00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/PlaceGoal.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct PlaceActionGoal_ {
00025 typedef PlaceActionGoal_<ContainerAllocator> Type;
00026
00027 PlaceActionGoal_()
00028 : header()
00029 , goal_id()
00030 , goal()
00031 {
00032 }
00033
00034 PlaceActionGoal_(const ContainerAllocator& _alloc)
00035 : header(_alloc)
00036 , goal_id(_alloc)
00037 , goal(_alloc)
00038 {
00039 }
00040
00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00042 ::std_msgs::Header_<ContainerAllocator> header;
00043
00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00046
00047 typedef ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> _goal_type;
00048 ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> goal;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/PlaceActionGoal"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "f93c352752526d02221a81b54b167175"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 Header header\n\
00069 actionlib_msgs/GoalID goal_id\n\
00070 PlaceGoal goal\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: std_msgs/Header\n\
00074 # Standard metadata for higher-level stamped data types.\n\
00075 # This is generally used to communicate timestamped data \n\
00076 # in a particular coordinate frame.\n\
00077 # \n\
00078 # sequence ID: consecutively increasing ID \n\
00079 uint32 seq\n\
00080 #Two-integer timestamp that is expressed as:\n\
00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00083 # time-handling sugar is provided by the client library\n\
00084 time stamp\n\
00085 #Frame this data is associated with\n\
00086 # 0: no frame\n\
00087 # 1: global frame\n\
00088 string frame_id\n\
00089 \n\
00090 ================================================================================\n\
00091 MSG: actionlib_msgs/GoalID\n\
00092 # The stamp should store the time at which this goal was requested.\n\
00093 # It is used by an action server when it tries to preempt all\n\
00094 # goals that were requested before a certain time\n\
00095 time stamp\n\
00096 \n\
00097 # The id provides a way to associate feedback and\n\
00098 # result message with specific goal requests. The id\n\
00099 # specified must be unique.\n\
00100 string id\n\
00101 \n\
00102 \n\
00103 ================================================================================\n\
00104 MSG: object_manipulation_msgs/PlaceGoal\n\
00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00106 # An action for placing an object\n\
00107 \n\
00108 # which arm to be used for grasping\n\
00109 string arm_name\n\
00110 \n\
00111 # a list of possible transformations for placing the object (place_trans)\n\
00112 # the final pose of the wrist for placement (place_wrist_pose) is as follows:\n\
00113 # place_wrist_pose = place_trans * grasp_pose\n\
00114 # the frame_id for wrist_trans is defined here, and \n\
00115 # should be the same for all place_locations\n\
00116 geometry_msgs/PoseStamped[] place_locations\n\
00117 \n\
00118 # the grasp that has been executed on this object\n\
00119 # (contains the grasp_pose referred to above)\n\
00120 Grasp grasp\n\
00121 \n\
00122 # how far the retreat should ideally be away from the place location\n\
00123 float32 desired_retreat_distance\n\
00124 \n\
00125 # the min distance between the retreat and the place location that must actually be feasible \n\
00126 # for the place not to be rejected\n\
00127 float32 min_retreat_distance\n\
00128 \n\
00129 # how the place location should be approached\n\
00130 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00131 # or the gripper_frame specified in your hand description file\n\
00132 GripperTranslation approach\n\
00133 \n\
00134 # the name that the target object has in the collision map\n\
00135 # can be left empty if no name is available\n\
00136 string collision_object_name\n\
00137 \n\
00138 # the name that the support surface (e.g. table) has in the collision map\n\
00139 # can be left empty if no name is available\n\
00140 string collision_support_surface_name\n\
00141 \n\
00142 # whether collisions between the gripper and the support surface should be acceptable\n\
00143 # during move from pre-place to place and during retreat. Collisions when moving to the\n\
00144 # pre-place location are still not allowed even if this is set to true.\n\
00145 bool allow_gripper_support_collision\n\
00146 \n\
00147 # whether reactive placing based on tactile sensors should be used\n\
00148 bool use_reactive_place\n\
00149 \n\
00150 # how much the object should be padded by when deciding if the grasp\n\
00151 # location is freasible or not\n\
00152 float64 place_padding\n\
00153 \n\
00154 # set this to true if you only want to query the manipulation pipeline as to what \n\
00155 # place locations it thinks are feasible, without actually executing them. If this is set to \n\
00156 # true, the atempted_location_results field of the result will be populated, but no arm \n\
00157 # movement will be attempted\n\
00158 bool only_perform_feasibility_test\n\
00159 \n\
00160 # OPTIONAL (These will not have to be filled out most of the time)\n\
00161 # constraints to be imposed on every point in the motion of the arm\n\
00162 arm_navigation_msgs/Constraints path_constraints\n\
00163 \n\
00164 # OPTIONAL (These will not have to be filled out most of the time)\n\
00165 # additional collision operations to be used for every arm movement performed\n\
00166 # during placing. Note that these will be added on top of (and thus overide) other \n\
00167 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00168 # with care and only if special behaviors are desired.\n\
00169 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00170 \n\
00171 # OPTIONAL (These will not have to be filled out most of the time)\n\
00172 # additional link paddings to be used for every arm movement performed\n\
00173 # during placing. Note that these will be added on top of (and thus overide) other \n\
00174 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00175 # with care and only if special behaviors are desired.\n\
00176 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00177 \n\
00178 \n\
00179 ================================================================================\n\
00180 MSG: geometry_msgs/PoseStamped\n\
00181 # A Pose with reference coordinate frame and timestamp\n\
00182 Header header\n\
00183 Pose pose\n\
00184 \n\
00185 ================================================================================\n\
00186 MSG: geometry_msgs/Pose\n\
00187 # A representation of pose in free space, composed of postion and orientation. \n\
00188 Point position\n\
00189 Quaternion orientation\n\
00190 \n\
00191 ================================================================================\n\
00192 MSG: geometry_msgs/Point\n\
00193 # This contains the position of a point in free space\n\
00194 float64 x\n\
00195 float64 y\n\
00196 float64 z\n\
00197 \n\
00198 ================================================================================\n\
00199 MSG: geometry_msgs/Quaternion\n\
00200 # This represents an orientation in free space in quaternion form.\n\
00201 \n\
00202 float64 x\n\
00203 float64 y\n\
00204 float64 z\n\
00205 float64 w\n\
00206 \n\
00207 ================================================================================\n\
00208 MSG: object_manipulation_msgs/Grasp\n\
00209 \n\
00210 # The internal posture of the hand for the pre-grasp\n\
00211 # only positions are used\n\
00212 sensor_msgs/JointState pre_grasp_posture\n\
00213 \n\
00214 # The internal posture of the hand for the grasp\n\
00215 # positions and efforts are used\n\
00216 sensor_msgs/JointState grasp_posture\n\
00217 \n\
00218 # The position of the end-effector for the grasp relative to a reference frame \n\
00219 # (that is always specified elsewhere, not in this message)\n\
00220 geometry_msgs/Pose grasp_pose\n\
00221 \n\
00222 # The estimated probability of success for this grasp\n\
00223 float64 success_probability\n\
00224 \n\
00225 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00226 bool cluster_rep\n\
00227 \n\
00228 # how far the pre-grasp should ideally be away from the grasp\n\
00229 float32 desired_approach_distance\n\
00230 \n\
00231 # how much distance between pre-grasp and grasp must actually be feasible \n\
00232 # for the grasp not to be rejected\n\
00233 float32 min_approach_distance\n\
00234 \n\
00235 # an optional list of obstacles that we have semantic information about\n\
00236 # and that we expect might move in the course of executing this grasp\n\
00237 # the grasp planner is expected to make sure they move in an OK way; during\n\
00238 # execution, grasp executors will not check for collisions against these objects\n\
00239 GraspableObject[] moved_obstacles\n\
00240 \n\
00241 ================================================================================\n\
00242 MSG: sensor_msgs/JointState\n\
00243 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00244 #\n\
00245 # The state of each joint (revolute or prismatic) is defined by:\n\
