 00969 \n\ 00970 # the name that the support surface (e.g. table) has in the collision map\n\ 00971 # can be left empty if no name is available\n\ 00972 string collision_support_surface_name\n\ 00973 \n\ 00974 # whether collisions between the gripper and the support surface should be acceptable\n\ 00975 # during move from pre-place to place and during retreat. Collisions when moving to the\n\ 00976 # pre-place location are still not allowed even if this is set to true.\n\ 00977 bool allow_gripper_support_collision\n\ 00978 \n\ 00979 # whether reactive placing based on tactile sensors should be used\n\ 00980 bool use_reactive_place\n\ 00981 \n\ 00982 # how much the object should be padded by when deciding if the grasp\n\ 00983 # location is freasible or not\n\ 00984 float64 place_padding\n\ 00985 \n\ 00986 # set this to true if you only want to query the manipulation pipeline as to what \n\ 00987 # place locations it thinks are feasible, without actually executing them. If this is set to \n\ 00988 # true, the atempted_location_results field of the result will be populated, but no arm \n\ 00989 # movement will be attempted\n\ 00990 bool only_perform_feasibility_test\n\ 00991 \n\ 00992 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00993 # constraints to be imposed on every point in the motion of the arm\n\ 00994 arm_navigation_msgs/Constraints path_constraints\n\ 00995 \n\ 00996 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00997 # additional collision operations to be used for every arm movement performed\n\ 00998 # during placing. Note that these will be added on top of (and thus overide) other \n\ 00999 # collision operations that the grasping pipeline deems necessary. Should be used\n\ 01000 # with care and only if special behaviors are desired.\n\ 01001 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\ 01002 \n\ 01003 # OPTIONAL (These will not have to be filled out most of the time)\n\ 01004 # additional link paddings to be used for every arm movement performed\n\ 01005 # during placing. Note that these will be added on top of (and thus overide) other \n\ 01006 # link paddings that the grasping pipeline deems necessary. Should be used\n\ 01007 # with care and only if special behaviors are desired.\n\ 01008 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\ 01009 \n\ 01010 \n\ 01011 ================================================================================\n\ 01012 MSG: geometry_msgs/PoseStamped\n\ 01013 # A Pose with reference coordinate frame and timestamp\n\ 01014 Header header\n\ 01015 Pose pose\n\ 01016 \n\ 01017 ================================================================================\n\ 01018 MSG: geometry_msgs/Pose\n\ 01019 # A representation of pose in free space, composed of postion and orientation. \n\ 01020 Point position\n\ 01021 Quaternion orientation\n\ 01022 \n\ 01023 ================================================================================\n\ 01024 MSG: geometry_msgs/Point\n\ 01025 # This contains the position of a point in free space\n\ 01026 float64 x\n\ 01027 float64 y\n\ 01028 float64 z\n\ 01029 \n\ 01030 ================================================================================\n\ 01031 MSG: geometry_msgs/Quaternion\n\ 01032 # This represents an orientation in free space in quaternion form.\n\ 01033 \n\ 01034 float64 x\n\ 01035 float64 y\n\ 01036 float64 z\n\ 01037 float64 w\n\ 01038 \n\ 01039 ================================================================================\n\ 01040 MSG: object_manipulation_msgs/Grasp\n\ 01041 \n\ 01042 # The internal posture of the hand for the pre-grasp\n\ 01043 # only positions are used\n\ 01044 sensor_msgs/JointState pre_grasp_posture\n\ 01045 \n\ 01046 # The internal posture of the hand for the grasp\n\ 01047 # positions and efforts are used\n\ 01048 sensor_msgs/JointState grasp_posture\n\ 01049 \n\ 01050 # The position of the end-effector for the grasp relative to a reference frame \n\ 01051 # (that is always specified elsewhere, not in this message)\n\ 01052 geometry_msgs/Pose grasp_pose\n\ 01053 \n\ 01054 # The estimated probability of success for this grasp\n\ 01055 float64 success_probability\n\ 01056 \n\ 01057 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 01058 bool cluster_rep\n\ 01059 \n\ 01060 # how far the pre-grasp should ideally be away from the grasp\n\ 01061 float32 desired_approach_distance\n\ 01062 \n\ 01063 # how much distance between pre-grasp and grasp must actually be feasible \n\ 01064 # for the grasp not to be rejected\n\ 01065 float32 min_approach_distance\n\ 01066 \n\ 01067 # an optional list of obstacles that we have semantic information about\n\ 01068 # and that we expect might move in the course of executing this grasp\n\ 01069 # the grasp planner is expected to make sure they move in an OK way; during\n\ 01070 # execution, grasp executors will not check for collisions against these objects\n\ 01071 GraspableObject[] moved_obstacles\n\ 01072 \n\ 01073 ================================================================================\n\ 01074 MSG: sensor_msgs/JointState\n\ 01075 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01076 #\n\ 01077 # The state of each joint (revolute or prismatic) is defined by:\n\ 01078 # * the position of the joint (rad or m),\n\ 01079 # * the velocity of the joint (rad/s or m/s) and \n\ 01080 # * the effort that is applied in the joint (Nm or N).\n\ 01081 #\n\ 01082 # Each joint is uniquely identified by its name\n\ 01083 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01084 # in one message have to be recorded at the same time.\n\ 01085 #\n\ 01086 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01087 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01088 # effort associated with them, you can leave the effort array empty. \n\ 01089 #\n\ 01090 # All arrays in this message should have the same size, or be empty.\n\ 01091 # This is the only way to uniquely associate the joint name with the correct\n\ 01092 # states.\n\ 01093 \n\ 01094 \n\ 01095 Header header\n\ 01096 \n\ 01097 string[] name\n\ 01098 float64[] position\n\ 01099 float64[] velocity\n\ 01100 float64[] effort\n\ 01101 \n\ 01102 ================================================================================\n\ 01103 MSG: object_manipulation_msgs/GraspableObject\n\ 01104 # an object that the object_manipulator can work on\n\ 01105 \n\ 01106 # a graspable object can be represented in multiple ways. This message\n\ 01107 # can contain all of them. Which one is actually used is up to the receiver\n\ 01108 # of this message. When adding new representations, one must be careful that\n\ 01109 # they have reasonable lightweight defaults indicating that that particular\n\ 01110 # representation is not available.\n\ 01111 \n\ 01112 # the tf frame to be used as a reference frame when combining information from\n\ 01113 # the different representations below\n\ 01114 string reference_frame_id\n\ 01115 \n\ 01116 # potential recognition results from a database of models\n\ 01117 # all poses are relative to the object reference pose\n\ 01118 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 01119 \n\ 01120 # the point cloud itself\n\ 01121 sensor_msgs/PointCloud cluster\n\ 01122 \n\ 01123 # a region of a PointCloud2 of interest\n\ 01124 object_manipulation_msgs/SceneRegion region\n\ 01125 \n\ 01126 # the name that this object has in the collision environment\n\ 01127 string collision_name\n\ 01128 ================================================================================\n\ 01129 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 01130 # Informs that a specific model from the Model Database has been \n\ 01131 # identified at a certain location\n\ 01132 \n\ 01133 # the database id of the model\n\ 01134 int32 model_id\n\ 01135 \n\ 01136 # the pose that it can be found in\n\ 01137 geometry_msgs/PoseStamped pose\n\ 01138 \n\ 01139 # a measure of the confidence level in this detection result\n\ 01140 float32 confidence\n\ 01141 \n\ 01142 # the name of the object detector that generated this detection result\n\ 01143 string detector_name\n\ 01144 \n\ 01145 ================================================================================\n\ 01146 MSG: sensor_msgs/PointCloud\n\ 01147 # This message holds a collection of 3d points, plus optional additional\n\ 01148 # information about each point.\n\ 01149 \n\ 01150 # Time of sensor data acquisition, coordinate frame ID.\n\ 01151 Header header\n\ 01152 \n\ 01153 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 01154 # in the frame given in the header.\n\ 01155 geometry_msgs/Point32[] points\n\ 01156 \n\ 01157 # Each channel should have the same number of elements as points array,\n\ 01158 # and the data in each channel should correspond 1:1 with each point.\n\ 01159 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 01160 ChannelFloat32[] channels\n\ 01161 \n\ 01162 ================================================================================\n\ 01163 MSG: geometry_msgs/Point32\n\ 01164 # This contains the position of a point in free space(with 32 bits of precision).