00246 # * the position of the joint (rad or m),\n\
00247 # * the velocity of the joint (rad/s or m/s) and \n\
00248 # * the effort that is applied in the joint (Nm or N).\n\
00249 #\n\
00250 # Each joint is uniquely identified by its name\n\
00251 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00252 # in one message have to be recorded at the same time.\n\
00253 #\n\
00254 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00255 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00256 # effort associated with them, you can leave the effort array empty. \n\
00257 #\n\
00258 # All arrays in this message should have the same size, or be empty.\n\
00259 # This is the only way to uniquely associate the joint name with the correct\n\
00260 # states.\n\
00261 \n\
00262 \n\
00263 Header header\n\
00264 \n\
00265 string[] name\n\
00266 float64[] position\n\
00267 float64[] velocity\n\
00268 float64[] effort\n\
00269 \n\
00270 ================================================================================\n\
00271 MSG: object_manipulation_msgs/GraspableObject\n\
00272 # an object that the object_manipulator can work on\n\
00273 \n\
00274 # a graspable object can be represented in multiple ways. This message\n\
00275 # can contain all of them. Which one is actually used is up to the receiver\n\
00276 # of this message. When adding new representations, one must be careful that\n\
00277 # they have reasonable lightweight defaults indicating that that particular\n\
00278 # representation is not available.\n\
00279 \n\
00280 # the tf frame to be used as a reference frame when combining information from\n\
00281 # the different representations below\n\
00282 string reference_frame_id\n\
00283 \n\
00284 # potential recognition results from a database of models\n\
00285 # all poses are relative to the object reference pose\n\
00286 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00287 \n\
00288 # the point cloud itself\n\
00289 sensor_msgs/PointCloud cluster\n\
00290 \n\
00291 # a region of a PointCloud2 of interest\n\
00292 object_manipulation_msgs/SceneRegion region\n\
00293 \n\
00294 # the name that this object has in the collision environment\n\
00295 string collision_name\n\
00296 ================================================================================\n\
00297 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00298 # Informs that a specific model from the Model Database has been \n\
00299 # identified at a certain location\n\
00300 \n\
00301 # the database id of the model\n\
00302 int32 model_id\n\
00303 \n\
00304 # the pose that it can be found in\n\
00305 geometry_msgs/PoseStamped pose\n\
00306 \n\
00307 # a measure of the confidence level in this detection result\n\
00308 float32 confidence\n\
00309 \n\
00310 # the name of the object detector that generated this detection result\n\
00311 string detector_name\n\
00312 \n\
00313 ================================================================================\n\
00314 MSG: sensor_msgs/PointCloud\n\
00315 # This message holds a collection of 3d points, plus optional additional\n\
00316 # information about each point.\n\
00317 \n\
00318 # Time of sensor data acquisition, coordinate frame ID.\n\
00319 Header header\n\
00320 \n\
00321 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00322 # in the frame given in the header.\n\
00323 geometry_msgs/Point32[] points\n\
00324 \n\
00325 # Each channel should have the same number of elements as points array,\n\
00326 # and the data in each channel should correspond 1:1 with each point.\n\
00327 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00328 ChannelFloat32[] channels\n\
00329 \n\
00330 ================================================================================\n\
00331 MSG: geometry_msgs/Point32\n\
00332 # This contains the position of a point in free space(with 32 bits of precision).\n\
00333 # It is recommeded to use Point wherever possible instead of Point32. \n\
00334 # \n\
00335 # This recommendation is to promote interoperability. \n\
00336 #\n\
00337 # This message is designed to take up less space when sending\n\
00338 # lots of points at once, as in the case of a PointCloud. \n\
00339 \n\
00340 float32 x\n\
00341 float32 y\n\
00342 float32 z\n\
00343 ================================================================================\n\
00344 MSG: sensor_msgs/ChannelFloat32\n\
00345 # This message is used by the PointCloud message to hold optional data\n\
00346 # associated with each point in the cloud. The length of the values\n\
00347 # array should be the same as the length of the points array in the\n\
00348 # PointCloud, and each value should be associated with the corresponding\n\
00349 # point.\n\
00350 \n\
00351 # Channel names in existing practice include:\n\
00352 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00353 # This is opposite to usual conventions but remains for\n\
00354 # historical reasons. The newer PointCloud2 message has no\n\
00355 # such problem.\n\
00356 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00357 # (R,G,B) values packed into the least significant 24 bits,\n\
00358 # in order.\n\
00359 # \"intensity\" - laser or pixel intensity.\n\
00360 # \"distance\"\n\
00361 \n\
00362 # The channel name should give semantics of the channel (e.g.\n\
00363 # \"intensity\" instead of \"value\").\n\
00364 string name\n\
00365 \n\
00366 # The values array should be 1-1 with the elements of the associated\n\
00367 # PointCloud.\n\
00368 float32[] values\n\
00369 \n\
00370 ================================================================================\n\
00371 MSG: object_manipulation_msgs/SceneRegion\n\
00372 # Point cloud\n\
00373 sensor_msgs/PointCloud2 cloud\n\
00374 \n\
00375 # Indices for the region of interest\n\
00376 int32[] mask\n\
00377 \n\
00378 # One of the corresponding 2D images, if applicable\n\
00379 sensor_msgs/Image image\n\
00380 \n\
00381 # The disparity image, if applicable\n\
00382 sensor_msgs/Image disparity_image\n\
00383 \n\
00384 # Camera info for the camera that took the image\n\
00385 sensor_msgs/CameraInfo cam_info\n\
00386 \n\
00387 # a 3D region of interest for grasp planning\n\
00388 geometry_msgs/PoseStamped roi_box_pose\n\
00389 geometry_msgs/Vector3 roi_box_dims\n\
00390 \n\
00391 ================================================================================\n\
00392 MSG: sensor_msgs/PointCloud2\n\
00393 # This message holds a collection of N-dimensional points, which may\n\
00394 # contain additional information such as normals, intensity, etc. The\n\
00395 # point data is stored as a binary blob, its layout described by the\n\
00396 # contents of the \"fields\" array.\n\
00397 \n\
00398 # The point cloud data may be organized 2d (image-like) or 1d\n\
00399 # (unordered). Point clouds organized as 2d images may be produced by\n\
00400 # camera depth sensors such as stereo or time-of-flight.\n\
00401 \n\
00402 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00403 # points).\n\
00404 Header header\n\
00405 \n\
00406 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00407 # 1 and width is the length of the point cloud.\n\
00408 uint32 height\n\
00409 uint32 width\n\
00410 \n\
00411 # Describes the channels and their layout in the binary data blob.\n\
00412 PointField[] fields\n\
00413 \n\
00414 bool is_bigendian # Is this data bigendian?\n\
00415 uint32 point_step # Length of a point in bytes\n\
00416 uint32 row_step # Length of a row in bytes\n\
00417 uint8[] data # Actual point data, size is (row_step*height)\n\
00418 \n\
00419 bool is_dense # True if there are no invalid points\n\
00420 \n\
00421 ================================================================================\n\
00422 MSG: sensor_msgs/PointField\n\
00423 # This message holds the description of one point entry in the\n\
00424 # PointCloud2 message format.\n\
00425 uint8 INT8 = 1\n\
00426 uint8 UINT8 = 2\n\
00427 uint8 INT16 = 3\n\
00428 uint8 UINT16 = 4\n\
00429 uint8 INT32 = 5\n\
00430 uint8 UINT32 = 6\n\
00431 uint8 FLOAT32 = 7\n\
00432 uint8 FLOAT64 = 8\n\
00433 \n\
00434 string name # Name of field\n\
00435 uint32 offset # Offset from start of point struct\n\
00436 uint8 datatype # Datatype enumeration, see above\n\
00437 uint32 count # How many elements in the field\n\
00438 \n\
00439 ================================================================================\n\
00440 MSG: sensor_msgs/Image\n\
00441 # This message contains an uncompressed image\n\
00442 # (0, 0) is at top-left corner of image\n\
00443 #\n\
00444 \n\
00445 Header header # Header timestamp should be acquisition time of image\n\
00446 # Header frame_id should be optical frame of camera\n\
00447 # origin of frame should be optical center of cameara\n\
00448 # +x should point to the right in the image\n\
00449 # +y should point down in the image\n\
00450 # +z should point into to plane of the image\n\
00451 # If the frame_id here and the frame_id of the CameraInfo\n\
00452 # message associated with the image conflict\n\
00453 # the behavior is undefined\n\
00454 \n\
00455 uint32 height # image height, that is, number of rows\n\