\n\ 01165 # It is recommeded to use Point wherever possible instead of Point32. \n\ 01166 # \n\ 01167 # This recommendation is to promote interoperability. \n\ 01168 #\n\ 01169 # This message is designed to take up less space when sending\n\ 01170 # lots of points at once, as in the case of a PointCloud. \n\ 01171 \n\ 01172 float32 x\n\ 01173 float32 y\n\ 01174 float32 z\n\ 01175 ================================================================================\n\ 01176 MSG: sensor_msgs/ChannelFloat32\n\ 01177 # This message is used by the PointCloud message to hold optional data\n\ 01178 # associated with each point in the cloud. The length of the values\n\ 01179 # array should be the same as the length of the points array in the\n\ 01180 # PointCloud, and each value should be associated with the corresponding\n\ 01181 # point.\n\ 01182 \n\ 01183 # Channel names in existing practice include:\n\ 01184 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01185 # This is opposite to usual conventions but remains for\n\ 01186 # historical reasons. The newer PointCloud2 message has no\n\ 01187 # such problem.\n\ 01188 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01189 # (R,G,B) values packed into the least significant 24 bits,\n\ 01190 # in order.\n\ 01191 # \"intensity\" - laser or pixel intensity.\n\ 01192 # \"distance\"\n\ 01193 \n\ 01194 # The channel name should give semantics of the channel (e.g.\n\ 01195 # \"intensity\" instead of \"value\").\n\ 01196 string name\n\ 01197 \n\ 01198 # The values array should be 1-1 with the elements of the associated\n\ 01199 # PointCloud.\n\ 01200 float32[] values\n\ 01201 \n\ 01202 ================================================================================\n\ 01203 MSG: object_manipulation_msgs/SceneRegion\n\ 01204 # Point cloud\n\ 01205 sensor_msgs/PointCloud2 cloud\n\ 01206 \n\ 01207 # Indices for the region of interest\n\ 01208 int32[] mask\n\ 01209 \n\ 01210 # One of the corresponding 2D images, if applicable\n\ 01211 sensor_msgs/Image image\n\ 01212 \n\ 01213 # The disparity image, if applicable\n\ 01214 sensor_msgs/Image disparity_image\n\ 01215 \n\ 01216 # Camera info for the camera that took the image\n\ 01217 sensor_msgs/CameraInfo cam_info\n\ 01218 \n\ 01219 # a 3D region of interest for grasp planning\n\ 01220 geometry_msgs/PoseStamped roi_box_pose\n\ 01221 geometry_msgs/Vector3 roi_box_dims\n\ 01222 \n\ 01223 ================================================================================\n\ 01224 MSG: sensor_msgs/PointCloud2\n\ 01225 # This message holds a collection of N-dimensional points, which may\n\ 01226 # contain additional information such as normals, intensity, etc. The\n\ 01227 # point data is stored as a binary blob, its layout described by the\n\ 01228 # contents of the \"fields\" array.\n\ 01229 \n\ 01230 # The point cloud data may be organized 2d (image-like) or 1d\n\ 01231 # (unordered). Point clouds organized as 2d images may be produced by\n\ 01232 # camera depth sensors such as stereo or time-of-flight.\n\ 01233 \n\ 01234 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 01235 # points).\n\ 01236 Header header\n\ 01237 \n\ 01238 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 01239 # 1 and width is the length of the point cloud.\n\ 01240 uint32 height\n\ 01241 uint32 width\n\ 01242 \n\ 01243 # Describes the channels and their layout in the binary data blob.\n\ 01244 PointField[] fields\n\ 01245 \n\ 01246 bool is_bigendian # Is this data bigendian?\n\ 01247 uint32 point_step # Length of a point in bytes\n\ 01248 uint32 row_step # Length of a row in bytes\n\ 01249 uint8[] data # Actual point data, size is (row_step*height)\n\ 01250 \n\ 01251 bool is_dense # True if there are no invalid points\n\ 01252 \n\ 01253 ================================================================================\n\ 01254 MSG: sensor_msgs/PointField\n\ 01255 # This message holds the description of one point entry in the\n\ 01256 # PointCloud2 message format.\n\ 01257 uint8 INT8 = 1\n\ 01258 uint8 UINT8 = 2\n\ 01259 uint8 INT16 = 3\n\ 01260 uint8 UINT16 = 4\n\ 01261 uint8 INT32 = 5\n\ 01262 uint8 UINT32 = 6\n\ 01263 uint8 FLOAT32 = 7\n\ 01264 uint8 FLOAT64 = 8\n\ 01265 \n\ 01266 string name # Name of field\n\ 01267 uint32 offset # Offset from start of point struct\n\ 01268 uint8 datatype # Datatype enumeration, see above\n\ 01269 uint32 count # How many elements in the field\n\ 01270 \n\ 01271 ================================================================================\n\ 01272 MSG: sensor_msgs/Image\n\ 01273 # This message contains an uncompressed image\n\ 01274 # (0, 0) is at top-left corner of image\n\ 01275 #\n\ 01276 \n\ 01277 Header header # Header timestamp should be acquisition time of image\n\ 01278 # Header frame_id should be optical frame of camera\n\ 01279 # origin of frame should be optical center of cameara\n\ 01280 # +x should point to the right in the image\n\ 01281 # +y should point down in the image\n\ 01282 # +z should point into to plane of the image\n\ 01283 # If the frame_id here and the frame_id of the CameraInfo\n\ 01284 # message associated with the image conflict\n\ 01285 # the behavior is undefined\n\ 01286 \n\ 01287 uint32 height # image height, that is, number of rows\n\ 01288 uint32 width # image width, that is, number of columns\n\ 01289 \n\ 01290 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01291 # If you want to standardize a new string format, join\n\ 01292 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01293 \n\ 01294 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01295 # taken from the list of strings in src/image_encodings.cpp\n\ 01296 \n\ 01297 uint8 is_bigendian # is this data bigendian?\n\ 01298 uint32 step # Full row length in bytes\n\ 01299 uint8[] data # actual matrix data, size is (step * rows)\n\ 01300 \n\ 01301 ================================================================================\n\ 01302 MSG: sensor_msgs/CameraInfo\n\ 01303 # This message defines meta information for a camera. It should be in a\n\ 01304 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01305 # image topics named:\n\ 01306 #\n\ 01307 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01308 # image - monochrome, distorted\n\ 01309 # image_color - color, distorted\n\ 01310 # image_rect - monochrome, rectified\n\ 01311 # image_rect_color - color, rectified\n\ 01312 #\n\ 01313 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01314 # for producing the four processed image topics from image_raw and\n\ 01315 # camera_info. The meaning of the camera parameters are described in\n\ 01316 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01317 #\n\ 01318 # The image_geometry package provides a user-friendly interface to\n\ 01319 # common operations using this meta information. If you want to, e.g.,\n\ 01320 # project a 3d point into image coordinates, we strongly recommend\n\ 01321 # using image_geometry.\n\ 01322 #\n\ 01323 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01324 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01325 # indicates an uncalibrated camera.\n\ 01326 \n\ 01327 #######################################################################\n\ 01328 # Image acquisition info #\n\ 01329 #######################################################################\n\ 01330 \n\ 01331 # Time of image acquisition, camera coordinate frame ID\n\ 01332 Header header # Header timestamp should be acquisition time of image\n\ 01333 # Header frame_id should be optical frame of camera\n\ 01334 # origin of frame should be optical center of camera\n\ 01335 # +x should point to the right in the image\n\ 01336 # +y should point down in the image\n\ 01337 # +z should point into the plane of the image\n\ 01338 \n\ 01339 \n\ 01340 #######################################################################\n\ 01341 # Calibration Parameters #\n\ 01342 #######################################################################\n\ 01343 # These are fixed during camera calibration. Their values will be the #\n\ 01344 # same in all messages until the camera is recalibrated. Note that #\n\ 01345 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01346 # #\n\ 01347 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01348 # to: #\n\ 01349 # 1. An undistorted image (requires D and K) #\n\ 01350 # 2. A rectified image (requires D, K, R) #\n\ 01351 # The projection matrix P projects 3D points into the rectified image.#\n\ 01352 #######################################################################\n\ 01353 \n\ 01354 # The image dimensions with which the camera was calibrated. Normally\n\ 01355 # this will be the full camera resolution in pixels.\n\ 01356 uint32 height\n\ 01357 uint32 width\n\ 01358 \n\ 01359 # The distortion model used. Supported models are listed in\n\ 01360 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01361 # simple model of radial and tangential distortion - is sufficent.\n\ 01362 string distortion_model\n\ 01363 \n\ 01364 # The distortion parameters, size depending on the distortion model.\n\ 01365 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01366 float64[] D\n\ 01367 \n\ 01368 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01369 # [fx 0 cx]\n\ 01370 # K = [ 0 fy cy]\n\ 01371 # [ 0 0 1]\n\ 01372 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01373 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01374 # (cx, cy).