00456 uint32 width # image width, that is, number of columns\n\
00457 \n\
00458 # The legal values for encoding are in file src/image_encodings.cpp\n\
00459 # If you want to standardize a new string format, join\n\
00460 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00461 \n\
00462 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00463 # taken from the list of strings in src/image_encodings.cpp\n\
00464 \n\
00465 uint8 is_bigendian # is this data bigendian?\n\
00466 uint32 step # Full row length in bytes\n\
00467 uint8[] data # actual matrix data, size is (step * rows)\n\
00468 \n\
00469 ================================================================================\n\
00470 MSG: sensor_msgs/CameraInfo\n\
00471 # This message defines meta information for a camera. It should be in a\n\
00472 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00473 # image topics named:\n\
00474 #\n\
00475 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00476 # image - monochrome, distorted\n\
00477 # image_color - color, distorted\n\
00478 # image_rect - monochrome, rectified\n\
00479 # image_rect_color - color, rectified\n\
00480 #\n\
00481 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00482 # for producing the four processed image topics from image_raw and\n\
00483 # camera_info. The meaning of the camera parameters are described in\n\
00484 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00485 #\n\
00486 # The image_geometry package provides a user-friendly interface to\n\
00487 # common operations using this meta information. If you want to, e.g.,\n\
00488 # project a 3d point into image coordinates, we strongly recommend\n\
00489 # using image_geometry.\n\
00490 #\n\
00491 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00492 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00493 # indicates an uncalibrated camera.\n\
00494 \n\
00495 #######################################################################\n\
00496 # Image acquisition info #\n\
00497 #######################################################################\n\
00498 \n\
00499 # Time of image acquisition, camera coordinate frame ID\n\
00500 Header header # Header timestamp should be acquisition time of image\n\
00501 # Header frame_id should be optical frame of camera\n\
00502 # origin of frame should be optical center of camera\n\
00503 # +x should point to the right in the image\n\
00504 # +y should point down in the image\n\
00505 # +z should point into the plane of the image\n\
00506 \n\
00507 \n\
00508 #######################################################################\n\
00509 # Calibration Parameters #\n\
00510 #######################################################################\n\
00511 # These are fixed during camera calibration. Their values will be the #\n\
00512 # same in all messages until the camera is recalibrated. Note that #\n\
00513 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00514 # #\n\
00515 # The internal parameters can be used to warp a raw (distorted) image #\n\
00516 # to: #\n\
00517 # 1. An undistorted image (requires D and K) #\n\
00518 # 2. A rectified image (requires D, K, R) #\n\
00519 # The projection matrix P projects 3D points into the rectified image.#\n\
00520 #######################################################################\n\
00521 \n\
00522 # The image dimensions with which the camera was calibrated. Normally\n\
00523 # this will be the full camera resolution in pixels.\n\
00524 uint32 height\n\
00525 uint32 width\n\
00526 \n\
00527 # The distortion model used. Supported models are listed in\n\
00528 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00529 # simple model of radial and tangential distortion - is sufficent.\n\
00530 string distortion_model\n\
00531 \n\
00532 # The distortion parameters, size depending on the distortion model.\n\
00533 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00534 float64[] D\n\
00535 \n\
00536 # Intrinsic camera matrix for the raw (distorted) images.\n\
00537 # [fx 0 cx]\n\
00538 # K = [ 0 fy cy]\n\
00539 # [ 0 0 1]\n\
00540 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00541 # coordinates using the focal lengths (fx, fy) and principal point\n\
00542 # (cx, cy).\n\
00543 float64[9] K # 3x3 row-major matrix\n\
00544 \n\
00545 # Rectification matrix (stereo cameras only)\n\
00546 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00547 # stereo image plane so that epipolar lines in both stereo images are\n\
00548 # parallel.\n\
00549 float64[9] R # 3x3 row-major matrix\n\
00550 \n\
00551 # Projection/camera matrix\n\
00552 # [fx' 0 cx' Tx]\n\
00553 # P = [ 0 fy' cy' Ty]\n\
00554 # [ 0 0 1 0]\n\
00555 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00556 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00557 # is the normal camera intrinsic matrix for the rectified image.\n\
00558 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00559 # coordinates using the focal lengths (fx', fy') and principal point\n\
00560 # (cx', cy') - these may differ from the values in K.\n\
00561 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00562 # also have R = the identity and P[1:3,1:3] = K.\n\
00563 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00564 # position of the optical center of the second camera in the first\n\
00565 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00566 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00567 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00568 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00569 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00570 # the rectified image is given by:\n\
00571 # [u v w]' = P * [X Y Z 1]'\n\
00572 # x = u / w\n\
00573 # y = v / w\n\
00574 # This holds for both images of a stereo pair.\n\
00575 float64[12] P # 3x4 row-major matrix\n\
00576 \n\
00577 \n\
00578 #######################################################################\n\
00579 # Operational Parameters #\n\
00580 #######################################################################\n\
00581 # These define the image region actually captured by the camera #\n\
00582 # driver. Although they affect the geometry of the output image, they #\n\
00583 # may be changed freely without recalibrating the camera. #\n\
00584 #######################################################################\n\
00585 \n\
00586 # Binning refers here to any camera setting which combines rectangular\n\
00587 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00588 # resolution of the output image to\n\
00589 # (width / binning_x) x (height / binning_y).\n\
00590 # The default values binning_x = binning_y = 0 is considered the same\n\
00591 # as binning_x = binning_y = 1 (no subsampling).\n\
00592 uint32 binning_x\n\
00593 uint32 binning_y\n\
00594 \n\
00595 # Region of interest (subwindow of full camera resolution), given in\n\
00596 # full resolution (unbinned) image coordinates. A particular ROI\n\
00597 # always denotes the same window of pixels on the camera sensor,\n\
00598 # regardless of binning settings.\n\
00599 # The default setting of roi (all values 0) is considered the same as\n\
00600 # full resolution (roi.width = width, roi.height = height).\n\
00601 RegionOfInterest roi\n\
00602 \n\
00603 ================================================================================\n\
00604 MSG: sensor_msgs/RegionOfInterest\n\
00605 # This message is used to specify a region of interest within an image.\n\
00606 #\n\
00607 # When used to specify the ROI setting of the camera when the image was\n\
00608 # taken, the height and width fields should either match the height and\n\
00609 # width fields for the associated image; or height = width = 0\n\
00610 # indicates that the full resolution image was captured.\n\
00611 \n\
00612 uint32 x_offset # Leftmost pixel of the ROI\n\
00613 # (0 if the ROI includes the left edge of the image)\n\
00614 uint32 y_offset # Topmost pixel of the ROI\n\
00615 # (0 if the ROI includes the top edge of the image)\n\
00616 uint32 height # Height of ROI\n\
00617 uint32 width # Width of ROI\n\
00618 \n\
00619 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00620 # ROI in this message. Typically this should be False if the full image\n\
00621 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00622 # used).\n\
00623 bool do_rectify\n\
00624 \n\
00625 ================================================================================\n\
00626 MSG: geometry_msgs/Vector3\n\
00627 # This represents a vector in free space. \n\
00628 \n\
00629 float64 x\n\
00630 float64 y\n\
00631 float64 z\n\
00632 ================================================================================\n\
00633 MSG: object_manipulation_msgs/GripperTranslation\n\
00634 # defines a translation for the gripper, used in pickup or place tasks\n\
00635 # for example for lifting an object off a table or approaching the table for placing\n\
00636 \n\
00637 # the direction of the translation\n\
00638 geometry_msgs/Vector3Stamped direction\n\
00639 \n\
00640 # the desired translation distance\n\
00641 float32 desired_distance\n\
00642 \n\
00643 # the min distance that must be considered feasible before the\n\
00644 # grasp is even attempted\n\
00645 float32 min_distance\n\
00646 ================================================================================\n\
00647 MSG: geometry_msgs/Vector3Stamped\n\
00648 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00649 Header header\n\
00650 Vector3 vector\n\
00651 \n\
00652 ================================================================================\n\
00653 MSG: arm_navigation_msgs/Constraints\n\
00654 # This message contains a list of motion planning constraints.\n\
00655 \n\
00656 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00657 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00658 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00659 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00660 \n\
00661 ================================================================================\n\
00662 MSG: arm_navigation_msgs/JointConstraint\n\
00663 # Constrain the position of a joint to be within a certain bound\n\
00664 string joint_name\n\
00665 \n\
00666 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00667 float64 position\n\
00668 float64 tolerance_above\n\
00669 float64 tolerance_below\n\
00670 \n\
00671 # A weighting factor for this constraint\n\
00672 float64 weight\n\
00673 ================================================================================\n\
00674 MSG: arm_navigation_msgs/PositionConstraint\n\
00675 # This message contains the definition of a position constraint.\n\
00676 Header header\n\
00677 \n\
00678 # The robot link this constraint refers to\n\
00679 string link_name\n\
00680 \n\
00681 # The offset (in the link frame) for the target point on the link we are planning for\n\
00682 geometry_msgs/Point target_point_offset\n\
00683 \n\
00684 # The nominal/target position for the point we are planning for\n\
00685 geometry_msgs/Point position\n\
00686 \n\
00687 # The shape of the bounded region that constrains the position of the end-effector\n\
00688 # This region is always centered at the position defined above\n\
00689 arm_navigation_msgs/Shape constraint_region_shape\n\
00690 \n\
00691 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00692 # This allows the specification of non-axis aligned constraints\n\
00693 geometry_msgs/Quaternion constraint_region_orientation\n\
00694 \n\
00695 # Constraint weighting factor - a weight for this constraint\n\
00696 float64 weight\n\
00697 \n\
00698 ================================================================================\n\
00699 MSG: arm_navigation_msgs/Shape\n\
00700 byte SPHERE=0\n\
00701 byte BOX=1\n\
00702 byte CYLINDER=2\n\
00703 byte MESH=3\n\
00704 \n\
00705 byte type\n\
00706 \n\
00707 \n\
00708 #### define sphere, box, cylinder ####\n\
00709 # the origin of each shape is considered at the shape's center\n\
00710 \n\
00711 # for sphere\n\
00712 # radius := dimensions[0]\n\
00713 \n\
00714 # for cylinder\n\
00715 # radius := dimensions[0]\n\
00716 # length := dimensions[1]\n\
00717 # the length is along the Z axis\n\
00718 \n\
00719 # for box\n\
00720 # size_x := dimensions[0]\n\
00721 # size_y := dimensions[1]\n\
00722 # size_z := dimensions[2]\n\
00723 float64[] dimensions\n\
00724 \n\
00725 \n\
00726 #### define mesh ####\n\
00727 \n\
00728 # list of triangles; triangle k is defined by tre vertices located\n\
00729 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00730 int32[] triangles\n\
00731 geometry_msgs/Point[] vertices\n\
00732 \n\
00733 ================================================================================\n\
00734 MSG: arm_navigation_msgs/OrientationConstraint\n\
00735 # This message contains the definition of an orientation constraint.\n\
00736 Header header\n\
00737 \n\
00738 # The robot link this constraint refers to\n\
00739 string link_name\n\
00740 \n\
00741 # The type of the constraint\n\
00742 int32 type\n\
00743 int32 LINK_FRAME=0\n\
00744 int32 HEADER_FRAME=1\n\
00745 \n\
00746 # The desired orientation of the robot link specified as a quaternion\n\
00747 geometry_msgs/Quaternion orientation\n\
00748 \n\
00749 # optional RPY error tolerances specified if \n\
00750 float64 absolute_roll_tolerance\n\
00751 float64 absolute_pitch_tolerance\n\
00752 float64 absolute_yaw_tolerance\n\
00753 \n\
00754 # Constraint weighting factor - a weight for this constraint\n\
00755 float64 weight\n\
00756 \n\
00757 ================================================================================\n\
00758 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00759 # This message contains the definition of a visibility constraint.\n\
00760 Header header\n\
00761 \n\
00762 # The point stamped target that needs to be kept within view of the sensor\n\
00763 geometry_msgs/PointStamped target\n\
00764 \n\
00765 # The local pose of the frame in which visibility is to be maintained\n\
00766 # The frame id should represent the robot link to which the sensor is attached\n\
00767 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00768 geometry_msgs/PoseStamped sensor_pose\n\
00769 \n\
00770 # The deviation (in radians) that will be tolerated\n\
00771 # Constraint error will be measured as the solid angle between the \n\
00772 # X axis of the frame defined above and the vector between the origin \n\
00773 # of the frame defined above and the target location\n\
00774 float64 absolute_tolerance\n\
00775 \n\
00776 \n\
00777 ================================================================================\n\
00778 MSG: geometry_msgs/PointStamped\n\
00779 # This represents a Point with reference coordinate frame and timestamp\n\
00780 Header header\n\
00781 Point point\n\
00782 \n\
00783 ================================================================================\n\
00784 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00785 # A set of collision operations that will be performed in the order they are specified\n\
00786 CollisionOperation[] collision_operations\n\
00787 ================================================================================\n\
00788 MSG: arm_navigation_msgs/CollisionOperation\n\
00789 # A definition of a collision operation\n\
00790 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00791 # between the gripper and all objects in the collision space\n\
00792 \n\
00793 string object1\n\
00794 string object2\n\
00795 string COLLISION_SET_ALL=\"all\"\n\
00796 string COLLISION_SET_OBJECTS=\"objects\"\n\
00797 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00798 \n\
00799 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00800 float64 penetration_distance\n\
00801 \n\
00802 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00803 int32 operation\n\
00804 int32 DISABLE=0\n\
00805 int32 ENABLE=1\n\
00806 \n\
00807 ================================================================================\n\
00808 MSG: arm_navigation_msgs/LinkPadding\n\
00809 #name for the link\n\
00810 string link_name\n\
00811 \n\
00812 # padding to apply to the link\n\
00813 float64 padding\n\
00814 \n\
00815 "; }
00816 public:
00817 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00818
00819 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00820
00821 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00822 {
00823 ros::serialization::OStream stream(write_ptr, 1000000000);
00824 ros::serialization::serialize(stream, header);
00825 ros::serialization::serialize(stream, goal_id);
00826 ros::serialization::serialize(stream, goal);
00827 return stream.getData();
00828 }
00829
00830 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00831 {
00832 ros::serialization::IStream stream(read_ptr, 1000000000);
00833 ros::serialization::deserialize(stream, header);
00834 ros::serialization::deserialize(stream, goal_id);
00835 ros::serialization::deserialize(stream, goal);
00836 return stream.getData();
00837 }
00838
00839 ROS_DEPRECATED virtual uint32_t serializationLength() const
00840 {
00841 uint32_t size = 0;
00842 size += ros::serialization::serializationLength(header);
00843 size += ros::serialization::serializationLength(goal_id);
00844 size += ros::serialization::serializationLength(goal);
00845 return size;
00846 }
00847
00848 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > Ptr;
00849 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> const> ConstPtr;
00850 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00851 };
00852 typedef ::object_manipulation_msgs::PlaceActionGoal_<std::allocator<void> > PlaceActionGoal;
00853
00854 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal> PlaceActionGoalPtr;
00855 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal const> PlaceActionGoalConstPtr;
00856
00857
00858 template<typename ContainerAllocator>
00859 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> & v)
00860 {
00861 ros::message_operations::Printer< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> >::stream(s, "", v);
00862 return s;}
00863
00864 }
00865
00866 namespace ros
00867 {
00868 namespace message_traits
00869 {