\n\ 01375 float64[9] K # 3x3 row-major matrix\n\ 01376 \n\ 01377 # Rectification matrix (stereo cameras only)\n\ 01378 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01379 # stereo image plane so that epipolar lines in both stereo images are\n\ 01380 # parallel.\n\ 01381 float64[9] R # 3x3 row-major matrix\n\ 01382 \n\ 01383 # Projection/camera matrix\n\ 01384 # [fx' 0 cx' Tx]\n\ 01385 # P = [ 0 fy' cy' Ty]\n\ 01386 # [ 0 0 1 0]\n\ 01387 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01388 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01389 # is the normal camera intrinsic matrix for the rectified image.\n\ 01390 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01391 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01392 # (cx', cy') - these may differ from the values in K.\n\ 01393 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01394 # also have R = the identity and P[1:3,1:3] = K.\n\ 01395 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01396 # position of the optical center of the second camera in the first\n\ 01397 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01398 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01399 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01400 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01401 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01402 # the rectified image is given by:\n\ 01403 # [u v w]' = P * [X Y Z 1]'\n\ 01404 # x = u / w\n\ 01405 # y = v / w\n\ 01406 # This holds for both images of a stereo pair.\n\ 01407 float64[12] P # 3x4 row-major matrix\n\ 01408 \n\ 01409 \n\ 01410 #######################################################################\n\ 01411 # Operational Parameters #\n\ 01412 #######################################################################\n\ 01413 # These define the image region actually captured by the camera #\n\ 01414 # driver. Although they affect the geometry of the output image, they #\n\ 01415 # may be changed freely without recalibrating the camera. #\n\ 01416 #######################################################################\n\ 01417 \n\ 01418 # Binning refers here to any camera setting which combines rectangular\n\ 01419 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01420 # resolution of the output image to\n\ 01421 # (width / binning_x) x (height / binning_y).\n\ 01422 # The default values binning_x = binning_y = 0 is considered the same\n\ 01423 # as binning_x = binning_y = 1 (no subsampling).\n\ 01424 uint32 binning_x\n\ 01425 uint32 binning_y\n\ 01426 \n\ 01427 # Region of interest (subwindow of full camera resolution), given in\n\ 01428 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01429 # always denotes the same window of pixels on the camera sensor,\n\ 01430 # regardless of binning settings.\n\ 01431 # The default setting of roi (all values 0) is considered the same as\n\ 01432 # full resolution (roi.width = width, roi.height = height).\n\ 01433 RegionOfInterest roi\n\ 01434 \n\ 01435 ================================================================================\n\ 01436 MSG: sensor_msgs/RegionOfInterest\n\ 01437 # This message is used to specify a region of interest within an image.\n\ 01438 #\n\ 01439 # When used to specify the ROI setting of the camera when the image was\n\ 01440 # taken, the height and width fields should either match the height and\n\ 01441 # width fields for the associated image; or height = width = 0\n\ 01442 # indicates that the full resolution image was captured.\n\ 01443 \n\ 01444 uint32 x_offset # Leftmost pixel of the ROI\n\ 01445 # (0 if the ROI includes the left edge of the image)\n\ 01446 uint32 y_offset # Topmost pixel of the ROI\n\ 01447 # (0 if the ROI includes the top edge of the image)\n\ 01448 uint32 height # Height of ROI\n\ 01449 uint32 width # Width of ROI\n\ 01450 \n\ 01451 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01452 # ROI in this message. Typically this should be False if the full image\n\ 01453 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01454 # used).\n\ 01455 bool do_rectify\n\ 01456 \n\ 01457 ================================================================================\n\ 01458 MSG: geometry_msgs/Vector3\n\ 01459 # This represents a vector in free space. \n\ 01460 \n\ 01461 float64 x\n\ 01462 float64 y\n\ 01463 float64 z\n\ 01464 ================================================================================\n\ 01465 MSG: object_manipulation_msgs/GripperTranslation\n\ 01466 # defines a translation for the gripper, used in pickup or place tasks\n\ 01467 # for example for lifting an object off a table or approaching the table for placing\n\ 01468 \n\ 01469 # the direction of the translation\n\ 01470 geometry_msgs/Vector3Stamped direction\n\ 01471 \n\ 01472 # the desired translation distance\n\ 01473 float32 desired_distance\n\ 01474 \n\ 01475 # the min distance that must be considered feasible before the\n\ 01476 # grasp is even attempted\n\ 01477 float32 min_distance\n\ 01478 ================================================================================\n\ 01479 MSG: geometry_msgs/Vector3Stamped\n\ 01480 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 01481 Header header\n\ 01482 Vector3 vector\n\ 01483 \n\ 01484 ================================================================================\n\ 01485 MSG: arm_navigation_msgs/Constraints\n\ 01486 # This message contains a list of motion planning constraints.\n\ 01487 \n\ 01488 arm_navigation_msgs/JointConstraint[] joint_constraints\n\ 01489 arm_navigation_msgs/PositionConstraint[] position_constraints\n\ 01490 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\ 01491 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\ 01492 \n\ 01493 ================================================================================\n\ 01494 MSG: arm_navigation_msgs/JointConstraint\n\ 01495 # Constrain the position of a joint to be within a certain bound\n\ 01496 string joint_name\n\ 01497 \n\ 01498 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\ 01499 float64 position\n\ 01500 float64 tolerance_above\n\ 01501 float64 tolerance_below\n\ 01502 \n\ 01503 # A weighting factor for this constraint\n\ 01504 float64 weight\n\ 01505 ================================================================================\n\ 01506 MSG: arm_navigation_msgs/PositionConstraint\n\ 01507 # This message contains the definition of a position constraint.\n\ 01508 Header header\n\ 01509 \n\ 01510 # The robot link this constraint refers to\n\ 01511 string link_name\n\ 01512 \n\ 01513 # The offset (in the link frame) for the target point on the link we are planning for\n\ 01514 geometry_msgs/Point target_point_offset\n\ 01515 \n\ 01516 # The nominal/target position for the point we are planning for\n\ 01517 geometry_msgs/Point position\n\ 01518 \n\ 01519 # The shape of the bounded region that constrains the position of the end-effector\n\ 01520 # This region is always centered at the position defined above\n\ 01521 arm_navigation_msgs/Shape constraint_region_shape\n\ 01522 \n\ 01523 # The orientation of the bounded region that constrains the position of the end-effector. \n\ 01524 # This allows the specification of non-axis aligned constraints\n\ 01525 geometry_msgs/Quaternion constraint_region_orientation\n\ 01526 \n\ 01527 # Constraint weighting factor - a weight for this constraint\n\ 01528 float64 weight\n\ 01529 \n\ 01530 ================================================================================\n\ 01531 MSG: arm_navigation_msgs/Shape\n\ 01532 byte SPHERE=0\n\ 01533 byte BOX=1\n\ 01534 byte CYLINDER=2\n\ 01535 byte MESH=3\n\ 01536 \n\ 01537 byte type\n\ 01538 \n\ 01539 \n\ 01540 #### define sphere, box, cylinder ####\n\ 01541 # the origin of each shape is considered at the shape's center\n\ 01542 \n\ 01543 # for sphere\n\ 01544 # radius := dimensions[0]\n\ 01545 \n\ 01546 # for cylinder\n\ 01547 # radius := dimensions[0]\n\ 01548 # length := dimensions[1]\n\ 01549 # the length is along the Z axis\n\ 01550 \n\ 01551 # for box\n\ 01552 # size_x := dimensions[0]\n\ 01553 # size_y := dimensions[1]\n\ 01554 # size_z := dimensions[2]\n\ 01555 float64[] dimensions\n\ 01556 \n\ 01557 \n\ 01558 #### define mesh ####\n\ 01559 \n\ 01560 # list of triangles; triangle k is defined by tre vertices located\n\ 01561 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 01562 int32[] triangles\n\ 01563 geometry_msgs/Point[] vertices\n\ 01564 \n\ 01565 ================================================================================\n\ 01566 MSG: arm_navigation_msgs/OrientationConstraint\n\ 01567 # This message contains the definition of an orientation constraint.