00870 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > : public TrueType {};
00871 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> const> : public TrueType {};
00872 template<class ContainerAllocator>
00873 struct MD5Sum< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > {
00874 static const char* value()
00875 {
00876 return "f93c352752526d02221a81b54b167175";
00877 }
00878
00879 static const char* value(const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> &) { return value(); }
00880 static const uint64_t static_value1 = 0xf93c352752526d02ULL;
00881 static const uint64_t static_value2 = 0x221a81b54b167175ULL;
00882 };
00883
00884 template<class ContainerAllocator>
00885 struct DataType< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > {
00886 static const char* value()
00887 {
00888 return "object_manipulation_msgs/PlaceActionGoal";
00889 }
00890
00891 static const char* value(const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> &) { return value(); }
00892 };
00893
00894 template<class ContainerAllocator>
00895 struct Definition< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > {
00896 static const char* value()
00897 {
00898 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00899 \n\
00900 Header header\n\
00901 actionlib_msgs/GoalID goal_id\n\
00902 PlaceGoal goal\n\
00903 \n\
00904 ================================================================================\n\
00905 MSG: std_msgs/Header\n\
00906 # Standard metadata for higher-level stamped data types.\n\
00907 # This is generally used to communicate timestamped data \n\
00908 # in a particular coordinate frame.\n\
00909 # \n\
00910 # sequence ID: consecutively increasing ID \n\
00911 uint32 seq\n\
00912 #Two-integer timestamp that is expressed as:\n\
00913 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00914 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00915 # time-handling sugar is provided by the client library\n\
00916 time stamp\n\
00917 #Frame this data is associated with\n\
00918 # 0: no frame\n\
00919 # 1: global frame\n\
00920 string frame_id\n\
00921 \n\
00922 ================================================================================\n\
00923 MSG: actionlib_msgs/GoalID\n\
00924 # The stamp should store the time at which this goal was requested.\n\
00925 # It is used by an action server when it tries to preempt all\n\
00926 # goals that were requested before a certain time\n\
00927 time stamp\n\
00928 \n\
00929 # The id provides a way to associate feedback and\n\
00930 # result message with specific goal requests. The id\n\
00931 # specified must be unique.\n\
00932 string id\n\
00933 \n\
00934 \n\
00935 ================================================================================\n\
00936 MSG: object_manipulation_msgs/PlaceGoal\n\
00937 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00938 # An action for placing an object\n\
00939 \n\
00940 # which arm to be used for grasping\n\
00941 string arm_name\n\
00942 \n\
00943 # a list of possible transformations for placing the object (place_trans)\n\
00944 # the final pose of the wrist for placement (place_wrist_pose) is as follows:\n\
00945 # place_wrist_pose = place_trans * grasp_pose\n\
00946 # the frame_id for wrist_trans is defined here, and \n\
00947 # should be the same for all place_locations\n\
00948 geometry_msgs/PoseStamped[] place_locations\n\
00949 \n\
00950 # the grasp that has been executed on this object\n\
00951 # (contains the grasp_pose referred to above)\n\
00952 Grasp grasp\n\
00953 \n\
00954 # how far the retreat should ideally be away from the place location\n\
00955 float32 desired_retreat_distance\n\
00956 \n\
00957 # the min distance between the retreat and the place location that must actually be feasible \n\
00958 # for the place not to be rejected\n\
00959 float32 min_retreat_distance\n\
00960 \n\
00961 # how the place location should be approached\n\
00962 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00963 # or the gripper_frame specified in your hand description file\n\
00964 GripperTranslation approach\n\
00965 \n\
00966 # the name that the target object has in the collision map\n\
00967 # can be left empty if no name is available\n\
00968 string collision_object_name\n\
00969 \n\
00970 # the name that the support surface (e.g. table) has in the collision map\n\
00971 # can be left empty if no name is available\n\
00972 string collision_support_surface_name\n\
00973 \n\
00974 # whether collisions between the gripper and the support surface should be acceptable\n\
00975 # during move from pre-place to place and during retreat. Collisions when moving to the\n\
00976 # pre-place location are still not allowed even if this is set to true.\n\
00977 bool allow_gripper_support_collision\n\
00978 \n\
00979 # whether reactive placing based on tactile sensors should be used\n\
00980 bool use_reactive_place\n\
00981 \n\
00982 # how much the object should be padded by when deciding if the grasp\n\
00983 # location is freasible or not\n\
00984 float64 place_padding\n\
00985 \n\
00986 # set this to true if you only want to query the manipulation pipeline as to what \n\
00987 # place locations it thinks are feasible, without actually executing them. If this is set to \n\
00988 # true, the atempted_location_results field of the result will be populated, but no arm \n\
00989 # movement will be attempted\n\
00990 bool only_perform_feasibility_test\n\
00991 \n\
00992 # OPTIONAL (These will not have to be filled out most of the time)\n\
00993 # constraints to be imposed on every point in the motion of the arm\n\
00994 arm_navigation_msgs/Constraints path_constraints\n\
00995 \n\
00996 # OPTIONAL (These will not have to be filled out most of the time)\n\
00997 # additional collision operations to be used for every arm movement performed\n\
00998 # during placing. Note that these will be added on top of (and thus overide) other \n\
00999 # collision operations that the grasping pipeline deems necessary. Should be used\n\
01000 # with care and only if special behaviors are desired.\n\
01001 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
01002 \n\
01003 # OPTIONAL (These will not have to be filled out most of the time)\n\
01004 # additional link paddings to be used for every arm movement performed\n\
01005 # during placing. Note that these will be added on top of (and thus overide) other \n\
01006 # link paddings that the grasping pipeline deems necessary. Should be used\n\
01007 # with care and only if special behaviors are desired.\n\
01008 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
01009 \n\
01010 \n\
01011 ================================================================================\n\
01012 MSG: geometry_msgs/PoseStamped\n\
01013 # A Pose with reference coordinate frame and timestamp\n\
01014 Header header\n\
01015 Pose pose\n\
01016 \n\
01017 ================================================================================\n\
01018 MSG: geometry_msgs/Pose\n\
01019 # A representation of pose in free space, composed of postion and orientation. \n\
01020 Point position\n\
01021 Quaternion orientation\n\
01022 \n\
01023 ================================================================================\n\
01024 MSG: geometry_msgs/Point\n\
01025 # This contains the position of a point in free space\n\
01026 float64 x\n\
01027 float64 y\n\
01028 float64 z\n\
01029 \n\
01030 ================================================================================\n\
01031 MSG: geometry_msgs/Quaternion\n\
01032 # This represents an orientation in free space in quaternion form.\n\
01033 \n\
01034 float64 x\n\
01035 float64 y\n\
01036 float64 z\n\
01037 float64 w\n\
01038 \n\
01039 ================================================================================\n\
01040 MSG: object_manipulation_msgs/Grasp\n\
01041 \n\
01042 # The internal posture of the hand for the pre-grasp\n\
01043 # only positions are used\n\
01044 sensor_msgs/JointState pre_grasp_posture\n\
01045 \n\
01046 # The internal posture of the hand for the grasp\n\
01047 # positions and efforts are used\n\
01048 sensor_msgs/JointState grasp_posture\n\
01049 \n\
01050 # The position of the end-effector for the grasp relative to a reference frame \n\
01051 # (that is always specified elsewhere, not in this message)\n\
01052 geometry_msgs/Pose grasp_pose\n\
01053 \n\
01054 # The estimated probability of success for this grasp\n\
01055 float64 success_probability\n\
01056 \n\
01057 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01058 bool cluster_rep\n\
01059 \n\
01060 # how far the pre-grasp should ideally be away from the grasp\n\
01061 float32 desired_approach_distance\n\
01062 \n\
01063 # how much distance between pre-grasp and grasp must actually be feasible \n\
01064 # for the grasp not to be rejected\n\
01065 float32 min_approach_distance\n\
01066 \n\
01067 # an optional list of obstacles that we have semantic information about\n\
01068 # and that we expect might move in the course of executing this grasp\n\
01069 # the grasp planner is expected to make sure they move in an OK way; during\n\
01070 # execution, grasp executors will not check for collisions against these objects\n\
01071 GraspableObject[] moved_obstacles\n\
01072 \n\
01073 ================================================================================\n\
01074 MSG: sensor_msgs/JointState\n\
01075 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01076 #\n\
01077 # The state of each joint (revolute or prismatic) is defined by:\n\
01078 # * the position of the joint (rad or m),\n\
01079 # * the velocity of the joint (rad/s or m/s) and \n\
01080 # * the effort that is applied in the joint (Nm or N).\n\
01081 #\n\
01082 # Each joint is uniquely identified by its name\n\
01083 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01084 # in one message have to be recorded at the same time.\n\
01085 #\n\
01086 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01087 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01088 # effort associated with them, you can leave the effort array empty. \n\
01089 #\n\
01090 # All arrays in this message should have the same size, or be empty.\n\
01091 # This is the only way to uniquely associate the joint name with the correct\n\
01092 # states.\n\
01093 \n\
01094 \n\
01095 Header header\n\
01096 \n\
01097 string[] name\n\
01098 float64[] position\n\
01099 float64[] velocity\n\
01100 float64[] effort\n\
01101 \n\
01102 ================================================================================\n\
01103 MSG: object_manipulation_msgs/GraspableObject\n\
01104 # an object that the object_manipulator can work on\n\
01105 \n\
01106 # a graspable object can be represented in multiple ways. This message\n\
01107 # can contain all of them. Which one is actually used is up to the receiver\n\
01108 # of this message. When adding new representations, one must be careful that\n\
01109 # they have reasonable lightweight defaults indicating that that particular\n\
01110 # representation is not available.\n\
01111 \n\
01112 # the tf frame to be used as a reference frame when combining information from\n\
01113 # the different representations below\n\
01114 string reference_frame_id\n\
01115 \n\
01116 # potential recognition results from a database of models\n\
01117 # all poses are relative to the object reference pose\n\
01118 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
01119 \n\
01120 # the point cloud itself\n\
01121 sensor_msgs/PointCloud cluster\n\
01122 \n\
01123 # a region of a PointCloud2 of interest\n\
01124 object_manipulation_msgs/SceneRegion region\n\
01125 \n\
01126 # the name that this object has in the collision environment\n\
01127 string collision_name\n\
01128 ================================================================================\n\
01129 MSG: household_objects_database_msgs/DatabaseModelPose\n\
01130 # Informs that a specific model from the Model Database has been \n\
01131 # identified at a certain location\n\
01132 \n\
01133 # the database id of the model\n\
01134 int32 model_id\n\
01135 \n\
01136 # the pose that it can be found in\n\
01137 geometry_msgs/PoseStamped pose\n\
01138 \n\
01139 # a measure of the confidence level in this detection result\n\
01140 float32 confidence\n\
01141 \n\
01142 # the name of the object detector that generated this detection result\n\
01143 string detector_name\n\
01144 \n\
01145 ================================================================================\n\
01146 MSG: sensor_msgs/PointCloud\n\
01147 # This message holds a collection of 3d points, plus optional additional\n\
01148 # information about each point.\n\
01149 \n\
01150 # Time of sensor data acquisition, coordinate frame ID.\n\
01151 Header header\n\
01152 \n\
01153 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01154 # in the frame given in the header.\n\
01155 geometry_msgs/Point32[] points\n\
01156 \n\
01157 # Each channel should have the same number of elements as points array,\n\
01158 # and the data in each channel should correspond 1:1 with each point.\n\
01159 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01160 ChannelFloat32[] channels\n\
01161 \n\
01162 ================================================================================\n\
01163 MSG: geometry_msgs/Point32\n\
01164 # This contains the position of a point in free space(with 32 bits of precision).\n\
01165 # It is recommeded to use Point wherever possible instead of Point32. \n\
01166 # \n\
01167 # This recommendation is to promote interoperability. \n\
01168 #\n\
01169 # This message is designed to take up less space when sending\n\
01170 # lots of points at once, as in the case of a PointCloud. \n\
01171 \n\
01172 float32 x\n\
01173 float32 y\n\
01174 float32 z\n\
01175 ================================================================================\n\
01176 MSG: sensor_msgs/ChannelFloat32\n\
01177 # This message is used by the PointCloud message to hold optional data\n\
01178 # associated with each point in the cloud. The length of the values\n\
01179 # array should be the same as the length of the points array in the\n\
01180 # PointCloud, and each value should be associated with the corresponding\n\
01181 # point.\n\
01182 \n\
01183 # Channel names in existing practice include:\n\
01184 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01185 # This is opposite to usual conventions but remains for\n\
01186 # historical reasons. The newer PointCloud2 message has no\n\
01187 # such problem.\n\
01188 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01189 # (R,G,B) values packed into the least significant 24 bits,\n\
01190 # in order.\n\
01191 # \"intensity\" - laser or pixel intensity.\n\
01192 # \"distance\"\n\
01193 \n\
01194 # The channel name should give semantics of the channel (e.g.\n\
01195 # \"intensity\" instead of \"value\").\n\
01196 string name\n\
01197 \n\
01198 # The values array should be 1-1 with the elements of the associated\n\
01199 # PointCloud.\n\
01200 float32[] values\n\
01201 \n\
01202 ================================================================================\n\
01203 MSG: object_manipulation_msgs/SceneRegion\n\
01204 # Point cloud\n\
01205 sensor_msgs/PointCloud2 cloud\n\
01206 \n\
01207 # Indices for the region of interest\n\
01208 int32[] mask\n\
01209 \n\
01210 # One of the corresponding 2D images, if applicable\n\
01211 sensor_msgs/Image image\n\
01212 \n\
01213 # The disparity image, if applicable\n\
01214 sensor_msgs/Image disparity_image\n\
01215 \n\
01216 # Camera info for the camera that took the image\n\
01217 sensor_msgs/CameraInfo cam_info\n\
01218 \n\
01219 # a 3D region of interest for grasp planning\n\
01220 geometry_msgs/PoseStamped roi_box_pose\n\
01221 geometry_msgs/Vector3 roi_box_dims\n\
01222 \n\
01223 ================================================================================\n\
01224 MSG: sensor_msgs/PointCloud2\n\
01225 # This message holds a collection of N-dimensional points, which may\n\
01226 # contain additional information such as normals, intensity, etc. The\n\
01227 # point data is stored as a binary blob, its layout described by the\n\
01228 # contents of the \"fields\" array.\n\
01229 \n\
01230 # The point cloud data may be organized 2d (image-like) or 1d\n\
01231 # (unordered). Point clouds organized as 2d images may be produced by\n\
01232 # camera depth sensors such as stereo or time-of-flight.\n\
01233 \n\
01234 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01235 # points).\n\
01236 Header header\n\
01237 \n\
01238 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01239 # 1 and width is the length of the point cloud.\n\
01240 uint32 height\n\
01241 uint32 width\n\
01242 \n\
01243 # Describes the channels and their layout in the binary data blob.\n\
01244 PointField[] fields\n\
01245 \n\
01246 bool is_bigendian # Is this data bigendian?\n\
01247 uint32 point_step # Length of a point in bytes\n\
01248 uint32 row_step # Length of a row in bytes\n\
01249 uint8[] data # Actual point data, size is (row_step*height)\n\
01250 \n\
01251 bool is_dense # True if there are no invalid points\n\
01252 \n\
01253 ================================================================================\n\
01254 MSG: sensor_msgs/PointField\n\
01255 # This message holds the description of one point entry in the\n\
01256 # PointCloud2 message format.\n\
01257 uint8 INT8 = 1\n\
01258 uint8 UINT8 = 2\n\
01259 uint8 INT16 = 3\n\
01260 uint8 UINT16 = 4\n\
01261 uint8 INT32 = 5\n\
01262 uint8 UINT32 = 6\n\
01263 uint8 FLOAT32 = 7\n\
01264 uint8 FLOAT64 = 8\n\
01265 \n\
01266 string name # Name of field\n\
01267 uint32 offset # Offset from start of point struct\n\
01268 uint8 datatype # Datatype enumeration, see above\n\
01269 uint32 count # How many elements in the field\n\
01270 \n\
01271 ================================================================================\n\
01272 MSG: sensor_msgs/Image\n\
01273 # This message contains an uncompressed image\n\
01274 # (0, 0) is at top-left corner of image\n\
01275 #\n\
01276 \n\
01277 Header header # Header timestamp should be acquisition time of image\n\