\n\ 01568 Header header\n\ 01569 \n\ 01570 # The robot link this constraint refers to\n\ 01571 string link_name\n\ 01572 \n\ 01573 # The type of the constraint\n\ 01574 int32 type\n\ 01575 int32 LINK_FRAME=0\n\ 01576 int32 HEADER_FRAME=1\n\ 01577 \n\ 01578 # The desired orientation of the robot link specified as a quaternion\n\ 01579 geometry_msgs/Quaternion orientation\n\ 01580 \n\ 01581 # optional RPY error tolerances specified if \n\ 01582 float64 absolute_roll_tolerance\n\ 01583 float64 absolute_pitch_tolerance\n\ 01584 float64 absolute_yaw_tolerance\n\ 01585 \n\ 01586 # Constraint weighting factor - a weight for this constraint\n\ 01587 float64 weight\n\ 01588 \n\ 01589 ================================================================================\n\ 01590 MSG: arm_navigation_msgs/VisibilityConstraint\n\ 01591 # This message contains the definition of a visibility constraint.\n\ 01592 Header header\n\ 01593 \n\ 01594 # The point stamped target that needs to be kept within view of the sensor\n\ 01595 geometry_msgs/PointStamped target\n\ 01596 \n\ 01597 # The local pose of the frame in which visibility is to be maintained\n\ 01598 # The frame id should represent the robot link to which the sensor is attached\n\ 01599 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\ 01600 geometry_msgs/PoseStamped sensor_pose\n\ 01601 \n\ 01602 # The deviation (in radians) that will be tolerated\n\ 01603 # Constraint error will be measured as the solid angle between the \n\ 01604 # X axis of the frame defined above and the vector between the origin \n\ 01605 # of the frame defined above and the target location\n\ 01606 float64 absolute_tolerance\n\ 01607 \n\ 01608 \n\ 01609 ================================================================================\n\ 01610 MSG: geometry_msgs/PointStamped\n\ 01611 # This represents a Point with reference coordinate frame and timestamp\n\ 01612 Header header\n\ 01613 Point point\n\ 01614 \n\ 01615 ================================================================================\n\ 01616 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\ 01617 # A set of collision operations that will be performed in the order they are specified\n\ 01618 CollisionOperation[] collision_operations\n\ 01619 ================================================================================\n\ 01620 MSG: arm_navigation_msgs/CollisionOperation\n\ 01621 # A definition of a collision operation\n\ 01622 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\ 01623 # between the gripper and all objects in the collision space\n\ 01624 \n\ 01625 string object1\n\ 01626 string object2\n\ 01627 string COLLISION_SET_ALL=\"all\"\n\ 01628 string COLLISION_SET_OBJECTS=\"objects\"\n\ 01629 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\ 01630 \n\ 01631 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\ 01632 float64 penetration_distance\n\ 01633 \n\ 01634 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\ 01635 int32 operation\n\ 01636 int32 DISABLE=0\n\ 01637 int32 ENABLE=1\n\ 01638 \n\ 01639 ================================================================================\n\ 01640 MSG: arm_navigation_msgs/LinkPadding\n\ 01641 #name for the link\n\ 01642 string link_name\n\ 01643 \n\ 01644 # padding to apply to the link\n\ 01645 float64 padding\n\ 01646 \n\ 01647 "; 01648 } 01649 01650 static const char* value(const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> &) { return value(); } 01651 }; 01652 01653 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > : public TrueType {}; 01654 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > : public TrueType {}; 01655 } // namespace message_traits 01656 } // namespace ros 01657 01658 namespace ros 01659 { 01660 namespace serialization 01661 { 01662 01663 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > 01664 { 01665 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01666 { 01667 stream.next(m.header); 01668 stream.next(m.goal_id); 01669 stream.next(m.goal); 01670 } 01671 01672 ROS_DECLARE_ALLINONE_SERIALIZER; 01673 }; // struct PlaceActionGoal_ 01674 } // namespace serialization 01675 } // namespace ros 01676 01677 namespace ros 01678 { 01679 namespace message_operations 01680 { 01681 01682 template<class ContainerAllocator> 01683 struct Printer< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > 01684 { 01685 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> & v) 01686 { 01687 s << indent << "header: "; 01688 s << std::endl; 01689 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 01690 s << indent << "goal_id: "; 01691 s << std::endl; 01692 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id); 01693 s << indent << "goal: "; 01694 s << std::endl; 01695 Printer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal); 01696 } 01697 }; 01698 01699 01700 } // namespace message_operations 01701 } // namespace ros 01702 01703 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEACTIONGOAL_H 01704