01278 # Header frame_id should be optical frame of camera\n\
01279 # origin of frame should be optical center of cameara\n\
01280 # +x should point to the right in the image\n\
01281 # +y should point down in the image\n\
01282 # +z should point into to plane of the image\n\
01283 # If the frame_id here and the frame_id of the CameraInfo\n\
01284 # message associated with the image conflict\n\
01285 # the behavior is undefined\n\
01286 \n\
01287 uint32 height # image height, that is, number of rows\n\
01288 uint32 width # image width, that is, number of columns\n\
01289 \n\
01290 # The legal values for encoding are in file src/image_encodings.cpp\n\
01291 # If you want to standardize a new string format, join\n\
01292 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01293 \n\
01294 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01295 # taken from the list of strings in src/image_encodings.cpp\n\
01296 \n\
01297 uint8 is_bigendian # is this data bigendian?\n\
01298 uint32 step # Full row length in bytes\n\
01299 uint8[] data # actual matrix data, size is (step * rows)\n\
01300 \n\
01301 ================================================================================\n\
01302 MSG: sensor_msgs/CameraInfo\n\
01303 # This message defines meta information for a camera. It should be in a\n\
01304 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01305 # image topics named:\n\
01306 #\n\
01307 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01308 # image - monochrome, distorted\n\
01309 # image_color - color, distorted\n\
01310 # image_rect - monochrome, rectified\n\
01311 # image_rect_color - color, rectified\n\
01312 #\n\
01313 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01314 # for producing the four processed image topics from image_raw and\n\
01315 # camera_info. The meaning of the camera parameters are described in\n\
01316 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01317 #\n\
01318 # The image_geometry package provides a user-friendly interface to\n\
01319 # common operations using this meta information. If you want to, e.g.,\n\
01320 # project a 3d point into image coordinates, we strongly recommend\n\
01321 # using image_geometry.\n\
01322 #\n\
01323 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01324 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01325 # indicates an uncalibrated camera.\n\
01326 \n\
01327 #######################################################################\n\
01328 # Image acquisition info #\n\
01329 #######################################################################\n\
01330 \n\
01331 # Time of image acquisition, camera coordinate frame ID\n\
01332 Header header # Header timestamp should be acquisition time of image\n\
01333 # Header frame_id should be optical frame of camera\n\
01334 # origin of frame should be optical center of camera\n\
01335 # +x should point to the right in the image\n\
01336 # +y should point down in the image\n\
01337 # +z should point into the plane of the image\n\
01338 \n\
01339 \n\
01340 #######################################################################\n\
01341 # Calibration Parameters #\n\
01342 #######################################################################\n\
01343 # These are fixed during camera calibration. Their values will be the #\n\
01344 # same in all messages until the camera is recalibrated. Note that #\n\
01345 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01346 # #\n\
01347 # The internal parameters can be used to warp a raw (distorted) image #\n\
01348 # to: #\n\
01349 # 1. An undistorted image (requires D and K) #\n\
01350 # 2. A rectified image (requires D, K, R) #\n\
01351 # The projection matrix P projects 3D points into the rectified image.#\n\
01352 #######################################################################\n\
01353 \n\
01354 # The image dimensions with which the camera was calibrated. Normally\n\
01355 # this will be the full camera resolution in pixels.\n\
01356 uint32 height\n\
01357 uint32 width\n\
01358 \n\
01359 # The distortion model used. Supported models are listed in\n\
01360 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01361 # simple model of radial and tangential distortion - is sufficent.\n\
01362 string distortion_model\n\
01363 \n\
01364 # The distortion parameters, size depending on the distortion model.\n\
01365 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01366 float64[] D\n\
01367 \n\
01368 # Intrinsic camera matrix for the raw (distorted) images.\n\
01369 # [fx 0 cx]\n\
01370 # K = [ 0 fy cy]\n\
01371 # [ 0 0 1]\n\
01372 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01373 # coordinates using the focal lengths (fx, fy) and principal point\n\
01374 # (cx, cy).\n\
01375 float64[9] K # 3x3 row-major matrix\n\
01376 \n\
01377 # Rectification matrix (stereo cameras only)\n\
01378 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01379 # stereo image plane so that epipolar lines in both stereo images are\n\
01380 # parallel.\n\
01381 float64[9] R # 3x3 row-major matrix\n\
01382 \n\
01383 # Projection/camera matrix\n\
01384 # [fx' 0 cx' Tx]\n\
01385 # P = [ 0 fy' cy' Ty]\n\
01386 # [ 0 0 1 0]\n\
01387 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01388 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01389 # is the normal camera intrinsic matrix for the rectified image.\n\
01390 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01391 # coordinates using the focal lengths (fx', fy') and principal point\n\
01392 # (cx', cy') - these may differ from the values in K.\n\
01393 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01394 # also have R = the identity and P[1:3,1:3] = K.\n\
01395 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01396 # position of the optical center of the second camera in the first\n\
01397 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01398 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01399 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01400 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01401 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01402 # the rectified image is given by:\n\
01403 # [u v w]' = P * [X Y Z 1]'\n\
01404 # x = u / w\n\
01405 # y = v / w\n\
01406 # This holds for both images of a stereo pair.\n\
01407 float64[12] P # 3x4 row-major matrix\n\
01408 \n\
01409 \n\
01410 #######################################################################\n\
01411 # Operational Parameters #\n\
01412 #######################################################################\n\
01413 # These define the image region actually captured by the camera #\n\
01414 # driver. Although they affect the geometry of the output image, they #\n\
01415 # may be changed freely without recalibrating the camera. #\n\
01416 #######################################################################\n\
01417 \n\
01418 # Binning refers here to any camera setting which combines rectangular\n\
01419 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01420 # resolution of the output image to\n\
01421 # (width / binning_x) x (height / binning_y).\n\
01422 # The default values binning_x = binning_y = 0 is considered the same\n\
01423 # as binning_x = binning_y = 1 (no subsampling).\n\
01424 uint32 binning_x\n\
01425 uint32 binning_y\n\
01426 \n\
01427 # Region of interest (subwindow of full camera resolution), given in\n\
01428 # full resolution (unbinned) image coordinates. A particular ROI\n\
01429 # always denotes the same window of pixels on the camera sensor,\n\
01430 # regardless of binning settings.\n\
01431 # The default setting of roi (all values 0) is considered the same as\n\
01432 # full resolution (roi.width = width, roi.height = height).\n\
01433 RegionOfInterest roi\n\
01434 \n\
01435 ================================================================================\n\
01436 MSG: sensor_msgs/RegionOfInterest\n\
01437 # This message is used to specify a region of interest within an image.\n\
01438 #\n\
01439 # When used to specify the ROI setting of the camera when the image was\n\
01440 # taken, the height and width fields should either match the height and\n\
01441 # width fields for the associated image; or height = width = 0\n\
01442 # indicates that the full resolution image was captured.\n\
01443 \n\
01444 uint32 x_offset # Leftmost pixel of the ROI\n\
01445 # (0 if the ROI includes the left edge of the image)\n\
01446 uint32 y_offset # Topmost pixel of the ROI\n\
01447 # (0 if the ROI includes the top edge of the image)\n\
01448 uint32 height # Height of ROI\n\
01449 uint32 width # Width of ROI\n\
01450 \n\
01451 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01452 # ROI in this message. Typically this should be False if the full image\n\
01453 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01454 # used).\n\
01455 bool do_rectify\n\
01456 \n\
01457 ================================================================================\n\
01458 MSG: geometry_msgs/Vector3\n\
01459 # This represents a vector in free space. \n\
01460 \n\
01461 float64 x\n\
01462 float64 y\n\
01463 float64 z\n\
01464 ================================================================================\n\
01465 MSG: object_manipulation_msgs/GripperTranslation\n\
01466 # defines a translation for the gripper, used in pickup or place tasks\n\
01467 # for example for lifting an object off a table or approaching the table for placing\n\
01468 \n\
01469 # the direction of the translation\n\
01470 geometry_msgs/Vector3Stamped direction\n\
01471 \n\
01472 # the desired translation distance\n\
01473 float32 desired_distance\n\
01474 \n\
01475 # the min distance that must be considered feasible before the\n\
01476 # grasp is even attempted\n\
01477 float32 min_distance\n\
01478 ================================================================================\n\
01479 MSG: geometry_msgs/Vector3Stamped\n\
01480 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01481 Header header\n\
01482 Vector3 vector\n\
01483 \n\
01484 ================================================================================\n\
01485 MSG: arm_navigation_msgs/Constraints\n\
01486 # This message contains a list of motion planning constraints.\n\
01487 \n\
01488 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
01489 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
01490 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
01491 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
01492 \n\
01493 ================================================================================\n\
01494 MSG: arm_navigation_msgs/JointConstraint\n\
01495 # Constrain the position of a joint to be within a certain bound\n\
01496 string joint_name\n\
01497 \n\
01498 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
01499 float64 position\n\
01500 float64 tolerance_above\n\
01501 float64 tolerance_below\n\
01502 \n\
01503 # A weighting factor for this constraint\n\
01504 float64 weight\n\
01505 ================================================================================\n\
01506 MSG: arm_navigation_msgs/PositionConstraint\n\
01507 # This message contains the definition of a position constraint.\n\
01508 Header header\n\
01509 \n\
01510 # The robot link this constraint refers to\n\
01511 string link_name\n\
01512 \n\
01513 # The offset (in the link frame) for the target point on the link we are planning for\n\
01514 geometry_msgs/Point target_point_offset\n\
01515 \n\
01516 # The nominal/target position for the point we are planning for\n\
01517 geometry_msgs/Point position\n\
01518 \n\
01519 # The shape of the bounded region that constrains the position of the end-effector\n\
01520 # This region is always centered at the position defined above\n\
01521 arm_navigation_msgs/Shape constraint_region_shape\n\
01522 \n\
01523 # The orientation of the bounded region that constrains the position of the end-effector. \n\
01524 # This allows the specification of non-axis aligned constraints\n\
01525 geometry_msgs/Quaternion constraint_region_orientation\n\
01526 \n\
01527 # Constraint weighting factor - a weight for this constraint\n\
01528 float64 weight\n\
01529 \n\
01530 ================================================================================\n\
01531 MSG: arm_navigation_msgs/Shape\n\
01532 byte SPHERE=0\n\
01533 byte BOX=1\n\
01534 byte CYLINDER=2\n\
01535 byte MESH=3\n\
01536 \n\
01537 byte type\n\
01538 \n\
01539 \n\
01540 #### define sphere, box, cylinder ####\n\
01541 # the origin of each shape is considered at the shape's center\n\
01542 \n\
01543 # for sphere\n\
01544 # radius := dimensions[0]\n\
01545 \n\
01546 # for cylinder\n\
01547 # radius := dimensions[0]\n\
01548 # length := dimensions[1]\n\
01549 # the length is along the Z axis\n\
01550 \n\
01551 # for box\n\
01552 # size_x := dimensions[0]\n\
01553 # size_y := dimensions[1]\n\
01554 # size_z := dimensions[2]\n\
01555 float64[] dimensions\n\
01556 \n\
01557 \n\
01558 #### define mesh ####\n\
01559 \n\
01560 # list of triangles; triangle k is defined by tre vertices located\n\
01561 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
01562 int32[] triangles\n\
01563 geometry_msgs/Point[] vertices\n\
01564 \n\
01565 ================================================================================\n\
01566 MSG: arm_navigation_msgs/OrientationConstraint\n\
01567 # This message contains the definition of an orientation constraint.\n\
01568 Header header\n\
01569 \n\
01570 # The robot link this constraint refers to\n\
01571 string link_name\n\
01572 \n\
01573 # The type of the constraint\n\
01574 int32 type\n\
01575 int32 LINK_FRAME=0\n\
01576 int32 HEADER_FRAME=1\n\
01577 \n\
01578 # The desired orientation of the robot link specified as a quaternion\n\
01579 geometry_msgs/Quaternion orientation\n\
01580 \n\
01581 # optional RPY error tolerances specified if \n\
01582 float64 absolute_roll_tolerance\n\
01583 float64 absolute_pitch_tolerance\n\
01584 float64 absolute_yaw_tolerance\n\
01585 \n\
01586 # Constraint weighting factor - a weight for this constraint\n\
01587 float64 weight\n\
01588 \n\
01589 ================================================================================\n\
01590 MSG: arm_navigation_msgs/VisibilityConstraint\n\
01591 # This message contains the definition of a visibility constraint.\n\
01592 Header header\n\
01593 \n\
01594 # The point stamped target that needs to be kept within view of the sensor\n\
01595 geometry_msgs/PointStamped target\n\
01596 \n\
01597 # The local pose of the frame in which visibility is to be maintained\n\
01598 # The frame id should represent the robot link to which the sensor is attached\n\
01599 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
01600 geometry_msgs/PoseStamped sensor_pose\n\
01601 \n\
01602 # The deviation (in radians) that will be tolerated\n\
01603 # Constraint error will be measured as the solid angle between the \n\
01604 # X axis of the frame defined above and the vector between the origin \n\
01605 # of the frame defined above and the target location\n\
01606 float64 absolute_tolerance\n\
01607 \n\
01608 \n\
01609 ================================================================================\n\
01610 MSG: geometry_msgs/PointStamped\n\
01611 # This represents a Point with reference coordinate frame and timestamp\n\
01612 Header header\n\
01613 Point point\n\
01614 \n\
01615 ================================================================================\n\
01616 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
01617 # A set of collision operations that will be performed in the order they are specified\n\
01618 CollisionOperation[] collision_operations\n\
01619 ================================================================================\n\
01620 MSG: arm_navigation_msgs/CollisionOperation\n\
01621 # A definition of a collision operation\n\
01622 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
01623 # between the gripper and all objects in the collision space\n\
01624 \n\
01625 string object1\n\
01626 string object2\n\
01627 string COLLISION_SET_ALL=\"all\"\n\
01628 string COLLISION_SET_OBJECTS=\"objects\"\n\
01629 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
01630 \n\
01631 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
01632 float64 penetration_distance\n\
01633 \n\
01634 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
01635 int32 operation\n\
01636 int32 DISABLE=0\n\
01637 int32 ENABLE=1\n\
01638 \n\
01639 ================================================================================\n\
01640 MSG: arm_navigation_msgs/LinkPadding\n\
01641 #name for the link\n\
01642 string link_name\n\
01643 \n\
01644 # padding to apply to the link\n\
01645 float64 padding\n\
01646 \n\
01647 ";
01648 }
01649
01650 static const char* value(const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> &) { return value(); }
01651 };
01652
01653 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > : public TrueType {};
01654 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > : public TrueType {};
01655 }
01656 }
01657
01658 namespace ros
01659 {
01660 namespace serialization
01661 {
01662
01663 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> >
01664 {
01665 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01666 {
01667 stream.next(m.header);
01668 stream.next(m.goal_id);
01669 stream.next(m.goal);
01670 }
01671
01672 ROS_DECLARE_ALLINONE_SERIALIZER;
01673 };
01674 }
01675 }
01676
01677 namespace ros
01678 {
01679 namespace message_operations
01680 {
01681
01682 template<class ContainerAllocator>
01683 struct Printer< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> >
01684 {
01685 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> & v)
01686 {
01687 s << indent << "header: ";
01688 s << std::endl;
01689 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
01690 s << indent << "goal_id: ";
01691 s << std::endl;
01692 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
01693 s << indent << "goal: ";
01694 s << std::endl;
01695 Printer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
01696 }
01697 };
01698
01699
01700 }
01701 }
01702
01703 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEACTIONGOAL_H
01704